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ABSTRACT Transportation managers and engineers are often required to make decisions regarding the use
of limited resources that directly affect public safety, costs, and the overall performance of transportation
systems. One important decision involves prioritizing the deployment of resources (e.g., personnel and
variable signs) to low visibility areas due to fog or other environmental and road conditions. Due to the lack
of proper approaches to characterize and incorporate weather and road condition parameters in the decision-
making process, transportation managers depend mainly on personal experience to make these types of
decisions. To help them prioritize the deployment of resources to low visibility areas, this research presents
a fuzzy inference system (FIS) framework composed of three fuzzy systems that characterize fog occurrence,
road risk conditions, and deployment of resources. Preliminary experiments to evaluate the developed fog
occurrence FIS against four methods presented in the literature using data from two weather stations showed
that the FIS model outperformed three of the other methods in accuracy. These results are very promising
given that the other methods represent more expensive solution approaches that require large amounts of
data, significant time-consuming data preparation, network architecture design tasks, and high processing
power.

INDEX TERMS Fog, fuzzy inference system, fuzzy logic, low visibility conditions.

I. INTRODUCTION
Transportation managers and engineers are often required to
make decisions regarding the use of limited resources that
directly affect public safety and costs. A particular situation
commonly faced by transportation decision-makers involves
prioritizing the deployment of resources –such as personnel
and variable signs– to areas with low visibility due to fog,
rain, smoke, or other types of environmental and road con-
ditions. These decisions are critical given that low visibility
conditions create highly unsafe environments and threaten the
operation and performance of transportation systems. Among
the various factors affecting roadway visibility, fog stands out
as a major contributor to severe crashes nationwide. In fact,
statistics from the Federal Highway Administration show that
almost 39,000 yearly vehicle crashes occur during fog condi-
tions, resulting in over 600 fatalities and 16,000 injuries [1].

The current process to prioritize the deployment of
resources to low visibility traffic areas relies on opera-
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tional tools (e.g., simulation models) and standards that
assume clear environmental conditions; therefore, transporta-
tion managers dependmainly on personal experience to make
these types of decisions when faced with inclement weather
of varying intensities [2]. This limitation increases the risk of
ineffective use of resources, which inevitably results in higher
project costs and the probability of developing unreliable
solutions [2]– [5]. Another key factor that directly impacts the
effectiveness of the current decision-making process has to do
with the fact that some environmental and road parameters are
vague by nature and difficult to quantify. These parameters
are highly imprecise; therefore, they should be considered as
imprecise parameters within a decision-making framework.
One weather parameter that significantly impacts traffic vol-
umes and increases the likelihood of accidents on the road
is fog [5]–[7]. Fog is one of the least predictable and most
imprecise weather variables because it fluctuates in terms of
time and position, both horizontally and vertically.

Enhanced methodologies to prioritize the deployment of
resources to low visibility traffic areas can significantly
improve the effectiveness of associated resource assignment
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policies. These improvements can lead to positive impacts on
key performance measures related to public safety and costs.
Therefore, it is necessary to follow a continuous improvement
approach by pursuing further research to enhance the process
of deploying resources to low visibility traffic areas.

This paper presents a fuzzy inference system (FIS) frame-
work to assist transportation managers with prioritizing the
deployment of resources to areas of low visibility due to
fog and other environmental and road condition parameters.
Given that these prioritization decisions depend on param-
eters that are of a highly imprecise nature, a fuzzy logic
approach is employed as it is considered an appropriate
decision-making technique tomanage imprecise and complex
variables [8]–[12]. The proposed FIS framework is composed
of three FIS models. The first model determines the occur-
rence of fog. The second model outputs the risk conditions
of a road. The last model determines the priority to deploy
resources to low visibility areas due to fog.

While fuzzy systems have been developed for forecast-
ing purposes within the transportation and weather literature
(e.g., [7] and [8]), a framework to determine the priority of
resource deployments based on fog occurrence, road risk con-
ditions, and other road parameters has not yet been proposed.
The development of this framework represents a significant
contribution to the literature related to transportation and
resource assignment.

This paper consists of six sections. Section II describes
literature related to four main areas: overview of techniques
considered for dealing with uncertainty and imprecise param-
eters in the decision-making process; modeling imprecise
weather variables; application of fuzzy logic within the trans-
portation field; and resource allocation decisions based on
imprecise parameters. Section III provides a background
related to fuzzy logic. Section IV describes the approach
involved to develop the three inference systems, as well as a
description of each of them. Section V evaluates the proposed
framework. Finally, Section VI provides concluding remarks
and identifies areas for future research.

II. RELATED LITERATURE
Effective consideration of weather variables and road con-
ditions are essential for the correct implementation of traf-
fic and transportation solutions. However, many of the
variables and parameters involved are characterized by uncer-
tainty, subjectivity, imprecision and ambiguity [13]. Tradi-
tional statistical techniques have been found to be ineffec-
tive when dealing with problems in which the dependencies
of the variables are complex, non-linear, or when the vari-
ables are difficult to quantify. Moreover, traditional statistics
techniques typically require variables to be independent and
normally distributed. When dealing with non-linear dynamic
processes (e.g., fog), it is necessary to look into data driven
methodologies that can handle the inherit uncertainty in the
analysis and perform better than the traditional methods [14].
Among those data driven methods are decision trees, fuzzy
logic, and machine learning algorithms (e.g., support vector

machines, Naïve Bayes, and neural networks). Table I shows
an overview of the techniques considered for this paper.

A decision tree is a graphical representation that follows
decision paths based on a set of comprehensible rules. Despite
the popularity of this approach in various fields, its appli-
cation for transportation related problems such as the one
addresed in this paper is limited. One reason for this lack
of applications is the difficulty in defining accurate rules
due to the complexity and subjective nature of environmental
parameters [15].

