
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN PARALLEL AND
DISTRIBUTED COMPUTING

Received October 21, 2019, accepted November 19, 2019, date of publication December 2, 2019,
date of current version December 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956759

DBEFT: A Dependency-Ratio Bundling
Earliest Finish Time Algorithm for
Heterogeneous Computing
TAO LI , (Member, IEEE), DINGYUAN CAO , YE LU , TEHUI HUANG , CHENGJUN SUN ,
QIANKUN DONG , AND XIAOLI GONG , (Member, IEEE)
College of Computer Science, Nankai University, Tianjin 300350, China
Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300350, China

Corresponding authors: Qiankun Dong (qiankund@nankai.edu.cn) and Xiaoli Gong (gongxiaoli@nankai.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1003405,
Grant 2018YFB2100304, and Grant 2016YFC0400709, in part by the National Natural Science Foundation under Grant 61872200 and
Grant 61702286, in part by the Natural Science Foundation of Tianjin under Grant 18JCYBJC15600, Grant 19JCZDJC31600, and Grant
19JCQNJC00600, and in part by the China Civil Aviation Security Capacity Building Fund Project under Grant PESA 2018082.

ABSTRACT Performance effective task scheduling algorithms are essential for taking advantage of the
heterogeneous multi-processor in heterogeneous computing environments. In this paper, we present a task
scheduling algorithm named as Dependency-ratio Bundling Earliest Finish Time (DBEFT). DBEFT is a
list based scheduling algorithm combined with task duplication, which can achieve high performance and
low time complexity simultaneously. DBEFT selects the task from the perspective of extending parallelism
between tasks instead of giving priorities to tasks on the critical path. Also, DBEFT reduces communication
cost by adopting a bundling scheduling strategy. The experiments were conducted on both random graph set
and real-world applications, and the results show that DBEFT obtained significant performance improve-
ment, outperforming CEFT by 15%, PEFT by 30% and HEFT 33% in terms of SLR respectively.

INDEX TERMS Heterogeneous system, task scheduling, task duplication, task dependency ratio, bundling
scheduling.

I. INTRODUCTION
In recent years, there has been an increasing number of
heterogeneous computing systems, including many systems
at leadership computing facilities or warehouse-scale data
centers. Normally, there are several phases when constructing
and improving the large-scale computing systems or data
centers. In each phase, either the initial deployment or the
later upgrade, the mainstream processors at that time will be
equipped in the system, whichmakes the entire system or data
center equipped with a number of different processors. On the
other hand, with the recent emergence of hardware accelera-
tors or co-processor technologies, such as CPU + GPU and
CPU + FPGA, chips with different performance exist in the
same system, which makes it a heterogeneous platform too.
In addition, in the embedded system, in order to purchase a
higher performance-energy ratio, the heterogeneous cores are

The associate editor coordinating the review of this manuscript and
approving it for publication was Yong Chen.

integrated into a single chip, such as the big.LITTLE archi-
tecture proposed by ARM [7], which makes heterogeneous
computing a widespread technology for embedded devices.
All these possible architecture choices make heterogeneous
computing systems ubiquitous today.

Especially in the research field of supercomputing, there
are many notable examples of large-scale heterogeneous
systems in the top-ranking HPC (High-Performance Comput-
ing) data centers, including Tianhe, Titan, Trinity, PizDaint,
and Hazel Hen [1]. For example, there are 7168 general-
purpose nodes in Tianhe-1 system connected with Tianhe
autonomous high-speed network and 512 nodes of HPC1 sys-
tem connected with Infiniband. High-performance heteroge-
neous computing can be applied to many aspects, such as big
data processing [42], machine learning [16], [24], image and
video processing [13]–[15], [17].

Efficient scheduling is one of the key factors for high
performance on heterogeneous systems. Task scheduling is
a traditional problem in heterogeneous computing. In the

173884 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0002-0716-8581
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0002-2090-9962
https://orcid.org/0000-0003-4105-5860
https://orcid.org/0000-0002-3040-6197
https://orcid.org/0000-0002-9836-558X

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

FIGURE 1. A sample application DAG and computation time matrix of the
tasks on each processor.

scheduling problem, applications are divided into parallel
tasks and the relationship among tasks are represented as a
directed acyclic graph (DAG). In the DAG, each task is rep-
resented as a node and the edges between nodes represent the
dependency requirement for arbitrary executions such as the
example shown in Figure 1. The scheduling algorithms take
the DAG as input, and generate an execution order for tasks,
and assign them onto different processors. In order to take
advantage of the heterogeneous multi-processors, an optimal
solution is required so that task dependency requirements
are satisfied while minimizing the makespan (total comple-
tion time of the application). Many researchers have tried to
achieve efficient scheduling [5], [6], [11], [19], [20], [25],
[33], [37], [40], [44]. However, scheduling is an NP-hard
problem [38] and currently it is impossible to get an optimal
solution in an acceptable time.

In order to obtain the approximately optimal heuristic
solutions, there are some assumptions and constraints on the
general-purpose scheduling problem. Static scheduling [5],
[6], [19], [20], [25], [37], [44] and dynamic scheduling [11],
[33] are two major categories of the research field. Dynamic
scheduling is a runtime scheduling, in which all information
about tasks (such as execution cost and communication cost)
is unknown and the execution order is determined at runtime.
In contrast, static scheduling is a compile-time scheduling
that all information is available beforehand, which indicates
we can optimize decisions in advance according to the whole
workload. In this paper, we focus on the problem of static
scheduling algorithms for a general model of deterministic
parallel tasks.

Static scheduling consists of heuristic-based algo-
rithms [6], [19], [20], [25], [37] and guided random search-
based algorithms [35], [41], [47]. Generally, high quality
guided random search-based algorithms have expensive iter-
ation computing cost. Therefore, most of the existing static
scheduling algorithms are heuristic-based algorithms, which
try to produce a solution good enough rather than optimal,
with lower computing complexity.

By extending the parallelism between tasks and reducing
communication cost, the quality of the scheduling algorithms
can be improved. However, extending the parallelism will

bring more communication cost among tasks. Therefore,
efficient scheduling algorithms with the consideration of
communication cost is critical to explore the potential of
multi-processor computing platforms. Many existing algo-
rithmsmainly focus on the computational requirements rather
than the communication cost. However, with the enormous
computing power of heterogeneous systems, the communica-
tion cost may become the bottleneck in these systems, partic-
ularly when executing applications with huge communication
requirements, such as image processing, weather modeling,
and distributed database systems.

In this paper, a heuristic algorithm named DBEFT
(Dependency-ratio Bundling Earliest Finish Time) is intro-
duced to reduce the communication cost by bundling the
tasks with heavy communication cost as one node. We eval-
uated DBEFT with randomly generated DAGs [2] and DAGs
constructed based on well-known real applications such as
Gaussian Elimination and Fast Fourier Transform (FFT).
Results show that DBEFT obtains better performance than
the state-of-art solutions including CEFT [25], PEFT [6] and
HEFT [37]. In particular, we make the following contribu-
tions.
• We introduce the concept of the task dependency ratio
to locate the bottleneck of data communication in task
scheduling.

