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ABSTRACT Considering the impact of the empirical lane changing rate and self-stabilization effect on
traffic flow stability synthetically, an extended two-lane lattice hydrodynamic model was proposed in this
paper. In the first place, the stability condition is acquired through applying liner stability analysis method
and it reveals that both the empirical lane changing rate and self-stabilization effect can enhance the stability
of traffic flow to some extent. Next, in order to analyze the transmission mechanism of traffic congestion,
the modified Korteweg-de Vries (mKdV) equation is deduced by using nonlinear theory near the critical
point. At the same time, the kink-antikink solitary wave solution is obtained to describe the propagation
behavior of traffic density wave by solving the mKdV equation. Subsequently, the numerical simulations
are carried out and the results coincide well with the theoretical analysis, which indicate the empirical lane
changing rate and the self-stabilization effect can improve the traffic stability.

INDEX TERMS Traffic flow, lattice hydrodynamic model, the empirical lane changing rate, the self-
stabilization effect.

I. INTRODUCTION
Urban roads are the lifeblood of urban traffic, and the smooth-
ness of roads has an important impact on urban traffic condi-
tions. But now, the continuous increase of vehicle ownership
seriously affects the road driving environment. The following
problems, such as the deterioration of urban environment,
the decline of urban vitality and the prominent contradiction
between people and vehicles, have prompted many scholars
to think deeply about traffic congestion. In fact, it is very
important and effective to explore the nonlinear phenomenon
of traffic flow and reveal its essential characteristics. What’s
more, modeling can help scholars visualize the traffic flow
system according to the actual situation. Hence, a lot of schol-
ars have considered and established many traffic flow mod-
els [1]–[25] to analyze and explore the features of traffic flow,
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such as micro models [4]–[14], macro models [15]–[19] and
lattice hydrodynamic models [20]–[23]. These models not
only enrich and develop traffic flow theory, but also provide
a lot of new ideas for many traffic engineering practices.

The first thing to introduce is that Nagatani [24] pointed
out the earliest lattice hydrodynamic model in 1998, which
believed that the traffic flow can be optimized by the prod-
uct of the optimal velocity and the average density. For the
purpose of relating to the actual traffic environment, many
extended lattice hydrodynamic models [25]–[29] have been
raised up by pondering a series of factors encountered in
the progress of driving, such as honk effect [25], anticipa-
tion effect [26], density difference effect [27] and so on.
In general, these models are helpful for improving traffic
efficiency and reducing traffic congestion. At the same time,
the improvement and enrichment of traffic flow models will
also promote the development of the traffic flow theory. One
year later, in 1999, Nagatani [30] expanded single-lane lattice
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hydrodynamic into two-lane lattice hydrodynamic model,
which analyzed and concluded the positive influence of lane
changing on traffic flow stability. Gradually, some schol-
ars think that constant lane changing rate can’t adequately
reflect the actual traffic. In 2019, Zhu et al. [31] replaced
the previous commonly used constant lane changing rate with
empirical lane changing rate, and he believed that the use of
this lane changing rate was more convincing for the analysis
and research of two-lane lattice hydrodynamic model.

Besides, in 2018, inspired by the Li’s [33] consideration
of the self-stabilization in car-following model, Zhang [34]
proposed an extended lattice hydrodynamic model by think-
ing over the self-stabilization effect of lattice’s historical flow.
Subsequently, Peng et al. [35] found that this factor was not
taken into account in the presence of lane changing behavior,
so he developed a modified two-lane lattice hydrodynamic
model to explore how the self-stabilization effect of current
lattice’s historical flow affect the traffic flow stability. If we
consider the self-stabilization effect in the case of empirical
lane changing rate, it will make the model more consistent
with the actual traffic situation, and the model can also pro-
vide a theoretical reference for the actual traffic governance.
Therefore, we establish a novel two-lane lattice hydrody-
namic model considering the empirical lane changing rate
and the self-stabilization effect.

The remainder of our article is structured as follows.
In Section 2, we describe the process and results of linear
stability analysis for the new model. Later in Section 3,
we make use of the nonlinear analysis to deduce the mKdV
equation successfully. Next, in order to verify the feasibility
of the new model, numerical simulations are performed, and
the results are exactly consistent with the previous theoretical
analysis results. At last, we give a reasonable conclusion in
Section 6.