Many studies have used fuzzy logic as a tool to deal with
imprecise, complex, and ambiguous variables [11], [16]–[19]).
This technique has proven to be successful in a variety of
traffic and transportation problems when the data structure
is characterized by linguistic parameters, e.g., cloudy, foggy,
slippery, clear, dry, wet, etc. These problems can often be for-
mulated in linguistic terms based on descriptive rules, which
are simple for processing and execution but complicated
when it comes to the use of other data driven methodologies
[9]. Fuzzy logic is based on user knowledge and interpreta-
tion; therefore, its main downside is subjectivity.

In the past few years, machine learning algorithms have
achieved great success and recognition. Artificial neural net-
works (ANN) are among the most popular machine learn-
ing approaches for solving non-linear problems. They are
very popular in classification tasks, particularly in the field
of image processing and computer vision. Typically, ANN
algorithms focus on very large datasets and their performance
highly depends on the quality of the training data. One
downside of ANN is the lack of interpretability compared to
methods like decision tress or fuzzy logic. Another popular
data driven approach is Naïve Bayes (NB), which is a clas-
sification algorithm based on Bayes Theorem. NB classifiers
are a type of probabilistic classifiers, where the probability of
each class and the conditional probability of each class given
each instance value are calculated to determine the likelihood
that a new instance will belong to a class [14]. However, when
dealing with uncertainties and fuzzy parameters, collecting
and estimating all the prior conditional and joint probabilities
might not be possible. Another machine learning algorithm
able to deal with complex non-linear data is Support Vector
Machines (SVM). SVM algorithms have been successfully
employed for various classification and forecasting prob-
lems. However, just like with ANN, they often require time-
consuming data preparation tasks and their implementation
can be slow. Despite the fact that data driven approaches have
proven to be able to handle complex data, not all of them can
cope with fuzzy concepts and uncertainties.

Decision makers dealing with the task of prioritizing
deployment of resources to low visibility areas due to fog
face multiple challenges. The first challenge is to address the
uncertainty related to fog, (i.e., determining the likelihood of
fog occurrence). The second challenge deals with effectively
determining if road conditions are risky or not based on traffic
and environmental parameters. The third challenge involves
determining priority levels for resource allocation based on
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TABLE 1. Overview of techniques considered for this research.

all the parameters involved. In order to assist decision-makers
with resource deployment tasks in low visibility traffic condi-
tions, it is necessary to develop a framework that can handle
these three challenges.

Fuzzy logic has achieved promising results in tasks sim-
ilar to the ones related with prioritizing the deployment of
resources in low visibility traffic conditions. Furthermore,
despite the popularity of neural networks and their proven
potential to tackle complex problems, generally, they often
result in a more expensive solution approach than fuzzy logic
because they require great amounts of data and process-
ing power. In addition, implementing effective neural net-
work solutions often require significant time-consuming data
preparation and network architecture design tasks. On the
other hand, fuzzy logic systems do not require large amount
of data and are relatively easy to implement and interpret.
Moreover, fuzzy logic can handle categorical variables with-
out data transformation and can cope adequately with fuzzy
concepts. Table II shows a list of relevant research studies
found in the literature that considered fuzzy logic for appli-
cations related to this paper, including weather forecasting,
transportation, resource allocation, and others (e.g., project
prioritization and scheduling).

A. WEATHER FORECASTING
Various studies in the literature have evaluated the impact of
weather variables on the transportation sector, in particular

TABLE 2. Recent literature on fuzzy logic.

the effects of such variables on roadways [2], [12], [20].
These studies concluded that different weather conditions
significantly affect traffic operations, safety, traffic demand,
traffic flow, and traffic intensity.

Various researchers make use of fuzzy logic to fore-
cast weather variables. For example, one study described
the development of a forecasting system based on a multi-
network approach to evaluate data initiating from electronic
sensors and satellite observations using fuzzy logic to calcu-
late the probability of fog formation [7]. The study showed
that the increased complexity of the global system required
more data originating from different sources; nonetheless, it
resulted in good reliability. It was concluded that the use of
fuzzy logic was a potential tool for meteorological forecast-
ing. The concept of a weather FIS is also presented in [8],
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where a fuzzy logic systemwas used to predict fog formation.
The study revealed that dew point spread and rate of change
were the most important factors to predict fog formation. The
authors concluded that the use of a FIS could be a promising
tool for fog forecasting. In [16], the authors used fuzzy logic
to develop a weather event prediction system. Temperature,
pressure, dew point, and humidity were used as weather
parameters to predict the following weather events: clear
weather, fog, scattered clouds, thunderstorm, partly clouds,
rain, and rain-thunderstorm. Performance tests of the overall
fuzzy system resulted in a 96.9% level of accuracy.

B. TRANSPORTATION
The literature shows various studies that use fuzzy logic to
model complex traffic and transportation processes such as
traffic control, vehicle routing, accident analysis, and vehicle
scheduling. In [21], the authors present a comprehensive
overview of literature on fuzzy logic systems used in traffic
management, as well as a chronology of the evolution of
the fuzzy models. The authors concluded that in most cases,
fuzzy logic systems provide considerable improvements in
the efficiency of traffic junctions’ management compared
to traditional adaptive and non-fuzzy systems. In [22], the
authors presented a literature review and discussed potential
applications of fuzzy logic in the transportation planning field
(e.g., trip generation, trip distribution, modal splits, and route
choice problem). The authors concluded that when dealing
with highly complex non-linear transportation systems, the
use of fuzzy logic could present a more effective and practical
solution than other types of complex mathematical models.

