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ABSTRACT Existing smart vehicles heavily depend on success of precise positioning, optical radar, visual
detection and recognition to determine their road conditions and perfect routes. The visual-based approach
is the simplest and most effective enabling technology to reach the goal. In performing such an overtaking
maneuver, this vision-based driving assistant system must be able to precisely recognize the lane marks first.
The traditional approach needs a classifier with hand-crafted features and an adjusted threshold to achieve a
robust lane detection in various environment conditions. In this paper, we adopt the deep learning approach
to achieve the robust lane detection. The proposed lane detection network inspired by LaneNet model, which
uses semantic segmentation concepts utilizes multiple level features of the encoder and designs enhanced
binary segmentation and reduced pixel embedding branches. By reduction of computation in decoders,
the proposed network effectively utilizes multilevel features to precisely predict the high quality lane maps.
The experiments on Tusimple and CuLane datasets verify that the proposed lane detection network achieves
better accuracy performance than LaneNet and faster computation than the existed methods for real-time
applications.

INDEX TERMS Lane detection, neural networks, image segmentation, pixel embedding, artificial intelli-
gence, feature pyramid network.

I. INTRODUCTION
In recent decades, the developments of autonomous driv-
ing technologies have received a lot of attentions. The
vision-based detection approach is treated as an effective
tool to assist autonomous vehicles. For driving assistance,
we must be able to accurately detect lane marking to guide
their routes first. Thus, numerous lane detection methods
have been proposed recently [1]–[27]. Generally, the lane
detection methods can be divided into traditional and deep
learning approaches.

The traditional lane detection approach usually needs to
combine several image processing steps, including extraction
of hand-crafted features, detection of joint associations and
fusion lane segments to achieve a reliable lane detection.
Most intuitive methods [1]–[5] utilize the cues of colors to
retrieve the lane lines. Chin and Lin [6] proposed color-based
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segmentation for lane detection. By choosing a region of
interest (ROI), we can reduce computation and calculate an
adaptive threshold to detect the lane boundary [7]. A non-
parametric regression [8] is also proposed to predict the color
information for detecting the lanes. However, the RGB-based
classifications could face degradation problems under con-
trast and illumination variations, the improvements of color-
based lane detection are proposed in [9]–[11]. Except RGB
color space, the lane marking detection can be also performed
in HSI color space [12] and multi-color features [13], [5].
The usages of filtering methods can help to extract the
features of line segments [14]–[16]. Then, we can extract
the candidate points to reduce the computation and utilize
the pre-defined rules to confirm final lane detection. Hough
transform extracting line features can be applied to detect
the lane feature and lane boundary [17]–[20]. The above
methods based on color, contrast and edge information are
easily affected by environments and lighting conditions to
mortify their detection performances. To avoid unreliable
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FIGURE 1. The simplified structure of LaneNet [27].

hand-crafted features, the deep learning approach, which has
been recognized as an effective detection tool, can extract the
features automatically and deduce the precise lane detection
successfully.

With designed loss functions, the deep learning approach
depends on the model learned from large training dataset,
which could achieve robust detection results under com-
plex conditions. Pan et al. [21] proposed a spatial convolu-
tional neural network (SCNN), which is particularly suitable
for long shape structure to achieve a good lane detection.
Li et al. [22] proposed a multitask CNN, which can detect the
presence and the geometric attributes of the targets in region
of interest with a recurrent neural network. They can detect
lane boundaries, including those areas containing no marks.
Huval et al. [23] extended the vehicle detection CNN for lane
boundary detection, where tiny bounding boxes are needed
to further connect to become lanes with a regression post-
processing method.