II. THE MODIFIED LATTICE HYDRODYNAMIC MODEL
In 1999, Nagatani [30] postulated that when there is a density
difference between two lanes, vehicles will change lane, then
he put forward the first two-lane lattice hydrodynamic model.
And the schematic of the traffic flow’s basic situation on
two-lane road is shown in Fig.1 below. It means that when
the density at site j on lane 1 is lower than the density at
site j − 1 on lane 2, vehicles divert from lane 2 to lane
1 and the lane changing rate is γ

∣∣ρ20V ′ (ρ0)∣∣ (ρ2,j−1 − ρ1,j).
In the same way, when the density at site j on lane 1 is
higher than site j + 1 on lane 2, the lane changing hap-
pens from the lane 1 to the lane 2, and lane changing
rate is γ

∣∣ρ20V ′ (ρ0)∣∣ (ρ1,j − ρ2,j+1). Therefore, Nagatani [30]
got the following continuity equations of lane 1 and lane
2 respectively:

∂tρ1,j + ρ0
(
ρ1,jv1,j − ρ1,j−1v1,j−1

)
= γ

∣∣∣ρ20V ′ (ρ0)∣∣∣ (ρ2,j+1 − 2ρ1,j + ρ2,j−1
)

(1)

∂tρ2,j + ρ0
(
ρ2,jv2,j − ρ2,j−1v2,j−1

)
= γ

∣∣∣ρ20V ′ (ρ0)∣∣∣ (ρ1,j+1 − 2ρ2,j + ρ1,j−1
)

(2)

where ρ1,j and ρ2,j represent the densities on lane 1 and lane 2,
respectively.
Then, through adding Eq. (1) and Eq. (2), the continuity

equation of two-lane model is deduced as below

∂tρj+ρ0
(
ρjvj−ρj−1vj−1

)
=γ

∣∣∣ρ20V ′ (ρ0)∣∣∣ (ρj+1−2ρj+ρj−1)
(3)

where ρj =
ρ1,j+ρ2,j

2 , ρjvj =
ρ1,jv1,j+ρ2,jv2,j

2 ,V
(
ρj
)
=

V(ρ1,j)+V(ρ2,j)
2 , the average density is expressed as ρ0, ρjand

vj denote the local density and velocity at site j on lanes,
respectively, γ indicates the rate constant coefficient.

Recently, according to the measured datasets of lane
changing rate in real traffic environment, Zhu et al. [31]
proposed an extended model by taking the empirical lane
changing rate into account, which is more reasonable com-
pared with the previous fixed lane changing rate. And the
empirical lane changing rate applying the form of the Lee
optimal velocity [32], which is expressed as follows:

γ (ρ) = γmax
1− ρ

/
ρm

1+ E
(
ρ
/
ρm
)4 (4)

where γmax means the maximum coefficient of lane changing
rate and ρm represents the maximum density, besides, E is a
constant.

What’s more, after analyzing the datasets, Zhu et al. [31]
defined the lane changing rate depends on the density of
the former lattice site. The concrete manifestations are as
follows: if the site j−1 on lane 2 has a higher density than site
j on lane 1, there will be a phenomenon of vehicles changing
from lane 2 to lane 1, and the lane changing rate is expressed
as γ

(
ρj
) ∣∣ρ20V ′ (ρ0)∣∣ (ρ2,j−1 − ρ1,j); if the density at site j on

lane 1 is higher than site j+1 on lane 2, vehicles will transfer
from lane 1 to lane 2, and the lane changing rate is written as
γ
(
ρj
) ∣∣ρ20V ′ (ρ0)∣∣ (ρ1,j − ρ2,j+1).

Therefore, the continuity equations of lane 1 and lane 2 can
be changed to the following forms:

∂tρ1,j + ρ0
(
ρ1,jv1,j − ρ1,j−1v1,j−1

)
=

∣∣∣ρ20V ′ (ρ0)∣∣∣ [γ (ρj) (ρ2,j−1 − ρ1,j)− γ (ρj+1)
×
(
ρ1,j − ρ2,j+1

)]
(5)

∂tρ2,j + ρ0
(
ρ2,jv2,j − ρ2,j−1v2,j−1

)
=

∣∣∣ρ20V ′ (ρ0)∣∣∣ [γ (ρj) (ρ1,j−1 − ρ2,j)− γ (ρj+1)
×
(
ρ2,j − ρ1,j+1

)]
(6)

Combining Eq. (5) and Eq. (6), the two-lane traffic’s
continuity equation can be obtained as below:

∂tρj + ρ0
(
ρjvj − ρj−1vj−1

)
=

∣∣∣ρ20V ′ (ρ0)∣∣∣ [γ (ρj) (ρj−1 − ρj)− γ (ρj+1) (ρj − ρj+1)]
(7)

where ρjvj =
ρ1,jv1,j+ρ2,jv2,j

2 .
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FIGURE 1. The basic situation of traffic flow on two-lane straight road.