Another example of an approach based on fuzzy logic
includes the use of fuzzy set theory to develop safety infer-
ence rules for driving assistance maneuvers [16]. In this
study, the authors developed a framework that can be used
to comprehensively view and assess the crash risk for a set
of driving maneuvers. The authors used fuzzy set theory to
perform a risk evaluation of maneuvers such as driving on
curves, overtaking, and lane changing. The main idea behind
this research was that, given information about the driving sit-
uation and the knowledge about the driver’s behavior, it was
possible to infer the maneuvers that a driver was most likely
to have performed. A fuzzy approach based on car velocity
is proposed to model traffic flow and incident recognition
[23]. The authors developed a fuzzy system for road-traffic
evaluation using traffic volume and velocity as inputs. The
authors verified the accuracy of the system by comparing the
outputs of the system with experts who analyzed the traffic
video. Results showed that the fuzzy logic system achieved
88.79% accuracy. However, the authors reported that the
accuracy of fuzzy logic systems depends highly on how rules
were defined.

C. DEPLOYMENT AND ALLOCATION OF RESOURCES
Various researchers have used fuzzy logic to develop models
for optimal resource assignments. One example involves the
application of fuzzy logic to assign four different vehicles

to four different demands that needed to be satisfied [24].
The demands represented the input fuzzy variables of the
system (load capacity, cargo space, type, and purpose). The
system had one output, suitability. The output parameter of
the system represented the suitability of each vehicle to a
specific demand. The authors stated that the main advantage
of the fuzzy approach was the much higher flexibility in the
definition of demands. Another study proposed a methodol-
ogy based on fuzzy logic to allocate resources in the man-
ufacturing industry [25]. The purpose of this study was to
extract valuable business rules by using genetic algorithm and
fuzzy inferences techniques. The fuzzy inference model in
this study had as output a parameter called ‘‘tardiness’’, which
was defined as the absolute value of the difference between
assigned due date of a certain test and actual completion
date of that test. The inputs considered were: product, inter-
arrival time, due date, and size. The results of the fuzzy
system were used in the genetic algorithm to perform capac-
ity allocations. Researchers have also used fuzzy logic to
develop adaptive prioritization assignments, where a fuzzy
reasoning-based algorithm was used to rank targets and sec-
tors of surveillance in dynamically changing tactical environ-
ments [26]. The results suggested that the fuzzy approach
was a valid means for evaluating the relative importance of
tasks.

The related literature indicates that the impact of weather
variables on roads, traffic flow, and operations is a significant
matter of concern. Furthermore, the fuzzy set theory approach
could be customized for the resource assignment problem
in low visibility scenarios. The development of a framework
based on fuzzy logic that can potentially assist transportation
managers in assigning limited resources to low visibility areas
is extremely appealing. A methodology that incorporates fog
occurrence, road risk conditions, and priority of deployment
as imprecise parameters has not yet been proposed in the
literature.

III. BACKGROUND
Logic is the study of methods for reasoning. Classical logic
relies on the premise that propositions are either true or
false. On the other hand, fuzzy logic relies on the assump-
tion that propositions are true to some degree. Thus, fuzzy
logic allows logical reasoning with partially true imprecise
statements [27]. This section provides a brief background of
fuzzy logic concepts that are key in the understanding of the
proposed framework.

A. FUZZY SETS AND MEMBERSHIP FUNCTIONS
Fuzzy logic allows reasoning for ambiguous, imprecise, and
vague variables using linguistic terms (e.g., high, low) and
associating each of them with a membership function (MF)
to form a fuzzy set. MFs map elements from any universal set
into real numbers. The resulting values represent the degrees
of membership of elements to particular fuzzy sets. Degrees
of membership are determined by MFs defined subjectively
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FIGURE 1. Fuzzy inference system framework.

based on approaches such as literature reviews and expert
opinions.

B. FUZZY REASONING: IF-THEN RULES
Fuzzy sets are used to formulate conditional statements in
the form of IF-THEN rules. These sets of rules are used to
provide output responses in an inference system. The order
of the rules does not affect output responses because they are
all evaluated in parallel using fuzzy reasoning. A single fuzzy
IF-THEN rule, where A and B are linguistic values defined
by fuzzy sets based on established ranges for input_1 and
output_1, has the form of:

IF input_1 IS A, THEN output_1 IS B (1)

The first part of the rule, (the IF part) is denoted as
the antecedent, whereas the second part (the THEN part)
is denoted as the consequent. The interpretation of a rule
implicates that the reasoning is deduced in two parts. First, the
antecedent needs to be evaluated, which involves fuzzifying
the input and applying the necessary fuzzy operators. Second,
the results of the antecedent evaluation are applied to the
consequent.

Complex systems that are modeled with fuzzy logic usu-
ally involve more than one rule. The process of obtaining
the overall consequent from the individual consequents con-
tributed by each rule is known as aggregation [18]. Through
the aggregation process, all the fuzzy sets that represent the
output of every single rule are combined into a single fuzzy
set.

C. MAMDANI INFERENCE SYSTEM
One of the most popular methods of deductive inference for
fuzzy systems is the Mamdani approach. To illustrate this
inference method, consider a two-rule system where each
rule is composed of two antecedents and one consequent.
A fuzzy system comprised of two inputs, x1 and x2, which
represent the antecedents, and a single output, y, is described
by a collection of n linguistics IF-THEN rules in theMamdani

form as: IF x1 IS A1k and x2 IS A2k, THEN yk is Bk, for
k = 1, 2, . . . , n where A1k and A2k are the fuzzy sets
representing the kth antecedent pairs and Bk is the fuzzy set
representing the kth consequent [28].

D. DEFUZZIFICATION
Defuzzification is the process of converting fuzzy sets
obtained from the aggregation process into a single crisp
value. The output is represented by the logical union of
two or more fuzzy MFs. The input for this process is a
fuzzy set, whereas the output is a single number. Several
methods are available for defuzzification. Some of the most
popular methods are the centroid and the weighted average
methods [16].

IV. FUZZY INFERENCE SYSTEM FRAMEWORK
The proposed framework is composed of three fuzzy systems.
The first FIS models fog occurrence. The second FIS models
road risk conditions, and the last FIS models the priority of
deployments of resources. As shown in Figure 1, the proposed
framework can be viewed as a two-stage approach because
the outputs of the first two fuzzy systems are inputs of the
last FIS.