• We propose a heuristic algorithm DBEFT. Based on the
analysis for task dependency, the bundling scheduling
strategy and duplication mechanism are adopted to mit-
igate communication cost.

• We introduce two new metrics, redundant computation
ratio(RCR) and average idle time(AIT), to evaluate the
static heuristic scheduling algorithms.

• Comprehensive experiments were conducted to evaluate
DBEFT and compare it with state-of-art solutions.

The rest of this paper is organized as follows. In SectionII,
we introduce the DAG scheduling problem. The related work
in scheduling DAGs on heterogeneous systems is presented
in SectionIII. SectionIV describes the details of DBEFT.
SectionV demonstrates the experimental details and analyzes
the results. We conclude the paper in SectionVI.

II. THE DAG SCHEDULING PROBLEM
With the widespread use of heterogeneous high-performance
computing systems in recent years, scheduling in het-
erogeneous multi-processor computing environments also
becomes a hot topic for researches [23], [26]. In recent years,
many models have been proposed by researchers to describe
the requirements of practical applications, and many schedul-
ing methods have been studied based on those models. The
task scheduling model based on DAGs is one of the popular
methods.

In order to explore the potential of applications’ paral-
lelism, a general way is to divide the entire application into
multiple fine-grained tasks, and then build a DAG based on
the dependency between tasks. In the task scheduling model
based DAG, each basic operation of the target application

VOLUME 7, 2019 173885

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

is considered as a node in the DAG. The directed edge in
the DAG is the dependency between nodes. A task node
is ready only when all its predecessor nodes were finished.
If considering the communication cost, a node also has to
wait until the data required is transferred from different
processors.

A DAG can be described asG = (V ,E,W ,C) to represent
an application, where V = {v1, v2, . . . , vn} is the set of n
task vertices, E is the set of edges ei,j in DAG, W is the
computation-cost matrix of tasks, and ci,j ∈ C is the weight of
ei,j that represents the communication cost of the data trans-
mission between task vi and vj. For example, Figure 1 shows
a DAG generated from a sample application. The numbers on
the edges are the communication cost, which means the time
to transmit the computation result from the predecessor node
to the successor node. Generally, the data is stored in the local
memory. Therefore, the communication cost will be zero if
the predecessor and successor tasks are assigned to the same
processor. The right side of the Figure 1 is the computation
time matrix. There are 3 different processors in this example,
and the time consumption of every node on each processor is
demonstrated in the matrix.

A schedule of a DAG is an assignment of the tasks in the
graph to the processors, such that the predecessor constraints
are respected. The objective of the scheduling problem dis-
cussed in this paper is to minimize the makespan or schedule
length for a given DAG.

In Table 1, we present symbols that will be referred to in the
following sections. In this paper, we assume that the topology
of the target heterogeneous platform is fully connected, which
means the result on one processor can be transmitted to any
other processor directly. The execution of any task is consid-
ered as non-preemptive. On each processor, the execution of
tasks and the communication with other processors can be
overlapped.

III. RELATED WORKS
Since many parallel applications running on heterogeneous
systems require intensive data processing and data communi-
cation, scheduling strategies to deploy the applications have a
significant impact on the overall system performance. Static
scheduling algorithms consist of heuristic-based scheduling
and random search-based scheduling. Random search-based
scheduling algorithms [35], [41], [47] are less efficient and
have much higher time complexity than the heuristic-based
algorithms. The heuristic-based scheduling algorithms [6],
[9], [18], [22], [37], [39], [46] can be classified as list
scheduling, cluster scheduling [10], [28], [31], and task
duplication-based scheduling [4], [8], [27], [32]. Generally,
cluster scheduling has the limitation of time complexity in
high heterogeneity systems. On the contrary, list scheduling
is more feasible in real-time scheduling because of its sim-
plicity. Duplication based scheduling considers re-computing
the result instead of waiting for data communication, which
has higher performance when the communication is the bot-
tleneck of the system.

TABLE 1. Symbol definition.

A. LIST-BASED SCHEDULING ALGORITHMS
Substantial research efforts have been devoted to list schedul-
ing because of its high performance with low time com-
plexity. List scheduling algorithms consist of two phases.
In the first phase, each task is assigned with a priority and
then added to a list of ready tasks in a decreasing order of
priority. In the second phase, once any processor becomes
available, the task with the highest priority is selected and
assigned to the processor. The performance of list schedul-
ing algorithms is heavily dependent on the effectiveness
of the heuristics mechanism. For example, on fine-grained
task graphs with high communication to computation cost
ratio (CCR), the performance of list scheduling algorithms
tends to deteriorate dramatically because of communication
overhead.

B. TASK DUPLICATION-BASED SCHEDULING
ALGORITHMS
As we know, if two dependent tasks are assigned to the
same processor, there is no data transmission between them.

173886 VOLUME 7, 2019

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

On the other hand, if they are assigned to two differ-
ent processors, the communication overhead is incurred.
The idea behind the duplication-based scheduling algo-
rithms is to reduce the transmission time by copying some
of the predecessor tasks of task vi to its execution pro-
cessor. Dong and Luo proposed Heterogeneous Dynamic
Critical Path and multi-task Duplication (HDCPD) algo-
rithm [21], where actual execution time of scheduled tasks
instead of average execution time participates in com-
puting the critical path and multi-level and multi-task
duplication mechanism is used to achieve high performance.
Lotfifar and Shahhoseini proposed Multiple Critical Path
Dominator (MCPD) [30], in which task nodes in a given DAG
are sorted by their contacts with the static critical path, and
the processor with minimum ready time for executing the
task is selected. The time complexity of MCPD is O(v2).
Agarwal and Kunar presented Heterogeneous Economical
Duplication (HED) [3] to optimize the duplication when a
schedule has been generated. In practical, task duplication
scheduling usually assumes that the processors are identical
and the computing complexity increases dramatically for
heterogeneous systems.

C. COMBINATION OF LIST-BASED SCHEDULING AND
TASK DUPLICATION-BASED SCHEDULING
The reason behind duplication-based heuristics is to achieve
the reduction of the communication overhead by allocating
some tasks to multiple processors redundantly [4], [8], [27],
[32]. However, the duplication strategy is quite different from
the traditional duplication based scheduling algorithms. The
most common technique in duplication based algorithms is to
recursively duplicate ancestor nodes in a bottom-up manner,
as done in the CPFD [4] and SD [8] algorithms. Even though
duplication-based algorithms obtain higher performance dur-
ing the task execution, due to the complexity of backward
searches for the ancestor nodes, duplication-based heuris-
tics have higher complexity during the task assignment and
scheduling. In order to achieve high performance with low
complexity, an interesting approach proposed by combining
list scheduling with task duplication [29], [34], [36], [37],
[45], which allocates the nodes to more than one processor,
in order to reduce the waiting time of the dependent tasks.

D. SELECTED BASELINE SCHEDULING ALGORITHMS
In this subsection, we introduce three state-of-the-art list
scheduling heuristics algorithms, HEFT [37], PEFT [6] and
CEFT [25], which are also used as baseline algorithms for
comparison experiments.