The lane detection can be treated as a pixel-wise seg-
mentation problem [24]–[29]. In this case, all the pixels
can be detected either lane or background pixels. For pixel-
wise segmentation, SegNet [24] utilizes VGG-16 [25], as the
encoder, with convolution layer and max pooling to get the
final features while the VGG-16 features are reconstructed
by the decoder with deconvolutional layers and upsampling.
For real-time applications, ENet [26] is further designed to
reduce the computation of SegNet for semantic segmenta-
tion. For end-to-end lane detection, Neven et al. proposed
LaneNet [27], as shown in Fig. 1, first performs the fea-
ture extraction by a shared encoder and uses two decoders:
one for binary lane segmentation and the other for pixel
embedding [30]. The final lane map can be obtained after
fusion of two feature branches and clustering fused results.
Generally, the encoder could be any CNN model, which is
originally designed for object classification. The segmented
lane detection model by using a pair of encoder and decoder
performs the binary classification of the pixels with i.e., 0 for
into background or 1 for lane pixels. For practical usages,
LaneNet without any pre- and post-processing can identify all
lanes separately for better vehicle guidance in very fast com-
putation speed. The low resolution and inaccurate positions

FIGURE 2. Structure of a multi-level feature network for lane detection.

FIGURE 3. The complete network architecture of the proposed lane
detection network including one encoder and two decoders.

are the problems of the LaneNet. Keeping low computational
complexity, we need to improve lane detection performance
for real applications.

II. THE PROPOSED LANE DETECTION NETWORK
To achieve better accuracy performance in low computation,
we propose a lane detection network based on the structure
of LaneNet as shown in Fig. 1. In following subsections,
wewill describe the proposed network by usingmultiple level
features based on VGG-16 backbone encoder. The designs
of the decoders for the enhanced binary segmentation (EBS)
and the reduced pixel embedding (RPE) branches with their
associated loss functions are addressed in details.

A. PROPOSED NETWORK ARCHITECTURE
The original LaneNet uses ENet network as the backbone,
which is too simple to extract decent features. To achieve high
resolution lane detection, we suggest to use a more powerful
multi-level backbone network and further include lower level
featuresmixed in the decoder while LaneNet only adopts high
level features. Fig. 2 shows a general structure of a multi-level
feature network for lane detection.

By adopting multi-level features, Fig. 3 shows the detailed
structure of the proposed lane detection network. We adopt
16-layer VGG-16 [25] as the kernel encoder to perform
multi-feature extraction. However, the powerful encoder also
increases system loading. To reduce the overhead, we uti-
lize only 3-layer decoders with adding features from the
encoder to perform binary lane segmentation and pixel
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TABLE 1. The parameters of the proposed network architecture.

embedding branches. With indexed functional units in Fig. 3,
the detailed parameters in the multi-feature VGG-16 encoder,
the enhanced binary segmentation (EBS) and the reduced
pixel embedding (RPE) modules are enlisted in Table 1. The
convolutional layer includes ReLU and batch normalization.
The EBS and RPE modules non-symmetrically comprise
3 deconvolutional (deconv) layers for computation reduction.
Similar to LaneNet, we fuse EBS and RPE results and per-
form the feature clustering to achieve the final lane detection.
The details of the EBS and RPE modules and the designs of
loss functions are addressed as follows.

B. ENHANCED BINARY SEGMENTATION
In the enhanced binary segmentation (EBS) branch, as shown
in Fig. 3, the decoder includes 5 level feature maps from
the backbone encoder to improve the detection details for
binary segmentation. After max pooling and 1×1 convolu-
tional layer, we resize and add first 3 level feature maps
as the 1st enhanced low feature (1st ELF) map and add
last 2 level feature maps as the 2nd enhanced low feature
(2nd ELF) map to enhance the binary segmentation. The max
pooling with 1×1 convolutional layer adjusts the dimensions
of the feature maps to become the same size such that the
maps can be directly added instead of concatenation to reduce
the computation. The 1×1 convolutional layer is also acted
as a selection filter, which can keep the important features

FIGURE 4. Reduced pixel embedding results and their t-SNE
visualizations.

and discard the insignificant ones. Thus, the proposed EBS
module can achieve precise binary lane segmentation and
avoid computation burden.

C. REDUCED PIXEL EMBEDDING
The reduced pixel embedding (RPE) branch, as shown
in Fig. 3, uses the discriminative concept to classify the
pixels of the whole image [27]. Fig. 4 shows the discrimi-
nated results in t-SNE visualization of multi-dimension fea-
ture map [31], which can help to observe the discriminated
groups in the feature space. Furthermore, a discriminative
loss function is used to evaluate the convergence of lane
pixels. The loss function adjusts the location of the feature
points to minimize the difference within the same group and
maximize the difference between distinct groups, where each
group actually corresponds to a lane.