A. FIS PROCESS
This section describes the stepwise flow of the data within
the FIS framework, which involves five steps: fuzzification
of user inputs, application of fuzzy operators, implication
method, aggregation of outputs, and defuzzification.

1) PRE-CONDITIONS
Following the solution approach suggested by [26], three
pre-conditions need to be satisfied. First, decision-makers
must agree on a crisp rating scale of the parameters of each
FIS. Second, linguistic terms must be established to denote
the levels of these parameters. Third, fuzzy sets must be
created for each linguistic term to determine the degrees of
membership of crisp values in each fuzzy set.
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TABLE 3. Inputs and outputs of the fog occurrence FIS.

2) STEP 1: FUZZIFICATION OF USER INPUTS
The first step involves converting crisp quantities into fuzzy
ones based on their respective membership functions. This
conversion process is known as fuzzification.

3) STEP 2: APPLICATION OF FUZZY OPERATORS
After the inputs have been fuzzified, the antecedent of the
fuzzy if-then rule is known. In general, the antecedent of
a given rule has more than one part. The fuzzy operator is
applied to obtain one number that represents the result of the
antecedent for that rule. The fuzzy operators are the Boolean
Operators AND, NOT, and OR.

4) STEP 3: IMPLICATION METHOD AND FUZZY RULES
Before analyzing the implication from the antecedent to the
consequent, the weight of each rule is determined. Theweight
of each rule varies between 0 and 1. The input of the impli-
cation method is a single number, truth-value obtained from
the application of the fuzzy operators, whereas the output is
a fuzzy set. Based on a set of pre-determined fuzzy rules, the
system evaluates each parameter set to make inferences about
its fuzzy effect in a specified output.

5) STEP 4: AGGREGATION OF OUTPUTS
Decisions are based on the testing of all the rules in a FIS;
thus, all of the rules must be combined in order to obtain a
single fuzzy set. Through the aggregation process all of the
fuzzy sets that represent the output of every single rule are
combined into a single fuzzy set.

6) STEP 5: DEFUZZIFICATION
The framework employs the centroid defuzzification method
to convert the fuzzy sets into crisp values.

B. FIS MODELS
This section provides a description of the three FIS of the
proposed framework. The selection of input variables and
definition of theMFswere based on results from the literature
review effort. The resulting FIS models were developed using
the Mamdani approach.

1) FOG OCCURRENCE FIS
This FIS consists of a single output (i.e., fog occurrence)
and five input variables (i.e., dew point, wind speed, sky
condition, difference between dew point and air temperature,
and change rate between the difference of the dew point
and air temperature). The inputs were carefully chosen after
reviewing the literature related to fog formation. Several
studies agree that dew point spread and rate of change of dew-
point are the most important parameters for the formation of
fog ([5], [7], [8]). The studies also highlight that wind and sky
conditions play an important role in fog formation. Table III
shows the inputs, output, corresponding fuzzy sets, and crisp
ranges for each parameter of the fog occurrence FIS. There
are four sets associatedwith dew point, threewithwind speed,
two with sky condition, two with change rate between the
air temperature and dew point, and three with the difference
between the air temperature and dew point. Thus, the total
number of rules that define this system is 4 × 3 × 2 × 2 ×
3 = 144. The rules are defined in such a way that the
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FIGURE 2. Fuzzy sets for dew point.

output ‘‘fog occurrence’’ will belong to the fuzzy set ‘‘Very
High’’ if the following conditions apply: dew point is ‘‘Very
Wet’’; wind speed is ‘‘Light’’; sky condition is ‘‘Clear’’;
change rate is ‘‘Saturating’’; and difference between air
temperature and dew point is ‘‘Saturated’’. Figure 2 shows
the corresponding fuzzy sets for dew point, while Figure 3
shows the fuzzy sets for the output of the system, fog
occurrence.

2) ROAD RISK CONDITIONS FIS
The second FIS is composed of a single output (i.e., road
risk conditions) and four input variables (i.e., traffic flow,
car speed, rain, and slippery conditions). Based on academic
literature (e.g., ( [1], [2], [5], [9]), traffic flow, car speed,
rain and road conditions are significant parameters of roads.

FIGURE 3. Fuzzy sets for fog occurrence.

Collision risk usually increases during precipitation [20].
Moreover, studies have shown that drivers tend to underes-
timate the slipperiness of a road they are driving on, driving
at speeds higher than the speed limit and considering it safe
([1], [2]). Table IV shows the inputs and output of this FIS,
and the corresponding fuzzy sets and crisp ranges of each
parameter. There are four fuzzy sets associated with traffic
flow, three with car speed, four with rain, and two with
road conditions. Therefore, the total number of rules that
define this system is 4 × 3 × 4 × 2 = 96. The rules are
defined in such a way that the output ‘‘Road Risk Condi-
tions’’ will belong to the set ‘‘Very High’’ if the following
conditions apply: traffic flow is ‘‘Very Heavy’’; car speed
is ‘‘Fast’’; rain is ‘‘Heavy Rain’’; and road conditions is
‘‘Slippery’’. Figures 4 and 5 show the corresponding fuzzy

TABLE 4. Inputs and outputs of the road risk conditions FIS.
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FIGURE 4. Fuzzy sets for traffic flow.

sets for the traffic flow input and road risk conditions out-
put.

3) PRIORITY OF DEPLOYMENT FIS
The third and last FIS consists of a single output (i.e., priority
of deployment of resources) and four input parameters (i.e.,
fog formation occurrence, road risk conditions, type of road,
and the current accident conditions of the road). Note that
two of the inputs are the outputs of the previous two fuzzy
inference systems, fog occurrence and accident occurrence.
The type of road, which refers to the priority and traffic

FIGURE 5. Fuzzy sets for road risk conditions.

flow on the road, is composed of the following three fuzzy
sets: principal arterial, minor arterial, and local arterial. The
‘‘current accident conditions’’ input considers unexpected
accidents such as pileup and vehicle crashes. Table V shows
the inputs and output of this system and the corresponding
56 fuzzy sets and ranges of each parameter. There are five
fuzzy sets associated with fog occurrence, five with road risk
conditions, three with type of road, and two with current
conditions of the road. The total number of rules that define
this system is 5 × 5 × 3 × 2 = 150. The rules are defined
in such a way that if the four inputs have the values shown in

TABLE 5. Inputs and outputs of the priority of resources deployment FIS.
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TABLE 6. Rules when the priority of deployment is critical.