Heterogeneous Earliest Finish Time (HEFT) algo-
rithm [37] defines task priority according to ranku that rep-
resents the length of the critical path from the task to the
exit task and is given by Equation(1). Succ(vi) is a set of
immediate successors of task vi. The task list is ordered by
the decreasing priority of tasks. The task vi on the top of the
task list is assigned to the processor that can minimize EFT
of vi, which indicates HEFT aims to achieve global optimal

solution (makespan) by obtaining local optimal solution in
the scheduling of every task. HEFT is a highly competitive
algorithm in terms of scheduling length with low complexity
of the order O(n2m).

ranku(vi) = wi + max
vi∈succ(vi)

{
ci,j + ranku(vj)

}
(1)

Predict Earliest Finish Time (PEFT) algorithm [6] defines
task priority rankoct according to the optimistic cost table
(OCT) which is given by Equation(2). Each element
OCT(vi, pk) represents the maximum of the shortest path of
vi’s children tasks to the exit task considering that proces-
sor pj is selected for task vi. The sum of EFT (vi, pk) and
OCT(vi, pk) is used for selecting the execution processor for
tasks, which indicates the aim of PEFT is to guarantee that the
tasks ahead will finish earlier. PEFT is a high-performance
algorithmwith forward-looking featurewhilemaintaining the
time complexity of the order O(n2m).

rankoct (vi)

=

P∑
k=1

max
vj∈succi

[
min
pw∈P
{OCT (vi, pw)+w(vj, pw)+ ci,j}

]
/P

(2)

Communication-aware earliest finish time (CEFT) algo-
rithm [25] combines list-based scheduling with task dupli-
cation. CEFT defines task priority according to ranku as in
HEFT and communication ration(CR). According to the task
priority Equation(4), before every scheduling, local normal-
ization is applied to the ranku(as defined in Equation(1)) and
CR (as defined in Equation(3)) for all tasks in the current
ready-list. Then task priority is assigned according to these
two attributes of tasks. The ready task with the maximum
rankprio is selected to be scheduled. The existence of CR
makes it more possible to schedule dependent tasks with
higher communication cost on the same processor. If the
communication overhead is not eliminated by scheduling the
dependent tasks on the same processor, try duplicating a
task’s immediate predecessor to its execution processor to
further reduce communication. If duplicating dp(vi) to vi’s
execution processor can decrease EST (vi), task vi and dp(vi)
will be scheduled to their best processor. The best processor
is the one on which minimum EFT of vi can be obtained.

CR(vi) = max
{
Cpred(vi)

}
/max

{
Csucc(vi)

}
(3)

rankprio(vi) = α ∗
randu(vi)∑

vj∈ready−list ranku(vj)

+ (1− α) ∗
CRi∑

vj∈ready−list CRj
(4)

IV. DEPENDENCY-RATIO BUNDLING EARLIEST FINISH
TIME (DBEFT) ALGORITHM
A. TASK DEPENDENCY RATIO
In order to improve the performance of scheduling algo-
rithms, we try to simultaneously increase the task-level par-
allelism and reduce communication cost.

VOLUME 7, 2019 173887

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

Considering the list-based scheduling algorithms, at any
point of time, all tasks in the ready-list can be executed con-
currently, but the number of tasks in the ready-list is not fixed,
as the completion time of each task varies. We define the
number of tasks that can be executed concurrently after the
completion of task vi as task parallelism number (TPN(vi)).
Task dependency ratio (TDR) is defined in Equation(5) and
can be used to evaluate the effect of the completion of task vi
on TPN(vi).

TDR(vi) =
∑

vi∈succ(vi)

(1/|pred(vi)|) (5)

The dependencies of tasks in DAG graph can be classified
into single-task dependency and multi-task dependency.
• Single-task dependency. If task vi is the only immediate
predecessor of task vj, then task vj has single-task depen-
dency with task vi.

• Multi-task dependency. Task vj has more than one imme-
diate processors and task vi is one of the immediate
predecessors of task vj, then task vj has the multi-task
dependency with task vi.

B. BUNDLING SCHEDULING STRATEGY
In order to improve performance, DBEFT reduces commu-
nication cost by overlapping computing and communication
of tasks as much as possible. In our DAG-based scheduling
model, the execution of tasks and communication with other
processors can be done on each processor simultaneously
without contention. It is obviously that hiding the communi-
cation cost with computation is better than duplication-based
strategy. However, in some cases, the high communication
cost is too high to be hidden completely, and in this case
the communication cost will make processors stay idle wait-
ing for data transmission, which is the main cause for low
resource utilization.

In DBEFT, bundled scheduling strategy is adopted to elim-
inate high communication cost. The communication weight
greater than the 5% observation point value on the right side
of the normal distribution is defined as "ultra-long" commu-
nication time. 1.65 is the corresponding value of the 0.9505-
quantile on standard normal distribution table. Two tasks with
high communication cost between them will be bundled into
one big task. DBEFT defines high communication costs (HC)
in the given DAG by Equation(6), µ is the mean value and
σ 2 is the variance of computation costs in the given DAG.
In other words, two tasks with high communication cost
between them will be frozen until both of them are ready to
be scheduled, and once the two tasks are ready, they will be
dispatched to the same execution processor.

HC ≥ 1.65× σ + µ (6)

Taking the DAG in Figure 1 as an example, the mean com-
munication cost is 22.70 and the standard deviation is 7.55.
Based on Equation(6), the 5% observation point value on
the right side of the normal distribution is 35.16, with mean
22.70 and variance 7.552. The communication cost higher

than the criteria in the sample DAG are 57 and 42. Therefore,
tasks v5 and v9 are considered as a high communication cost
pair and they are bundled. The bundled tasks are denoted as
[v5, v9]. v5 and v9 will be frozen before the two immediate
predecessor tasks v2 and v4 are scheduled. Once v2 and v4
are scheduled, tasks v5 and v9 will be dispatched together.
Similarly, tasks v8 and v10 are bundled and frozen.

C. DETAILED DESCRIPTION OF DBEFT ALGORITHM
In this section, we explain the details of DBEFT algo-
rithm, including task priority assignment, duplication mecha-
nism, execution processor selection, and bundling scheduling
strategy.

1) TASK PRIORITY ASSIGNMENT
As shown in Equation(5), TDR(vi)) is introduced to explore
the potential of the parallelism for an application. DBEFT
set up the priorities for tasks based on TDR(vi). In addition,
the overlap between the calculation and the communication is
also fully exploited to help determine the task priority. There
are two basic principles when setting up the priority for a task:
• Considering that the completion of a task with high TDR
can make more successor tasks into the ready state, it is
more conducive to increase the parallelism among tasks.
Therefore, a task with a higher TDR value should be
given a higher priority.

• The lower communication cost is, the more it is likely to
be overlapped by the calculation of the successor tasks.
If some tasks have the same TDR, then the task that
has minimum communication cost with its immediate
predecessors should have a higher priority.