In addition, since the evolution equation for two-lane
model doesn’t change with the occurrence of lane changing
behavior, it is written in the following form:

∂tρj (t) vj (t) = aρ0V
(
ρj+1 (t)

)
− aρj (t) vj (t) (8)

where a is driver’s sensitivity, V
(
ρj (t)

)
means the optimal

velocity function, which is adopted as follows:

V
(
ρj (t)

)
=
vmax

2

[
tanh

(
2
ρ0
−
ρj (t)

ρ20

−
1
ρc

)
+tanh

(
1
ρc

)]
(9)

Likewise, in 2019, Peng et al. [35] explored the effect of
self-stabilization caused by the current lattice’s historic flux
on traffic stability in two-lane lattice model, and the evolution
equation is described as below:

∂tρj (t) vj (t) = aρ0V
(
ρj+1 (t)

)
− aρj (t) vj (t)

+ λa
[
ρj (t) vj (t)− ρj (t − τ0) vj (t − τ0)

]
(10)

where τ0 indicates the historical time and the coefficient
corresponding to the self-stabilization effect is denoted
as λ. However, the influences of self-stabilization effect
and the empirical lane changing rate has not been analyzed
simultaneously in the two-lane lattice models so far. Thus,
we establish the modified model by means of eliminating the
velocity in Eq. (7) and Eq. (10), and we finally acquire the
following evolution equation of traffic density:

∂2t ρj + aρ
2
0
[
V
(
ρj+1

)
− V

(
ρj
)]
+ (1− λ) a∂tρj

− (1− λ) a
∣∣∣ρ20V ′ (ρ0)∣∣∣ [ γ (ρj) (ρj−1 − ρj)−γ

(
ρj+1

) (
ρj − ρj+1

) ]
+ λa∂tρj (t − τ0)− λa

∣∣∣ρ20V ′ (ρ0)∣∣∣
×

[
γ
(
ρj (t − τ0)

) (
ρj−1 (t − τ0)− ρj (t − τ0)

)
− γ

(
ρj+1 (t − τ0)

) (
ρj (t − τ0)− ρj+1 (t − τ0)

) ]
−

∣∣∣ρ20V ′ (ρ0)∣∣∣ ∂t [γ (ρj) (ρj−1 − ρj)
− γ

(
ρj+1

) (
ρj − ρj+1

)]
= 0 (11)

III. LINEAR STABILITY ANALYSIS
In order to obtain the stability condition of traffic flow,
we apply linear analysis method to study the modified model
we proposed. And we introduce a small disturbance into the
traffic flow system. As we can know, the degree of distur-
bance will continue to increase with the spread of the traffic
flow when the traffic system is unstable. On the contrary,

if the traffic system is stable, the disturbance will decrease
gradually until stabilize in a minimal range.

Distinctly, the following condition satisfy the equilibrium
solution of Eq. (11) in uniform traffic flow:

ρj (t) = ρ0, vj(t) = V (ρ0) (12)

Supposing a small perturbation deviating from the
stead-state solution expressed as yj at site j, which would
cause the density at site j to be rewritten in the following
form:

ρj (t) = ρ0 + yj (t) (13)

Then, substituting Eq. (13) into Eq. (11), we can obtain:

∂2t yj (t)+ aρ
2
0V
′ (ρ0)

(
yj+1 − yj

)
+ λa∂tyj (t − τ0)

−

∣∣∣ρ20V ′ (ρ0)∣∣∣ γ (ρ0) (∂tyj+1 − 2∂tyj + ∂tyj−1
)

+ (1− λ) a∂tyj (t)− (1− λ) a
∣∣∣ρ20V ′ (ρ0)∣∣∣

× γ (ρ0)
(
yj−1 − 2yj + yj+1

)
− λa

∣∣∣ρ20V ′ (ρ0)∣∣∣ γ (ρ0) [yj−1 (t − τ0)− 2yj (t − τ0)

+ yj+1 (t − τ0)
]
= 0 (14)

where V ′ (ρ0) =
∂V (ρ)
∂ρ

∣∣
ρ=ρ0 .