FIGURE 6. Fuzzy sets for priority of deployment.

FIGURE 7. Fuzzy inference system interface.

Table VI, the output (i.e., priority of resource deployments)
will belong to the ‘‘Critical’’ fuzzy set. Figure 6 shows the
fuzzy sets for the output variable of this FIS.

V. DEMONSTRATION OF THE FRAMEWORK
The model was developed using the Fuzzy Logic Toolbox of
MATLAB. A graphical user interface, shown in Figure 7, was
created using GUIDE (Graphical User Interface Developing
Environment) of MATLAB. This section shows the function-
ality of the three fuzzy systems of the framework. For the fog
occurrence FIS, the crisp values of the inputs are shown in
Table VII. For these values, the dew point input belongs to the
‘‘Very Wet’’ MF, and the wind speed input partially belongs

TABLE 7. Inputs for the fog occurrence FIS.

TABLE 8. Inputs for the road risk conditions FIS.

TABLE 9. Inputs for the priority of resource deployments FIS.

to the ‘‘Light’’ MF. The sky condition input fully belongs
to the ‘‘Clear’’ MF, the change rate between the dew point
and the air temperature input partially belongs to both the
‘‘Saturated’’ and ‘‘Drying’’ MFs, and the difference between
the dew point and the air temperature input fully belongs
to the ‘‘Saturated’’ MF. Based on the defined fuzzy sets,
these input values should produce a fog occurrence output
that belongs to the ‘‘High’’ or ‘‘Very High’’ MFs. The fog
occurrence is 85, a value that fully belongs to the ‘‘Very
High’’MF. For this case, only two rules of the entire set of 144
rules have non-zero values. The dew point, wind speed, sky
conditions, and difference between temperatures each involve
one fuzzy set, whereas change rate involves two fuzzy sets
(1× 1× 1× 2× 1 = 2).
The input variables for the ‘‘Road Risk Conditions’’ fuzzy

system are shown in Table VIII. The input value for traffic
flow partially belongs to the ‘‘Light Heavy’’ and ‘‘Heavy’’
MFs. The input value for car speed partially belongs to the
‘‘Medium’’ and ‘‘Fast’’ MFs. The value for the rain input
fully belongs to the ‘‘Heavy Rain’’ MF, while the value for
road conditions fully belongs to the ‘‘Slippery’’ MF. Based
on the defined fuzzy sets, these input values should produce
an output that partially belongs to the ‘‘High’’ and ‘‘Very
High’’ MFs of road risk conditions. The output of the system
indicates a value of 77.5. Only four rules of the entire set of 96
rules have non-zero values. Traffic flow and car speed each
involves two fuzzy sets, whereas rain and slippery conditions
involve a single fuzzy set (2× 2× 1× 1 = 4).
The input variables of the last FIS are shown in Table IX.

The input value for fog formation fully belongs to the ‘‘Very
High’’ MF, while the road risk conditions input partially
belongs to the ‘‘High’’ and ‘‘Very High’’ MFs. The input
value for the type of road partially belongs to the ‘‘Principal
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TABLE 10. Performance scores — Station: Melbourne Airport.

TABLE 11. Performance scores — Station: Orlando Airport.

Arterial’’ MF, and the current accident conditions input par-
tially belongs to both the ‘‘Normal’’ and ‘‘Accident’’ MFs.
Under the considered scenario, the resources’ deployments
output has a priority value of 80.39 out of 100, partially
belonging to the ‘‘High’’ and ‘‘Critical’’ MFs. Out of the
entire set of 150 rules, only four have non-zero values. Fog
occurrence and type of road involve one fuzzy set, while road
risk conditions and current accident conditions involve two
fuzzy sets (1× 2× 2× 1 = 4).

A. PERFORMANCE OF THE FOG OCCURRENE FIS
This section evaluates the performance of the fog occurrence
FIS. Local climatological data (LCD) collected from two
land-based stations located in Florida were retrieved from the
National Oceanic and Atmospheric Administration (NOAA)
website. For both stations, 1096 cases (i.e., observations) of
fog were evaluated. Each observation was composed of five
input features, i.e., dew point, wind spend, sky condition,
change rate, and difference between temperatures. If the out-
put of an observation corresponded to a value belonging to
either the ‘‘high’’ or the ‘‘very high’’ fuzzy set, then that
scenario had forecasted fog occurrence. Furthermore, a BIAS
score was calculated for both datasets. The bias score indi-
cates whether the forecast system has a tendency to under-
forecast (if it is less than the unity) or over-forecast (if it is
greater than one). Equation (2) depicts the BIAS score where
H is the number of hits (i.e., events forecast correctly), F is
the number of false alarms (i.e., events forecasted to occur,
but did not occur) and M is the number of missing alarms
(i.e., events forecasted to not occur, but did occur).

BIAS =
H + F
H +M

(2)

Both the accuracy and the bias skill score for the two
stations are shown in Tables X and XI. These tables show
promising results from the FIS, with the forecasts being
slightly bias towards over-forecast (i.e., BIAS scores are
greater than 1). The results also show that the proposed fog
FIS performs better with data from the Melbourne Airport
Station. Thus, modification of the membership functions
and/or the fuzzy rules may lead to better results of the frame-
work for the Orlando dataset. Furthermore, as an attempt
to show the effectiveness of the proposed fog occurrence
FIS, the authors investigated the performance of previous
proposed studies. However, it is important to mention that

TABLE 12. Skill scores from [8].