Considering the above two principles, the task priority is
calculated as Equation(7):

Prio(vi)=w1 ∗ TDR(vi)+ w2 ∗ 1/maxvj∈pred(vi)(ci,j) (7)

where TDR(vi) is the task dependency ratio of vi (TDR(vi)
should be updated in real-time). The maxvj∈pred(vi)(ci,j) is
the maximum communication cost between task vi and its
immediate predecessors. w1 and w2 represent the weights
of the TDR and the communication cost respectively when
determining the task priority. Since DBEFT determines the
priorities according to TDR,when there are two tasks with the
same TDR, the communication cost is considered. Therefore,
we should ensure that w1 > w2. In this paper, we assume
w1 = 10, w2 = 1. Equation(7) can be expressed as Equa-
tion(8):

Prio(vi) = 10 ∗ TDR(vi)+ 1/maxvj∈pred(vi)(ci,j) (8)

The task with highest priority in ready-list will be dis-
patched, except bundled tasks (described in Section IV-C.4).

2) TASK DUPLICATION MECHANISM
Single immediate predecessor task duplication strategy is
adopted in DBEFT, which means only one immediate pre-
decessor of the current scheduled task can be duplicated at

173888 VOLUME 7, 2019

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

most. Suppose vk is one of the immediate predecessors of
task vi and has been scheduled. Before dispatching task vi,
wewill consider whether to duplicate vk on task vi’s execution
processor pj. If duplicating vk on pj can make vi start on pj in
advance, then we will duplicate vk on pj. We will lable the
duplicated vk as dp(vi).

3) PROCESSOR SELECTION
In the processor selection phase, we calculate the earliest
finish time (EFT) of task vi according to Equation(9) on
all available processors. The dp(vi) is one of the immediate
predecessors of task vi, which need to be duplicated on the
execution processor of vi. Task vi and dp(vi) (if dp(vi) exists)
will be scheduled to the processor with minimum EFT of vi.

EFT (vi, pj) = EST (vi, pj)+ wi,j,

EST = min{AFT (dp(vi), pj),

max{TAvaible(pj),maxvm∈pred(vi){AFT (vm, pj)+cm,i}}} (9)

EST(vi, pj) is the earliest start time of task vi on pro-
cessor pj, while TAvailable(pj) is the available time of the
processor pj. AFT(vi, pj) is the actual finish time of task vi
on processor pj. In this paper, AFT is used instead of EFT in
actual scheduling.

4) TREATMENT OF BUNDLED TASKS
In DBEFT, the ‘‘big task’’ (the bundled task of vi and its
successor) with high communication cost is placed in the
frozen-list. The tasks in frozen-list are in frozen state and
cannot be dispatched until other immediate predecessors of
vi’s successor tasks have been dispatched. Once the other
predecessor tasks are dispatched, vi is put into the ready-list
and will be dispatched immediately. A bundled task chooses
the processor that will minimize the EST of its successor
tasks.

5) ALGORITHM DETAILS
The pseudo code of DBEFT algorithm is demonstrated in

Algorithm 1. The algorithm starts by computing communi-
cation cost (HC) according to Equation(6) and then put the
tasks with high communication cost into the frozen-list. After
that, an empty ready-list is created and the entry tasks ventry
(the task without predecessors) are placed on top of the list.
In the while loop, the selected tasks are scheduled in every
iteration. The processor pj that can achieve the minimum
EFT(vi, pj) is selected as the execution processor of task vi.

Table 2 shows an example that demonstrates how DBEFT
works for the DAG in Figure 1. The scheduling procedure is
shown in Figure 2. Compared with PEFT, DBEFT shortens
EFT by increasing the EST of task v2 on p1, and tasks v5
and v7 are similar. Compared with CEFT, the DBEFT will
bundle v8 with v10 and dispatch the bundled tasks after all
the other immediate predecessors of v10. It can effectively
reduce the performance loss caused by communication cost
between different processors. DBEFT takes full advantage of
the idle time on the processor and achieves higher scheduling
performance than other algorithms.

Algorithm 1 DBEFT Algorithm
1: Compute TDR(vi) for all tasks in DAG. Select tasks with

high communication costs and bundle them, then put the
bundled tasks into the frozen-list, create empty ready-
list and put ventry as initial task into the ready-list. vactive
is a variable used to preserve the task that need to be
scheduled now and is initiated to 0.

2: while ready-list is NOT empty do
3: for all task vi in ready-list do
4: Compute task priority according to equation(8) and

sort the priorities
5: for all processor pj in processor set P do
6: Compute TAvailable(pj)
7: if exist dp(vi) in pred(vi) then
8: Compute EST(vi, pj),EFT(vi, pj) after duplicat-

ing dp(vi) on pj
9: else
10: Compute EST(vi, pj),EFT(vi, pj)
11: end if
12: end for
13: end for
14: if exist bundled tasks from frozen-list in ready-list

then
15: vactive =bundled tasks[vi, succ(vi)]
16: Assign tasks [vi, succ(vi)] to processor pk that min-

imizes EFT of task succ(vi)
17: else
18: vactive← the task with the highest Prio(vi) in ready-

list
19: Assign task vactive and dp(vactive) (if exists) to the

processor pk that minimizes EFT of task vactive
20: end if
21: Remove vactive from ready-list
22: if exist [vi, succ(vi)] can be removed from frozen-list

then
23: Remove [vi, succ(vi)] from frozen-list, update

frozen-list. Put [vi, succ(vi)] into ready-list
24: end if
25: Put the ready tasks whose predecessors have all been

scheduled into ready-list
26: Update the ready-list
27: Update TDR(vi) for all tasks those are not scheduled

in DAG
28: end while

The time complexity of the frozen-list creation is O(e).
The for loop at line 3 has the complexity O(n) for n tasks.
The duplication mechanism at line 19 is O(p ∗ degree(e))
(degree(e) denotes the maximum out/in degree in the given
DAG). The update of ready-list and TDR in line 26 and
line 27 has the complexity O(n ∗ degree(e)). Thus the
total time comlexity is O(e + n ∗ m ∗ degree(e) + n ∗
degree(e) + n ∗ degree(e)). For dense graphs, e is about n2

and the total complexity is O(max{n2, n ∗ m ∗ degree(e)}).

VOLUME 7, 2019 173889

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

TABLE 2. Schedule produced by the DBEFT algorithm in each iteration.

FIGURE 2. Schedules of the sample DAG in Figure 1 with (a) DBEFT (makespan=106), (b) CEFT(α = 0.25; makespan=115),
(c) PEFT (makespan=122), (d) HEFT (makespan=133). The yellow tasks are duplicated tasks.

Consequently, DBEFT has lower time complexity thanCEFT,
PEFT and HEFT.

V. EVALUATION AND DISCUSSION
We have conducted a series of experiments to evaluate the
proposed DBEFT algorithm and compared it with numerous
existing state-of-the-art scheduling algorithms. Our evalua-
tion is based on a series of comprehensive evaluation metrics.
In this section, we discuss the evaluation metrics first, and
then shows the evaluation results in both simulation work-
loads and real-world workloads.