Next, expanding yj into Fourier series, that is, letting
yj (t) = exp (ikj+ zt), where i is imaginary number, k is a
parameter deciding the shape of the perturbation, j is the num-
ber of the lattice, and z is a complex variable to be determined,
t means the time. Then substituting it into Eq. (14) to get the
Eq. (15) written as follows:

z2 + aρ20V
′ (ρ0)

(
eik − 1

)
+ (1− λ) az

− λa
∣∣∣ρ20V ′ (ρ0)∣∣∣ γ (ρ0) (e−ik−zτ0 − 2e−zτ0 + eik−zτ0

)
+ λaze−zτ0

− (1− λ) a
∣∣∣ρ20V ′ (ρ0)∣∣∣ γ (ρ0) (e−ik − 2+ eik

)
−

∣∣∣ρ20V ′ (ρ0)∣∣∣ γ (ρ0) (ze−ik − 2z+ zeik
)
= 0 (15)

For simplicity, letting z = z1 (ik) + z2 (ik)2 + · · · and
substituting it into Eq. (15), and the first and second order
terms of ik can be deduced as follows:

z1 = −ρ20V
′ (ρ0) (16)

z2 = −

 ρ40V ′ (ρ0)2a
+
ρ20V

′ (ρ0)

2
−
∣∣ρ20V ′ (ρ0)∣∣ γ (ρ0)− λτ0ρ40 (V ′ (ρ0)2)

 (17)

Based on the traffic flow stability theory and the above
derived results, we know that when z2 < 0, the steady-state
flow becomes unstable. On the contrary, when z2 > 0, the
traffic flow system would maintain stable. In other words, the
stability conditions have been met. As a result, we can get the
neutral stability condition as below:

a =
−2ρ20V

′ (ρ0)

1+ 2γ (ρ0)− 2λτ0ρ20V
′ (ρ0)

(18)
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FIGURE 2. The neutral stability curves for γmax = 0.1,0.3,0.5 with
λ = 0.3 and τ0 = 0.1.

FIGURE 3. The neutral stability curves for λ = 0.1,0.2,0.3 with
γmax = 0.3 and τ0 = 0.1.

Consequently, the stability condition for uniform traffic
flow is

a >
−2ρ20V

′ (ρ0)

1+ 2γ (ρ0)− 2λτ0ρ20V
′ (ρ0)

(19)

The neutral stability curves under different parameters are
shown in the following Fig.2, Fig.3 and Fig.4. As shown in
the figure, the upper region of the curve is the stable region,
whereas the lower part of the curve is an unstable region.

Fig.2 is drawn by setting the different γmax with λ = 0.3
and τ0 = 0.1.When γmax = 0.5, the corresponding curve
appears at the bottom. Besides, it’s obvious for us to find that
the vertices of neutral stability curves move downward as the
γmax increases, which send out amessage that increasing γmax
can enhance the traffic flow stability. Fig.3 is the result of
setting different λ under the premise that γmax and τ0 are fixed
equal to 0.3 and 0.1 respectively. Similarly, we can clearly
note that with the increasing of λ, the area of the stability
region is increasing, which shows that the self-stabilization
has a certain role in relieving traffic pressure. What reveals
from Fig.4 is that curve decreases continuously with the
historical time τ0 increases from 0.1 to 0.3, which announces
that the historical time τ0 promotes traffic flow stability.

FIGURE 4. The neutral stability curves for τ0 = 0.1,0.2,0.3 with λ = 0.2
and γmax = 0.3.

IV. NONLINEAR ANALYSIS
In order to analyze the nonlinear phenomena of traffic flow,
we consider the behavior of spatial and temporal slow vari-
ables near the critical point (ρc, ac) in the unstable region of
traffic flow, which are specified in the following form:

X = ε (j+ bt) , T = ε3t, 0 < ε � 1 (20)

where bmeans the undetermined parameters. Then we set the
density of each lattice ρj (t) to

ρj (t) = ρc + εR(X ,T ) (21)

According to the above Eq. (20) and Eq. (21), using
the Taylor expansion method, each item in Eq. (11) is
expanded to the fifth term of ε, then we can get the following
expression:

ε2
(
ab∂XR+ aρ2cV

′ (ρc) ∂XR
)

+ ε3
(
b2 +

aρ2cV
′ (ρc)