TABLE 13. Accuracy results of other studies.

the results of each method will vary depending on the dataset
used.

The skill scores of a fog forecasting approach using a rule-
based FIS are shown in Table XII [8]. The BIAS scores
indicate that the model is bias towards under-forecast. In
addition, the number of samples used is smaller than the one
used in this paper, and no accuracy scores were reported. In
[14], the authors used machine learning algorithms to classify
visibility into three classes: low visibility, moderate visibil-
ity, and good visibility. The average accuracy of these three
approaches to forecast visibility is shown in Table XIII. This
table also shows the accuracy of another study that employed
a decision tree approach to forecast the occurrence of sea fog
[29]. As shown in Table XIII, the fuzzy model proposed in
this paper for fog occurrence was able to achieve better results
than three other methods.

VI. CONCLUSION AND FUTURE RESEARCH
This paper presents a fuzzy system framework for detect-
ing fog occurrence, determining road risk conditions, and
determining the priority of deployment of resources under
certain conditions. Preliminary experiments to evaluate the
developed fog occurrence FIS against four methods pre-
sented in the literature using data from two weather sta-
tions showed that the FIS model outperformed three of the
other methods in accuracy. These results are very promising
given that the other methods represent more expensive solu-
tion approaches that require large amounts of data, signifi-
cant time-consuming data preparation, network architecture
design tasks, and high processing power.

There are two major contributions that this paper makes to
the transportation decision-making body of knowledge. The
first significant contribution is the full incorporation of impre-
cise parameters in this transportation application related to
resource assignments in low visibility scenarios. The param-
eters used in the framework are considered to be naturally
imprecise and they are defined using fuzzy concepts. The
use of fuzzy logic provides decision makers the flexibility
to add, modify or even delete parameters and MFs based
on their particular needs without having to incur in expen-
sive architectural system modifications of the framework.
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The second significant contribution from this work is the
approach used to determine the priority of resource deploy-
ments in low visibility conditions, which takes into consid-
eration fog as well as and road conditions. This framework
represents a significant contribution to the academic litera-
ture. As future research, models for performance analysis of
road risk conditions and deployment of resources should be
considered. In addition, different weights of the fuzzy rules
and membership functions may be considered to improve the
overall performance of the proposed framework.

In order to bridge the gap between theory and field imple-
mentation, it may be necessary to re-design the software
interface prototype developed in MATLAB (see Figure 7)
to facilitate the implementation of the proposed solution
approach for practical purposes. Critical to this step will be
a robust requirements engineering approach to ensure that
critical functional needs are incorporated into the proposed
solution [48], [49].

REFERENCES
[1] Low Visibility, USDOT Federal Highway Admin., Washington, DC, USA,

2017.
[2] T. H. Maze, M. Agarwal, and G. Burchett, ‘‘Whether weather matters to

traffic demand, traffic safety, and traffic operations and flow,’’ Transp. Res.
Rec., J. Transp. Res. Board, vol. 1948, no. 1, pp. 170–176, 2006.

[3] L. D. Otero, G. Centeno, A. J. Ruiz-Torres, and C. E. Otero, ‘‘A systematic
approach for resource allocation in software projects,’’ Comput. Ind. Eng.,
vol. 56, no. 4, pp. 1333–1339, May 2009.

[4] N. E. Fenton and M. Neil, ‘‘A critique of software defect prediction mod-
els,’’ IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675–689, Sep./Oct. 1999.

[5] L. Musk, ‘‘Climate as a factor in the planning and design of new roads and
motorways,’’ inHighway Meteorology, L. J. Perry and A. H. Symons, Eds.
London, U.K.: Spon Press, 1990.

[6] P. O. Wanvik, ‘‘Effects of road lighting: An analysis based on dutch
accident statistics 1987–2006,’’ Accident Anal. Prevention, vol. 41, no. 1,
pp. 123–128, Jan. 2009.

[7] E. Pasero, W. Moniaci, and T. Meindl, ‘‘Intelligent systems for meteoro-
logical events forecast,’’ in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 5,
Jul. 2005, pp. 2686–2688.

[8] A. K. Mitra, S. Nath, and A. K. Sharma, ‘‘Fog forecasting using rule-
based fuzzy inference system,’’ J. Indian Soc. Remote Sens., vol. 36, no. 3,
pp. 243–253, Mar. 2009.

[9] D. Teodorović, ‘‘Fuzzy logic systems for transportation engineering:
The state of the art,’’ Transp. Res. A, Policy Pract., vol. 33, no. 5,
pp. 337–364, Jun. 1999.

[10] H. Malik, G. S. Larue, A. Rakotonirainy, and F. Maire, ‘‘Fuzzy logic to
evaluate driving maneuvers: An integrated approach to improve training,’’
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 1728–1735, Aug. 2015.

[11] P. Wanke, H. Alvarenga, H. Correa, A. Hadi-Vencheh, and M. A. K. Azad,
‘‘Fuzzy inference systems and inventory allocation decisions: Exploring
the impact of priority rules on total costs and service levels,’’ Expert Syst.
Appl., vol. 85, pp. 182–193, Nov. 2017.

[12] M. J. Koetse and P. Rietveld, ‘‘The impact of climate change and weather
on transport: An overview of empirical findings,’’ Transp. Res. D, Transp.
Environ., vol. 14, no. 3, pp. 205–221, May 2009.

[13] D. Teodorovic andM. Janic, Transportation Engineering: Theory, Practice
and Modeling. Portsmouth, NH, USA: Heinemann, 2016.

[14] L. Ortega, L. D. Otero, and C. Otero, ‘‘Application of machine learning
algorithms for visibility classification,’’ in Proc. IEEE Int. Syst. Conf.
(SysCon), Apr. 2019, pp. 1–5.

[15] J. R. Colquhoun, ‘‘A decision tree method of forecasting thunderstorms,
severe thunderstorms and tornadoes,’’ Weather Forecasting, vol. 2, no. 4,
pp. 337–345, Dec. 1987.