A. EVALUATION METRICS
Two traditional metrics, scheduling length ratio(SLR) and
speedup, are involved to evaluate DBEFT. In addition,

two new metrics are introduced in this study, which are Aver-
age Idle Time(AIT) and Redundant Computing Ratio(RCR).
These metrics are discussed in detail below.

1) SCHEDULING LENGTH RATIO
Makespan is a metric used to evaluate a single DAG sched-
ule, while scheduling length ratio(SLR) [37] is a metric
used to evaluate the performance of an algorithm on DAGs
with various topologies. For a given DAG, SLR represents
the makespan normalized to the minimum computation cost
of the critical path (CPMIN), which is the lower bound of
makespan, and is given in Equation(10). Therefore, a good
algorithm should have a low SLR.

SLR =
makespan(solution)∑
ni∈CPMIN minpj∈Pwi,j

(10)

173890 VOLUME 7, 2019

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

2) SPEEDUP
In general, speedup is defined as the ratio of the sequential
execution time to the parallel execution time, i.e. makespan,
as shown in Equation(11). The sequential execution time is
obtained by assigning all tasks to a single processor, which
can minimize the total computation cost for a given DAG.

Speedup =
minpj∈P

[∑
vi∈V wi,j

]
makespan(solution)

(11)

3) AVERAGE IDLE TIME
We define average idle time(AIT) in Equation(12) to eval-
uate the computing resource utilization of an algorithm.∑

vi∈V wdp(vi),pj is the total redundant computation cost
caused by all dp(vi). A low AIT implies less idle time on
processors.

AIT

= (|P|∗makespan−
∑

vi∈V ,pj∈P

wi,j−
∑
vi∈V

wdp(vi),pj)/|P| (12)

4) REDUNDANT COMPUTING RATIO
The redundant computing ratio (RCR) is shown in
Equation(13) to evaluate the efficiency of task duplication
based scheduling algorithms. The numerator is the total
redundant computation cost brought by all dp(vi). It is obvi-
ous that with the same makespan, the algorithm with lower
RCR is more efficient.

RCR =
∑
vi∈V

wdp(vi),pj/makespan(solution) (13)

B. EXPERIMENTAL RESULTS
In this section, we use both synthetic benchmarks and
real-world applications as two test graph sets. Several state-
of-the-art heuristic algorithms presented above are used as
baseline algorithms to evaluate the performance of DBEFT.
The workload tasks are assumed to be scheduled on a virtual
heterogeneous platform, which has 32 virtual processors and
each processor has different processing frequency.

1) WORKLOAD GRAPH GENERATOR
To evaluate the performance of the heuristic algo-
rithms, we first consider random graphs, which are gen-
erated using a DAG generation program available at
https://github.com/frs69wq/daggen. The generator requires
the following input parameters.
• n: the number of tasks in the DAG
• width: the width of the DAG, which is the maximum
number of tasks that can be executed concurrently.
A small value will lead to a thin DAG (e.g., chain) with
low task parallelism.

• density: it determines the number of edges between two
levels of the DAG, with a low value leading to fewer
edges and a large value representing a multitude of
edges.

• regularity: it determines the uniformity of the number of
tasks in each level. A high value indicates that all levels
contain similar numbers of tasks.

• jump: the maximum number of levels spanned by inter-
task communications, which means that an edge can go
from level h to level h+jump. This allows to generate the
DAGs with various execution paths of different lengths.

When generating the DAGs, the computation cost and
communication cost are created according to the follow-
ing two parameters: communication-to-computation (CCR)
and β.
• CCR: the ratio of the sum of the edge weights to the sum
of the node weights in a DAG.

• β: the heterogeneity factor for processor speeds. A high
β value implies higher heterogeneity and bigger vari-
ance of computation cost on different processors. The
average computation cost wi of a task vi in a given
DAG is selected randomly from a uniform distribution
in range [0, 2wDAG], where wDAG is the average compu-
tation cost of a random graph. The computation cost of
each task vi on each processor pj is randomly set in the
following range:

wi × (1−
β

2
) ≤ wi,j ≤ wi × (1+

β

2
) (14)

For DAG generation, we considered the following param-
eters in our experiments.
n= [10; 20; 30; 40; 50; 60; 70; 80; 90; 100, 200, 300, 400];
fat = [0.1; 0.4; 0.8]
density = [0.2; 0.5; 0.8]
regularity = [0.2; 0.5; 0.8]
jump = [1; 2; 4]
processors = [4; 8; 16; 32]
β = [0.1; 0.2; 0.4; 0.8; 1.0; 2.0]
CCR = [0.1; 0:5; 1.0; 2.0; 5.0; 10.0];
These combinations produce 151,632 different DAGs. For

each DAG, 5 different random graphs are generated with
the same structure but with different weights of the edges
and nodes. Thus, there are 758,160 random DAGs in the
experiments.

Figure 3 shows the average SLR on graphs of different
sizes for all algorithms. It can be seen that DBEFT is the best
algorithm. On average, DBEFT outperforms CEFT by 3% to
15%, PEFT by 15% to 30%, HEFT by 17% to 33%.

Figure 4 shows the average AIT on different graphs for all
algorithms. DBEFT has the lowest idle time of processors
among all the algorithms. As the number of tasks in DAGs
increases to 400, the idle time of DBEFT is less than one-
third of the other algorithms. Figure 3 and Figure 4 indicate
that DBEFT achieved the highest performance by acquiring
the highest processor utilization.

Figure 5 demonstrates the speedup with respect to the
number of processors for all the algorithms. It can be seen
that DBEFT has the best performance. Also, as the number
of processors increases, DBEFT has a higher speedup, which
implies that DBEFT has better robustness in terms of the
number of processors than CEFT, PEFT, and HEFT.

VOLUME 7, 2019 173891

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

FIGURE 3. Average SLR under graph size. The x-coordinate is the number
of tasks, while the y-coordinate is the average of SLR for all experiments.
The lower the SLR means better algorithms.

FIGURE 4. Average AIT under graph size. The x-coordinate is the number
of tasks, while the y-coordinate is the average of AIT for all experiments.
The lower AIT means the higher utilization of processors.

FIGURE 5. Speedup with respect to the number of processors. The
x-coordinate is the number of processors, while the y-coordinate is
speedup ratio to the makespan of the serialized version.

Average RCR is given in Figure 6. DBEFT has higher
an RCR than CEFT because DBEFT tends to duplicate the
immediate predecessor of a task, if there is any chance to
improve the start time of the task. Also, the duplicated tasks
has higher priorities than other ready tasks. This implies
DBEFT may need to duplicate more tasks than CEFT.

Figure 7, Figure 8, Figure 9, and Figure 10 show the box-
plot of SLR for all the algorithms in respect of heterogeneity,

FIGURE 6. Average RCR under graph size. The x-coordinate is the number
of tasks, while the y-coordinate is average RCR. The DBEFT has higher
RCR comparing to CEFT because DBEFT generates more duplicated tasks.