2
− a

∣∣∣ρ2cV ′ (ρc)∣∣∣
× γ (ρc) ∂

2
XR− b

2τ0λa
)
∂2XR

+ ε4


(1− λ) a∂TR(

aρ2cV
′ (ρc)

6
+
aρ2cV

′′′ (ρc)

6

−
λa
∣∣ρ2cV ′ (ρc)∣∣ γ (ρc) (1+ 3b2τ 20 + b

3τ 30

)
3

+
λab3τ 20

2
−

∣∣∣ρ2cV ′ (ρc)∣∣∣ γ (ρc) bλa)∂XR3



+ ε5


(1−λaτ0) 2b∂XTR+

aρ2cV
′ (ρc)

24
∂4XR

+
aρ2cV

′′′ (ρc)

12
∂2XR

3
−
(1− λ) a

12
∂4XR−

λab4τ 30
6

∂4XR

−
λa
∣∣ρ2cV ′ (ρc)∣∣ γ (ρc) (1+6b2τ 20 )

12
∂4XR


= 0 (22)

where V ′ = ∂V (ρ)
∂ρ

∣∣
ρ=ρc and V ′′′ = ∂3V0(ρ)

∂ρ3

∣∣
ρ=ρc . More-

over, there is ac =
(
1+ ε2

)
a at the critical point (ρc, ac).
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TABLE 1. The coefficients gi of the model.

Besides, for the purpose of eliminating the second term of ε
in the Eq. (20), we let the coefficient of the quadratic term of
ε be equal to zero and get b = −ρ2cV

′ (ρc). Furthermore,
substituting ac =

(
1+ ε2

)
a and b = −ρ2cV

′ (ρc) into
Eq. (22), an evolutionary equation with only fourth and fifth
terms of ε can be deduced as below:

ε4(−g1∂3XR+ g2∂XR
3
+ ∂TR)

+ ε5(g4∂4XR+ g5∂
2
XR

3
+ g3∂2XR) = 0 (23)

where the coefficients gi (1, 2, . . . , 5) are shown in Table 1.
Because we want to derive the standard mKdV equation,

we need to do the following equivalent substitution:

T =
1
g1
T ′, R =

√
g1
g2
R′ (24)

Subsequently, substituting Eq. (24) into Eq. (23) and
adding the correction term ofO(ε) into themodel, the Eq. (23)
is turned into

∂T ′R
′
= ∂3XR

′
− ∂XR′3 + εM

[
R′
]

(25)

where M
[
R′
]
=

g3
g1
∂2XR
′
+

g4
g1
∂4XR
′
+

g5
g2
∂2XR
′3 and this item

means the higher order infinitesimal term.
In addition, after ignoring the correction term O (ε),

the kink-antikink density wave solution of the mKdV
equation is

R′0
(
X ,T ′

)
=
√
c tanh

(√
c
2

(
X − cT ′

))
(26)

where c denotes the propagation velocity of the above kink-
antikink solitary wave.

Then, the following condition must be satisfied to help us
obtain the value of the propagation velocity c for the kink
solution:(

R′0,M
[
R′0
])
=

∫
+∞

−∞

dX ′R′0M
[
R′0
]
= 0 (27)

whereM
[
R′0
]
= M

[
R′
]
, we get the general solution form of

velocity c through solving the Eq. (27) as follows:

c =
5g2g3

2g2g4 − 3g1g5
(28)

By replacing the velocity c in Eq. (26) with Eq. (28), we can
get the following equation:

R (X ,T ) =
√
g1c
g2

tanh
(√

c
2

(
X − cg1T ′

))
(29)

Since then, the general kink-antikink solution of the mKdV
equation can be expressed as

ρj(t) = ρc + ε
√
g1c
g2

tanh
(√

c
2
(X − cg1T )

)
(30)

Obviously, the amplitude A of the density soliton is:

A = ε
√
g1c
g2

(31)

This kink-antikink soliton stands for the coexisting phases
containing the freely moving phase with low density and the
congested phase with high density. ρj = ρc − A and ρj =
ρc+A are used to describe the densities of the freely moving
phase and congested phase, respectively.