[16] M. S. K. Awan and M. M. Awais, ‘‘Predicting weather events using
fuzzy rule based system,’’ Appl. Soft Comput., vol. 11, no. 1, pp. 56–63,
Jan. 2011.

[17] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,
1st ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1995.

[18] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[19] K. Abhishek, M. Singh, S. Ghosh, and A. Anand, ‘‘Weather forecast-
ing model using artificial neural network,’’ Procedia Technol., vol. 4,
pp. 311–318, Jan. 2012.

[20] M. Cools, E. Moons, and G. Wets, ‘‘Assessing the impact of weather on
traffic intensity,’’Weather, Climate, Soc., vol. 2, no. 1, pp. 60–68, Jan. 2010.

[21] M. Koukol, L. Zajčková, L. Marek, and P. Tuček, ‘‘Fuzzy logic in traffic
engineering: A review on signal control,’’Math. Problems Eng., vol. 2015,
2015, Art. no. 979160.

[22] A. Sarkar, G. Sahoo, and U. C. Sahoo, ‘‘Application of fuzzy logic in
transport planning,’’ Int. J. Soft Comput., vol. 3, no. 2, pp. 1–21, 2012.

[23] P. Pongpaibool, P. Tangamchit, and K. Noodwong, ‘‘Evaluation of road
traffic congestion using fuzzy techniques,’’ in Proc. IEEE Region 10 Conf.
(TENCON), Oct. 2007, pp. 1–4.

[24] M. Moškon, Š. Novak, M. Medeot, I. L. Bajec, N. Zimic, and M. Mraz,
‘‘Solving the logistic problems with optimal resource assignment using
fuzzy logic methods,’’ J. Adv. Transp., vol. 47, no. 4, pp. 447–460,
Jun. 2013.

[25] K.-J. Wang, Y.-S. Lin, C.-F. Chien, and J. C. Chen, ‘‘A fuzzy-knowledge
resource-allocation model of the semiconductor final test industry,’’ Robot.
Comput.-Integr. Manuf., vol. 25, no. 1, pp. 32–41, Feb. 2009.

[26] J. Teixeira and P. M. A. Miranda, ‘‘Fog prediction at Lisbon airport using
a one-dimensional boundary layer model,’’ Meteorol. Appl., vol. 8, no. 4,
pp. 497–505, 2001.

[27] L. D. Otero, ‘‘A framework for resource assignments in skill-based envi-
ronments,’’ Tech. Rep., 2009.

[28] T. J. Ross, Fuzzy Logic With Engineering Applications, 3rd ed. Hoboken,
NJ, USA: Wiley, 2010.

[29] B. L. Lindner, P. Mohlin, A. C. Caulder, and A. Neuhauser, ‘‘Development
and testing of a decision tree for the forecasting of sea fog along the georgia
and South Carolina coast,’’ J. Oper. Meteorol., vol. 6, pp. 47–58, Jun. 2018.

[30] R. L. Vislocky and J. M. Fritsch, ‘‘An automated, observations-based
system for short-term prediction of ceiling and visibility,’’ Weather Fore-
casting, vol. 12, no. 1, pp. 31–43, 1997.

[31] J. L. Hilliker and J. M. Fritsch, ‘‘An observations-based statistical sys-
tem for warm-season hourly probabilistic forecasts of low ceiling at the
San Francisco International Airport,’’ J. Appl. Meteorol., vol. 38, no. 12,
pp. 1692–1705, 1999.

[32] H. Almuallim, S. Kaneda, and Y. Akiba, ‘‘Development and applications
of decision trees,’’ in Expert Systems, no. 1. Amsterdam, The Netherlands:
Elsevier, 2002, pp. 53–77.

[33] F. Wantuch, ‘‘Visibility and fog forecasting based on decision tree
method,’’ in Journal of the Hungarian Meteorological Service, vol. 105.
Hungary: Idojaras, 2001, pp. 29–38.

[34] J. Murtha, ‘‘Applications of fuzzy logic in operational meteorology,’’ in
Scientific Services and Professional Development Newsletter, Canadian
Forces Weather Service. 1995, pp. 42–54.

[35] S. Sujitjorn, P. Sookjaras, andW.Wainikorn, ‘‘An expert system to forecast
visibility in Don-Muang air force base,’’ in Proc. IEEE Int. Conf. Syst.,
Man, Humans, Inf. Technol., vol. 3, Oct. 1994, pp. 2528–2531.

[36] A. M. Durán-Rosal, J. C. Fernández, C. Casanova-Mateo, J. Sanz-Justo,
S. Salcedo-Sanz, and C. Hervás-Martínez, ‘‘Efficient fog prediction with
multi-objective evolutionary neural networks,’’Appl. Soft Comput., vol. 70,
pp. 347–358, Sep. 2018.

[37] A. Pasini, V. Pelino, and S. Potestà, ‘‘A neural network model for vis-
ibility nowcasting from surface observations: Results and sensitivity to
physical input variables,’’ J. Geophys. Res., Atmos., vol. 106, no. D14,
pp. 14951–14959, 2001.

[38] J. B. Bremnes and S. C. Michaelides, ‘‘Probabilistic visibility forecasting
using neural networks,’’ in Fog and Boundary Layer Clouds: Fog Visibility
and Forecasting. Springer, 2007, pp. 1365–1381.

[39] G. Mountrakis, J. Im, and C. Ogole, ‘‘Support vector machines in remote
sensing: A review,’’ ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3,
pp. 247–259, 2011.

[40] T. R. Patil and S. S. Sherekar, ‘‘Performance analysis of Naive Bayes and
J48 classification algorithm for data classification,’’ Int. J. Comput. Sci.
Appl., vol. 6, no. 2, pp. 256–261, 2013.