FIGURE 7. Box-plot of SLR under heterogeneity. The y-coordinate is
average SLR, while the x-coordinate is the heterogeneity, which means
the difference when tasks running on different processors.

FIGURE 8. SLR under CCR. The y-coordinate is average SLR, while the
x-coordinate is the CCR. Higher CCR means more communication cost
comparing to the computation.

CCR and density. The border of the box shows the third
quartile and the first quartile of the SLR distribution, while
the horizon line in the box indicates the median of SLRs in
each experiment. The smaller box means the algorithm has
stabler performance. The DBEFT is the best algorithm with

173892 VOLUME 7, 2019

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

FIGURE 9. SLR under density. The y-coordinate is average SLR, while the
x-coordinate is the density. Higher density means more task dependence
among tasks.

FIGURE 10. SLR under width. The y-coordinate is average SLR, while the
x-coordinate is the width. Higher width means more parallel tasks in
the DAT.

the lowest dispersion of SLR in the distribution of the results.
In terms of heterogeneity, the bigger heterogeneity means the
bigger difference of run time on different processors, which
means more difficult to schedule the tasks. The DBEFT
gets better performance as heterogeneity increase because
DBEFT can overlap the communication with computation. In
terms of CCR, the bigger CCR means more communication
cost. Every algorithm slows down as the communication cost
increase. The DBEFT outperforms other algorithms because
of the task bundle strategy and task duplication mechanism,
which can further hide the communication cost. In terms
of density, bigger density means more edges in the DAGs,
which means more dependence among tasks. DBEFT has
the lowest average SLR and smallest dispersion with the
increment of density, which implies DBEFT can achieve
good performance in DAGs with more dependencies between
tasks. It is because DBEFT stress the communication cost
elimination between tasks. In terms of width, the wider the
DAG is, the more parallel tasks there are, which lead to better
performance, while in this situation, DBEFT still outperforms
other algorithms.

FIGURE 11. SLR under matrix size for gaussian elimination.

FIGURE 12. SLR under CCR for gaussian elimination.

2) REAL-WORLD APPLICATION GRAPHS
Weuse two real world applications to evaluate DBEFT, which
are Gaussian Elimination and Fast Fourier Transform (FFT).
The DAGs are built based on the traditional implication of the
two applications.

We use a parameterm to denote matrix size on each dimen-
sion for Gaussian Elimination [43]. The total number of tasks
in a Gaussian Elimination graph is (m2

+ m − 2)/2. The
values considered for m are [5;10;15;20; 25;30;35;40;45;50]
and CPU number is in the range of {4,8,16,32,64}.

The box plots of SLR respect to the matrix size, CCR and
the number of processors are shown in Figure 11, Figure 12
and Figure 13 respectively. The border of the box shows the
third quartile and the first quartile of the SLR distribution,
while the horizon line in the box indicates themedian of SLRs
in each experiment. Figure 11 indicates DBEFT produces
lower dispersion in the distribution of SLR for all matrix
sizes. Figure 12 indicates DBEFT has the lowest SLR for
CCR up to 5.0. When CCR is greater than 5.0, DBEFT has
similar result as CEFT. Figure 13 demonstrates DBEFT has
the best performance in terms of the number of processors,
and as the number increases, DBEFT produces lower SLR.
Therefore, DBEFT algorithm has the best robustness in Gaus-
sian Elimination.

In the DAG generated for FFT, all the tasks are critical
tasks since all paths are critical paths, and the communication

VOLUME 7, 2019 173893

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

FIGURE 13. SLR under processor number for gaussian elimination.

FIGURE 14. SLR under input points for fast fourier transform task.

cost between two neighboring level tasks are the same. As
mentioned in [20], we can separate the FFT algorithm into
two parts: recursive calls and the butterfly operations. The
number of tasks depends on the number of point n. There
are 2 ∗ (n − 1) + 1 recursive tasks and nlog2n butterfly
operation tasks. The number of tasks are 5, 15, 39, 95,
223 with n in the range of {2,4,8,16,32}. We use CCR in the
range of {0.1,0.5,1,2,5,10} and CPU number in the range of
{4,8,16,32,64}.

The box plots of SLR respect to the matrix size, CCR and
the number of processors are shown in Figure 14, Figure 15
and Figure 16 respectively. Figure 14 indicates that DBEFT
algorithm produces lower dispersion in the distribution of
SLR. Different from Gaussian Elimination, Figure 15 indi-
cates that DBEFT algorithm has the lowest SLR among all
the algorithms with FFT task graph. Figure 16 demonstrates
DBEFT algorithm has the best performance in terms of the
number of processors, and as the number increases, DBEFT
algorithm produces lower SLR. Therefore, DBEFT algorithm
has the better scalability in FFT.

C. DISCUSSION
HEFT needs to calculate the ranku value for all tasks before
task scheduling begins. Since it is impossible to know in
advance which processor that each task will be dispatched
to, HEFT uses the average execution time of tasks on all

FIGURE 15. SLR under CCR for fast fourier transform task.

FIGURE 16. SLR under processor number for fast fourier transform task.

the processors instead of the task execution time. However,
in heterogeneous systems, tasks have different computation
times on processors with different capabilities. In DBEFT,
the task dependency ratio was introduced to determine the
task’s priority, which is continually updated during task
execution.

PEFT uses the average value of all processors’ OCT as
the task’s priority, but without knowing the predecessors and
successors will eventually be executed on which processor,
it uses the average communication cost instead of the actual
communication cost when calculating OCT. But in the actual
scheduling process, if two tasks with dependency relationship
are scheduled to the same processor, the communication cost
between the two tasks can be ignored. After each scheduling,
DBEFT calculate with the actual communication cost and
computing cost of tasks which have been scheduled rather
than their estimated average cost. At the same time, DBEFT
uses the task replication strategy to reduce the effects of long
communication cost.

CEFT has greatly reduced the communication delay
between tasks by adjusting the task priority order and task
duplication strategy, but the problem of finding the optimal
parameters can not be ignored. DBEFT further reduces the
delay caused by the long communication cost by using the
bundling strategy based on CEFT. The parallelism degree

173894 VOLUME 7, 2019

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

among tasks is also expanded. Comparedwith CEFT, DBEFT
not only expands the parallelism degree among tasks, but
also improves the utilization of computing resources in the
system.

Compared with other algorithms, DBEFT can obtain bet-
ter time performance. As the number of tasks increases,
the advantage of DBEFT tends to be more obvious. This is
because adjusting task priorities in other algorithms brings
some delays in tasks with high ranku and low CR values, but
these delays offset the benefits of changing task priorities.
DBEFT can adopt the single-task replication strategy and
overlap communication time and task computing time as
much as possible, which maximizes the parallelism degree
between tasks and reduces the idle latency of available pro-
cessor resources. In addition, the bundling strategy adopted
by DBEFT eliminates singular values of communication cost
and allows the algorithm to have good robustness to the
number of processors.