V. NUMERICAL SIMULATION
For convenience of numerical simulation, the Eq. (11) is
rewritten into the following difference form:

(1− λaτ0)
[
ρj (t + 21t)− 2ρj (t +1t)+ ρj (t)

]
+ aρ201t

2 [V (ρj+1)−V (ρj)]+a1t [ρj (t+1t)−ρj (t)]
− (1− λ) a1t2

∣∣∣ρ20V ′ (ρ0)∣∣∣ [γ (ρj) (ρj−1 − ρj)
− γ

(
ρj+1

) (
ρj − ρj+1

)]
− λa

∣∣∣ρ20V ′ (ρ0)∣∣∣1t2
×

 γ (ρj (t−τ0))
(
ρj−1 (t)−

ρj−1 (t+1t)−ρj−1 (t)
1t

−ρj (t−τ0)

)
− γ

(
ρj+1 (t−τ0)

) (
ρj (t−τ0)−ρj+1 (t−τ0)

)


−

∣∣∣ρ20V ′ (ρ0)∣∣∣1t
×

 γ (ρj (t+1t)) (ρj−1 (t+1t)−ρj (t+1t))−γ
(
ρj+1 (t+1t)

) (
ρj (t+1t)−ρj+1 (t+1t)

)
−γ

(
ρj
) (
ρj−1−ρj

)
+γ

(
ρj+1

) (
ρj−ρj+1

)
=0

(32)

where 1t is the time step, and we set 1t = 0.05.
We select the following periodic boundary conditions and

the initial conditions:

ρj (1) = ρj(0) =


ρ0, j 6=

N
2
,
N
2
+ 1,

ρ0 − 0.05, j =
N
2
,

ρ0 + 0.05, j =
N
2
.

(33)

The parameters selected for numerical simulation are
N = 100, t = 104s, ρ0 = ρc = 0.5, a = 1.8, E = 10.
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FIGURE 5. The phase diagram of the model under different values of
parameter γmax.

FIGURE 6. The density profile at t = 10300s corresponds to Fig.5.

Fig.5 depicts the propagation of initial disturbance under
different γmax with τ0 = 0.1 and λ = 0.05.When we
set γmax = 0.04, 0.15, 0.32, there are torque-reverse torque
density waves in the Fig.5 (a), Fig.5 (b) and Fig.5 (c), because
the stability condition is not satisfied. However, when the
value of γmax is selected as 0.45, the initial interference is
gradually diluted over time, at which time the traffic flow
restores to a stable state. Besides, we compare the overall
trend of the four figures from Fig.5 (a) to Fig.5 (d), we can
notice that the amplitude of density wave decreases with the
increase of γmax, which shows that the stability of the system
can be enhanced by increasing the value of γmax so as to
alleviate traffic congestion.

Fig.6 shows the instantaneous traffic flow distribution at
each lattice of Fig.5 at t = 10300s. In Fig.6 (a), the amplitude
of the density wave is about 0.36-0.65, while Fig.6 (d) shows

FIGURE 7. The phase diagram of the model under different values of
parameter λ.

a straight line, that is, the amplitude becomes zero. Similarly,
the amplitude of density wave motion decreases gradually
with the increase of γmax until it disappears. According to
the above analysis, we can conclude that γmax will drive the
improvement of traffic flow stability.

Fig.7 shows the spatiotemporal evolution of density waves
over a long enough period of time in the case of τ0 =
0.1, γmax = 0.2. And the traffic patterns in Fig.7 (a),
Fig.7 (b) and Fig.7 (c) are all unstable traffic flows, but
with the increase of λ, the stability of traffic flow is grad-
ually improved. In addition, In Fig.7 (d), the disturbance is
absorbed and the traffic flow is uniform free flow throughout
the space, because the parameters we set at this time satisfy
the condition of traffic flow stability. To sum up, the self-
stabilization can effectively improve traffic flow stability.

Fig.8 gives the density distribution corresponding to
Fig.7 when t = 10300s. Obviously, the form of density wave
in Fig.8 (c) is not as obvious as that in Fig.8 (a) and Fig.8 (b).
And when we let λ = 0.5, The image becomes a straight line,
which means that the system is stable and the density restores
to the initial uniform flow. Similarly, the above results also
reflect that the self-stabilization effect helps to stabilize traffic
flow.

Fig.9 is the phase diagram of the model under differ-
ent values of parameter τ0.The degree of traffic congestion
in Fig.9 (a), Fig.9 (b) and Fig.9 (c) is different. The most
serious one is in Fig.9 (a). With the increase of τ0, traffic flow
congestion is obviously alleviated in Fig.9 (b) and Fig.9 (c).
When the τ0 is further increased to 0.45, traffic congestion
does not occur, as shown in Fig.9 (d). Based on the above
simulation results, considering the historical time τ0, the sta-
bility of traffic flow can indeed be increased.