[41] M. Ridwan, ‘‘Fuzzy preference based traffic assignment problem,’’ Transp.
Res. C, Emerg. Technol., vol. 12, nos. 3–4, pp. 209–233, Jun. 2004.

174378 VOLUME 7, 2019



L. C. Ortega et al.: FIS Framework to Prioritize the Deployment of Resources in Low Visibility Traffic Conditions

[42] A. Hegyi, B. De Schutter, S. Hoogendoorn, R. Babuska, H. van Zuylen,
and H. Schuurman, ‘‘A fuzzy decision support system for traffic con-
trol centers,’’ in Proc. IEEE Intell. Transp. Syst. (ITSC), Aug. 2001,
pp. 358–363.

[43] F. Milla, D. Saez, C. E. Cortes, and A. Cipriano, ‘‘Bus-stop control strate-
gies based on fuzzy rules for the operation of a public transport system,’’
IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 1394–1403, Sep. 2012.

[44] E. E. Karsak, ‘‘Fuzzy multiple objective programming framework to pri-
oritize design requirements in quality function deployment,’’ Comput. Ind.
Eng., vol. 47, nos. 2–3, pp. 149–163, Nov. 2004.

[45] L. Yang and B. Liu, ‘‘A multi-objective fuzzy assignment problem:
New model and algorithm,’’ in Proc. 14th IEEE Int. Conf. Fuzzy Syst.
(FUZZ), May 2005, pp. 551–556.

[46] P. Lorterapong and O.Moselhi, ‘‘Project-network analysis using fuzzy sets
theory,’’ J. Construct. Eng. Manage., vol. 122, pp. 308–318, Dec. 1996.

[47] L. D. Otero and C. E. Otero, ‘‘A fuzzy expert system architecture for
capability assessments in skill-based environments,’’ Expert Syst. Appl.,
vol. 39, no. 1, pp. 654–662, Jan. 2012.

[48] A. Ejnioui, C. E. Otero, and L. D. Otero, ‘‘A simulation-based fuzzy multi-
attribute decision making for prioritizing software requirements,’’ in Proc.
ACM Res. Inf. Technol. (RIIT), 2012.

[49] A. Ejnioui, C. E. Otero, and L. D. Otero, ‘‘Prioritisation of soft-
ware requirements using grey relational analysis,’’ Int. J. Comput. Appl.
Technol., vol. 47, no. 2–3, 2013.

LUZ C. ORTEGA (M’13) received the B.S.
degree in electrical engineering from Universidad
Metropolitana, Caracas, Venezuela, in 2012, and
the M.S. degrees in engineering management and
systems engineering from the Florida Institute
of Technology, Melbourne, Florida, in 2013 and
2016, respectively. She is currently pursuing the
Ph.D. degree in systems engineering with the
Florida Institute of Technology. She is also a
Research and a Teaching Assistant with the Trans-

portation Systems Engineering Lab, Florida Tech.

LUIS DANIEL OTERO (SM’13) received the
B.S. degree in civil engineering, the M.S. degree
in computer information systems, and the M.S.
degree in engineering management from the
Florida Institute of Technology (Florida Tech),
Melbourne, FL, USA, in 1998, 2000, and 2002,
respectively, and the Ph.D. degree in industrial
and management systems engineering from the
University of South Florida, Tampa, FL, USA, in
2009.

Prior to joining Florida Tech in 2009, he was a Software/Systems Engi-
neer for Harris and Northrop Grumman Corporations. Additionally, he was
a Graduate Research Assistant with the Center for Urban Transportation
Research (CUTR) and a National Science Foundation Graduate Fellow with
the University of South Florida. He is currently an Associate Professor of
systems engineering and the Director of the Transportation Systems Engi-
neering Research Lab, Florida Tech. He has authored over 50 publications
in various academic journals and conference proceedings and is an Active
Reviewer for several journals in decision-making and systems engineering.

CARLOS OTERO (SM’09) received the B.S.
degree in computer science, the M.S. degrees in
software engineering and systems engineering,
and the Ph.D. degree in computer engineering
from Florida Institute of Technology, Melbourne.

He was an Assistant Professor with the
University of South Florida and the University
of Virginia at Wise. He is currently an Associate
Professor and the Co-Director of theWireless Cen-
ter of Excellence, Florida Institute of Technology.

He has authored over 70 articles in wireless sensor networks, the Internet-
of-Things, big data, and hardware/software systems. His research interests
include the performance analysis, evaluation, and optimization of computer
systems, including wireless ad hoc and sensor networks. He has over 12
years of industry experience in satellite communications systems, command
and control systems, wireless security systems, and unmanned aerial vehicle
systems.

VOLUME 7, 2019 174379


	INTRODUCTION
	RELATED LITERATURE
	WEATHER FORECASTING
	TRANSPORTATION
	DEPLOYMENT AND ALLOCATION OF RESOURCES

	BACKGROUND
	FUZZY SETS AND MEMBERSHIP FUNCTIONS
	FUZZY REASONING: IF-THEN RULES
	MAMDANI INFERENCE SYSTEM
	DEFUZZIFICATION

	FUZZY INFERENCE SYSTEM FRAMEWORK
	FIS PROCESS
	PRE-CONDITIONS
	STEP 1: FUZZIFICATION OF USER INPUTS
	STEP 2: APPLICATION OF FUZZY OPERATORS
	STEP 3: IMPLICATION METHOD AND FUZZY RULES
	STEP 4: AGGREGATION OF OUTPUTS
	STEP 5: DEFUZZIFICATION

	FIS MODELS
	FOG OCCURRENCE FIS
	ROAD RISK CONDITIONS FIS
	PRIORITY OF DEPLOYMENT FIS


	DEMONSTRATION OF THE FRAMEWORK
	PERFORMANCE OF THE FOG OCCURRENE FIS

	CONCLUSION AND FUTURE RESEARCH
	REFERENCES
	Biographies
	LUZ C. ORTEGA
	LUIS DANIEL OTERO
	CARLOS OTERO