VI. CONCLUSION
In this paper, we solve the problem of scheduling task graphs
on a heterogeneous system, which consists of a set of het-
erogeneous machines. We propose a performance effective
algorithm with low time complexity, DBEFT, to minimize
the makespan by reducing communication overhead and
maximizing the resource utilization. DBEFT achieves high
resource utilization by minimizing communication overhead
and maximizing task parallelism. DBEFT sets up the priority
of tasks according to TDR, a notion defined in the paper to
expand the task parallelism at runtime, and minimizes com-
munication overhead by overlapping computing and com-
munication as much as possible. Task bundling strategy is
also adopted to eliminate communication overhead caused
by high communication costs between tasks. We have used
both simulation benchmarks and real-world applications to
evaluate the algorithm proposed and compared it with the
state-of-the-art heuristic algorithms. Extensive experimental
results demonstrate that in the best case our new heuristic
algorithmDBEFT improves performance by 15%over CEFT,
30% over PEFT, 33% over HEFT in terms of SLR and
Speedup respectively.

REFERENCES
[1] TOP 10 Sites for June 2016. Accessed: Jun. 2017. [Online]. Available:

https://www.top500.org/lists/2016/06/
[2] Daggen. Accessed: Jul. 2017. [Online]. Available: https://github.com/

frs69wq/daggen
[3] A. Agarwal and P. Kumar, ‘‘Economical duplication based task scheduling

for heterogeneous and homogeneous computing systems,’’ in Proc. IEEE
Int. Adv. Comput. Conf., Mar. 2009, pp. 87–93.

[4] I. Ahmad and Y.-K. Kwok, ‘‘On exploiting task duplication in parallel
program scheduling,’’ IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 9,
pp. 872–892, Sep. 1998.

[5] S. G. Ahmad, C. S. Liew, E. U.Munir, T. F. Ang, and S. U. Khan, ‘‘A hybrid
genetic algorithm for optimization of scheduling workflow applications in
heterogeneous computing systems,’’ J. Parallel Distrib. Comput., vol. 87,
pp. 80–90, Jan. 2016.

[6] H. Arabnejad and J. G. Barbosa, ‘‘List scheduling algorithm for heteroge-
neous systems by an optimistic cost table,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[7] ARM. big.LITTLE Technology: The Future of Mobile.
Accessed: Jul. 2017. [Online]. Available: https://www.arm.com
/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

[8] S. Bansal, P. Kumar, and K. Singh, ‘‘An improved duplication strategy
for scheduling precedence constrained graphs in multiprocessor systems,’’
IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 6, pp. 533–544, Jun. 2003.

[9] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, ‘‘Dag schedul-
ing using a lookahead variant of the heterogeneous earliest finish time
algorithm,’’ in Proc. 18th Euromicro Conf. Parallel, Distrib. Netw.-Based
Process., Feb. 2010, pp. 27–34.

[10] C. Boeres, J. V. Filho, and V. E. Rebello, ‘‘A cluster-based strategy for
scheduling task on heterogeneous processors,’’ in Proc. 16th Symp. Com-
put. Archit. High Perform. Comput., Oct. 2004, pp. 214–221.

[11] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, ‘‘Real-time task schedul-
ing on island-based multi-core platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 2, pp. 538–550, Feb. 2015.

[12] L. Tao, D. Qiankun, W. Yifeng, G. Xiaoli, and Y. Yulu, ‘‘Dual buffer
rotation four-stage pipeline for CPU–GPU cooperative computing,’’ Soft
Comput., vol. 23, no. 3, pp. 859–869, 2019.

[13] X. Chang, Z. Ma, M. Lin, Y. Yang, and A. G. Hauptmann, ‘‘Feature
interaction augmented sparse learning for fast Kinect motion detection,’’
IEEE Trans. Image Process., vol. 26, no. 8, pp. 3911–3920, Aug. 2017.

[14] X. Chang, Z. Ma, Y. Yang, Z. Zeng, and A. G. Hauptmann, ‘‘Bi-level
semantic representation analysis for multimedia event detection,’’ IEEE
Trans. Cybern., vol. 47, no. 5, pp. 1180–1197, May 2017.

[15] X. Chang, F. Nie, S. Wang, Y. Yang, X. Zhou, and C. Zhang, ‘‘Compound
rank-k projections for bilinear analysis,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 7, pp. 1502–1513, Jul. 2016.

[16] X. Chang and Y. Yang, ‘‘Semisupervised feature analysis by mining cor-
relations among multiple tasks,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 10, pp. 2294–2305, Oct. 2017.

[17] X. Chang, Y.-L. Yu, Y. Yang, and E. P. Xing, ‘‘Semantic pooling for
complex event analysis in untrimmed videos,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 8, pp. 1617–1632, Aug. 2017.

[18] M. I. Daoud and N. Kharma, ‘‘A high performance algorithm for static task
scheduling in heterogeneous distributed computing systems,’’ J. Parallel
Distrib. Comput., vol. 68, no. 4, pp. 399–409, Apr. 2008.

[19] K. Deng, K. Ren, S. Liu, and J. Song, ‘‘DAG scheduling for heterogeneous
systems using biogeography-based optimization,’’ in Proc. IEEE 21st Int.
Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2015, pp. 708–716.

[20] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, ‘‘Bi-objective schedul-
ing algorithms for optimizing makespan and reliability on heterogeneous
systems,’’ in Proc. 19th Annu. ACM Symp. Parallel Algorithms Archit.,
Jun. 2007, pp. 280–288.

[21] D. Fang and L. Junzhou, ‘‘A heterogeneous dynamic critical path and
duplication based task scheduling algorithm for pervasive computing,’’ in
Proc. 2nd Int. Conf. Pervasive Comput. Appl., Jul. 2007, pp. 457–462.

[22] T. Hagras and J. Janecek, ‘‘A simple scheduling heuristic for heterogeneous
computing environments,’’ in Proc. 2nd Int. Symp. Parallel Distrib. Com-
put., Oct. 2003, pp. 104–110.

[23] L. A. Hall, ‘‘Approximation algorithms for scheduling,’’ in Approximation
Algorithms for NP-Hard Problems. Boston, MA, USA: PWS Publishing,
1996, pp. 1–45.

[24] K. Hamedani, L. Liu, A. Rachad, J. Wu, and Y. Yi, ‘‘Reservoir computing
meets smart grids: Attack detection using delayed feedback networks,’’
IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 734–743, Feb. 2018.

[25] T. Huang, T. Li, Q. Dong, K. Zhao,W.Ma, and Y. Yang, ‘‘Communication-
aware task scheduling algorithm for heterogeneous computing,’’ Int.
J. High Perform. Comput. Netw., vol. 10, nos. 4–5, pp. 298–309, 2017.

[26] D. Karger, C. Stein, and J. Wein, ‘‘Scheduling algorithms,’’ in Algorithms
and Theory of Computation Handbook. Boca Raton, FL, USA: CRC Press,
2010, p. 20.

[27] C.-S. Lin, C.-S. Lin, Y.-S. Lin, P.-A. Hsiung, and C. Shih, ‘‘Multi-objective
exploitation of pipeline parallelism using clustering, replication and dupli-
cation in embedded multi-core systems,’’ J. Syst. Archit., vol. 59, no. 10,
pp. 1083–1094, 2013.