Finally, what is described in Fig.10 are the profiles of den-
sity corresponding to Fig.9. In Fig.10 (a), the range of density
wave fluctuation is 0.4-0.6.With the increasing of τ0, the fluc-
tuation amplitude of density wave decreases gradually,
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FIGURE 8. The density profile at t = 10300s corresponds to Fig.7.

FIGURE 9. The phase diagram of the model under different values of
parameter τ0.

and all of them fluctuate around the initial density, which
demonstrates that τ0 cause a positive impact on the stability
of traffic flow.

In the actual traffic, when the vehicle accelerates, it can’t
accelerate to the expected speed immediately, but when it
decelerates, it can reduce the speed quickly. Therefore, the
acceleration and deceleration of traffic flow in congested area
will produce acceleration delay because acceleration force
is generally weaker than deceleration force. And hysteresis
loop is the main reason to induce traffic flow to reduce
stability. What’s more, the stronger the hysteresis loop effect
is, the greater the disturbance to the steady traffic flow will
be. And the following three groups of graphs describe the

FIGURE 10. The density profile at t = 10300s corresponds to Fig.9.

FIGURE 11. The hysteresis loops of traffic flux and density for
different γmax.

hysteresis loops of the relationship between flow and density
under different parameters.

Fig.11 describes the hysteresis loops of traffic flux and
density for different coefficients of γmax = 0.04, 0.15, 0.32,
0.45, respectively. We can intuitively find that the size of
the hysteresis loop decreases with the increase of the value
of γmax. As we can see, when the γmax equals 0.45, the
Fig.11 (d) shows a point, which means the hysteresis loop
disappears and the traffic flow system is stable. Therefore,
through the above analysis, we can again conclude that the
empirical lane changing rate is conducive to promoting traffic
flow stability.

Fig.12 are acquired through setting the different λ with
the remaining parameters fixed. Fig.12 (a) depicts hys-
teresis loop when λ = 0, that is, without consider-
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FIGURE 12. The hysteresis loops of traffic flux and density for different λ.

FIGURE 13. The hysteresis loops of traffic flux and density for different τ0.

ing the self-stabilization effect. By comparing Fig.12 (a)
and Fig.12 (b), it can be found that the traffic flow stability
of lattice model with self-stabilization effect is better than
that without self-stabilization effect. When λ increases to 0.5,
there only exists one point, which indicated that traffic flow
returns to uniform traffic flow. On the whole, the area of
hysteresis loop decreases as the value of λ increases. Thus,
we learn that the self-stabilization effect can alleviate traffic
pressure to a certain extent.

Fig.13 is used to illustrate how the historical time τ0
influence the traffic flow stability. It is precisely because
the stability conditions of traffic flow are not satisfied
that hysteresis loops appear in Fig.13 (a), Fig.13 (b) and
Fig.13 (c), and the size of these hysteresis loops is slowly
decreasing with the increase of τ0. In addition, when τ0
further increases to 0.45, the hysteresis loop disappears and

the traffic flow becomes stable. In general, the historical time
τ0 can restrain traffic congestion and improve the stability of
traffic flow.

VI. CONCLUSION
This paper presents amodified two-lane lattice hydrodynamic
model, which accounting for the impact of the empirical
lane changing rate and the self-stabilization effect. For the
purpose of getting the linear stability condition, we make a
linear analysis of the model, and the results reveal that both
the empirical lane changing rate and the self-stabilization
effect play an active role in traffic flow stability. Later, near
the critical point, we derive the mKdV equation describing
traffic congestion and obtain the kink-antikink solution of the
equation. Besides, we use phase diagrams to illustrate the role
of the empirical lane changing rate and the self-stabilization
effect in improving traffic flow stability. The numerical sim-
ulation results are in agreement with the theoretical analysis.
To sum up, the model established in this paper is close
to the actual traffic, we can draw a reasonable conclusion
that the traffic flow stability can be improved by taking the
empirical lane changing rate and the self-stabilization effect
into account. Considering the empirical lane changing rate,
the stability of traffic flow is still closely related to the self-
stabilization effect of current lattice’s historical flow. Further-
more, whether increasing the coefficient of self-stabilization
effect or increasing the historical time, it can promote the
stability of traffic flow. This new model has some reference
significance to solve the realistic traffic congestion.
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