[28] J.-C. Liou and M. A. Palis, ‘‘An efficient task clustering heuristic for
scheduling dags on multiprocessors,’’ in Proc. Workshop Resource Man-
age., Symp. Parallel Distrib. Process., 1996, pp. 152–156.

[29] C.-H. Liu, C.-F. Li, K.-C. Lai, and C.-C. Wu, ‘‘A dynamic critical path
duplication task scheduling algorithm for distributed heterogeneous com-
puting systems,’’ in Proc. 12th Int. Conf. Parallel Distrib. Syst., vol. 1,
Jul. 2006, p. 8.

VOLUME 7, 2019 173895

T. Li et al.: DBEFT Algorithm for Heterogeneous Computing

[30] F. Lotfifar and H. S. Shahhoseini, ‘‘A low-complexity task scheduling
algorithm for heterogeneous computing systems,’’ in Proc. 3rd Asia Int.
Conf. Modelling Simulation, May 2009, pp. 596–601.

[31] P. K. Mishra, A. Mishra, K. S. Mishra, and A. K. Tripathi, ‘‘Benchmarking
the clustering algorithms for multiprocessor environments using dynamic
priority of modules,’’ Appl. Math. Model., vol. 36, no. 12, pp. 6243–6263,
2012.

[32] H.-J. Park and B. K. Kim, ‘‘Optimal task scheduling algorithm for cyclic
synchronous tasks in general multiprocessor networks,’’ J. Parallel Distrib.
Comput., vol. 65, no. 3, pp. 261–274, 2005.

[33] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, ‘‘Parallel
real-time scheduling ofDAGs,’’ IEEETrans. Parallel Distrib. Syst., vol. 25,
no. 12, pp. 3242–3252, Dec. 2014.

[34] K. Shin,M. Cha,M.-S. Jang, J. Jung,W. Yoon, and S. Choi, ‘‘Task schedul-
ing algorithm using minimized duplications in homogeneous systems,’’
J. Parallel Distrib. Comput., vol. 68, no. 8, pp. 1146–1156, 2008.

[35] S. Song, K. Hwang, and Y.-K. Kwok, ‘‘Risk-resilient heuristics and genetic
algorithms for security-assured grid job scheduling,’’ IEEE Trans. Com-
put., vol. 55, no. 6, pp. 703–719, Jun. 2006.

[36] X. Tang, K. Li, G. Liao, and R. Li, ‘‘List scheduling with duplication for
heterogeneous computing systems,’’ J. Parallel Distrib. Comput., vol. 70,
no. 4, pp. 323–329, Apr. 2010.

[37] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[38] J. D. Ullman, ‘‘NP-complete scheduling problems,’’ J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, 1975.

[39] G. Wang, H. Guo, and Y. Wang, ‘‘A novel heterogeneous scheduling
algorithm with improved task priority,’’ in Proc. IEEE 17th Int. Conf. High
Perform. Comput. Commun., IEEE 7th Int. Symp. Cyberspace Saf. Secur.,
IEEE 12th Int. Conf. Embedded Softw. Syst., Aug. 2015, pp. 1826–1831.

[40] Y. Wang, K. Li, and K. Li, ‘‘Partition scheduling on heterogeneous multi-
core processors for multi-dimensional loops applications,’’ Int. J. Parallel
Program., vol. 45, no. 4, pp. 827–852, 2017.

[41] Y. W. Wong, R. S. M. Goh, S.-H. Kuo, and M. Y. H. Low, ‘‘A tabu search
for the heterogeneous dag scheduling problem,’’ in Proc. 15th Int. Conf.
Parallel Distrib. Syst., Dec. 2009, pp. 663–670.

[42] J. Wu, S. Guo, J. Li, and D. Zeng, ‘‘Big data meet green challenges:
Greening big data,’’ IEEE Syst. J., vol. 10, no. 3, pp. 873–887, Sep. 2016.

[43] M.-Y. Wu and D. D. Gajski, ‘‘Hypertool: A programming aid for message-
passing systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 3,
pp. 330–343, Jul. 1990.

[44] Y. Xu, K. Li, J. Hu, and K. Li, ‘‘A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,’’ Inf.
Sci., vol. 270, pp. 255–287, Jun. 2014.

[45] C.-H. Yang, P. Lee, and Y.-C. Chung, ‘‘Improving static task scheduling in
heterogeneous and homogeneous computing systems,’’ in Proc. Int. Conf.
Parallel Process., Sep. 2007, p. 45.

[46] Y. Yang, X. Lu, H. Jin, and X. Liao, ‘‘A stochastic task scheduling algo-
rithm based on importance-ratio of makespan to energy for heterogeneous
parallel systems,’’ in Proc. IEEE 17th Int. Conf. High Perform. Comput.
Commun., IEEE 7th Int. Symp. Cyberspace Saf. Secur., IEEE 12th Int.
Conf. Embedded Softw. Syst., Aug. 2015, pp. 390–396.

[47] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, ‘‘EAD and PEBD:
Two energy-aware duplication scheduling algorithms for parallel tasks on
homogeneous clusters,’’ IEEE Trans. Comput., vol. 60, no. 3, pp. 360–374,
Mar. 2011.

TAO LI received the Ph.D. degree in computer
science from Nankai University, China, in 2007.
He was with the College of Computer Science,
Nankai University, as a Professor. He is a member
of the IEEE Computer Society and the ACM, and
the distinguished member of the CCF. His main
research interests include heterogeneous comput-
ing, machine learning, and the Internet of Things.

DINGYUAN CAO received the B.E. degree from
the College of Computer and Control Engineering,
Nankai University, Tianjin, China, in 2018, where
she is currently pursuing the M.S. degree with
the College of Computer Science. Her research
interests include machine learning and text cate-
gorization.

YE LU received the B.S. and Ph.D. degrees from
Nankai University, Tianjin, China, in 2010 and
2015, respectively. He is currently an Asso-
ciate Professor with Nankai University. His main
research interests include embedded systems,
the Internet of Things, and artificial intelligence.

TEHUI HUANG recevied the B.S. degree from
the Department of Information and Computing
Science, Anhui University of Science and Tech-
nology, in 2012, and the M.S. degree from the
Department of Computer Science, Nankai Univer-
sity, in 2016. She is currently a Software Engineer
with Blot Info & Tech (Beijing) Company, Ltd.

CHENGJUN SUN received the B.E. and M.S.
degrees from the College of Computer and Control
Engineering, Nankai University, Tianjin, China.
Her research interests include high-performance
computing and human–computer interaction.

QIANKUN DONG received the B.S. and
M.S. degrees from Nankai University, Tianjin,
in 2012 and 2016, respectively. His research
interests are computer architecture, heterogeneous
computing, and parallel processing.

XIAOLI GONG was born in 1983. He is currently
an Associate Professor with Nankai University.
His main research interests include system virtu-
alization, and embedded system design and opti-
mization. He is a member of the ACM and China
Computer Federation.

173896 VOLUME 7, 2019