Without multiple level features, the RPE branch can be
also treated as a kind of segmentation task, but uses a slightly
different loss function. Therefore, the branch architecture is
similar to a semantic segmentation model. The RPR branch
uses 3 deconv layers to perform pixel embedding. The feature
extraction from the backbone network is used for both EBS
and RPE modules, however the RPE only uses high level
feature. The 3-layer EBS and RPE modules in the proposed
network effectively achieve the precise lane detection and
save the computation.

D. CLUSTERING
After the computation of EBS and RPE outputs, we need to
merge them to get the final output. In this paper, the mean
shift algorithm [32] is used to cluster the RPE results. First,
we utilize the EBS result as a binary mask to take the RPE
regions for clustering process. Secondly, the masked RPE
results are used as the elements for clustering the binary lane
region into the detected lanes. It is noted that the k-mean
clustering method needs to know the number of lane lines
in advance while the mean shift method does not need before
the clustering process.

E. LOSS FUNCTIONS
This paper proposes a two-branch network architecture to
perform lane detection. Each branch has its own loss function
to be trained for different targets. The EBS branch uses the
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FIGURE 5. Schematic diagram of variance loss to pull the pixels to the
feature centers in feature space.

cross entropy loss function as

LEBS = −ylog(ŷ)− (1− y)log(1− ŷ), (1)

where y denotes the truth label and ŷ represents predicted
probability, which is obtained from the softmax as

ŷk =
exp(f (x)k )∑K
k=1 exp(f (x)k )

, (2)

where x and f (x) denote the input feature vector and the
output function of the EBS branch, respectively. The cross
entropy loss consults the difference between the output pixel
label distribution and the actual pixel label distribution.

The RPE branch uses the loss function proposed in [28].
The loss function comprises three items, namely the variance,
distance, and the regularization losses. In feature space, the
variance loss is treated as the pull force showed as,

Lvar =
1
C

C∑
c=1

1
NC

NC∑
i=1

max([‖µc − xi‖ − δv ]2, 0), (3)

where C denotes the number of clusters in ground truth,
Nc is the number of elements in cluster C , µc is the mean
embedding position of the clusterC , xi is embedding element,
δv is the threshold for variance loss and max denotes the
maximum operation. As shown in Fig. 5, variance loss makes
the pixel points which belong to the same lane close to the
group center. Hence, if the distance between the pixel point
and its group center is too large, it increases the variance loss.

The distance item is treated as the push force given by

Ldist =
1

C(C − 1)

C∑
cA=1

C∑
cB=1

max(
[
2δd−

∥∥µcA−µcB∥∥]2, 0),
cA 6= cB, (4)

where δd denotes the threshold for distance loss. Distance loss
pushes different group centers away to keep a certain distance
between them. In order to avoid the lanes being confused with
each other, if a group center is too close to others, it increases
the loss as shown in Fig. 6.

Finally, the regularization loss, which serves to pull all the
clusters toward the origin of the feature space is stated as

Lreg =
1
C

C∑
c=1

‖µc‖. (5)

FIGURE 6. Schematic diagram of distance loss to push larger distances
between any two lanes.

FIGURE 7. Detected results and their t-SNE visualization plots with
γ = 0.001, α = 1 and β = 1, 2, 3 and 4 (from left to right).

FIGURE 8. Detected results and their t-SNE visualization plots with
γ = 0.001, β = 1 and α = 1, 2, 3 and 4 (from left to right).

The variance and distance loss functions are hinged.
In other words, the variance term only works when the dis-
tance between the embedding element and the group center
is bigger than δv. This makes sure all the embedding ele-
ments which belong to the same group congregate together.
On the other hand, the distance term is only activated when
two cluster centers are closer than 2δd . This can maintain
a distance between them. The regularization term limits the
activation boundary, preventing the clusters from being too
far from the origin. Finally, the total discriminative loss for
the RPE module, LRPE combines the variance, distance and
regularization terms as

LRPE = α · Lvar + β · Ldist + γ · Lreg, (6)

where α, β and γ are three selected weighting coefficients.
Since the major contributions of LRPE are the pull force by
variance loss and the push force by distance loss, we need to
determine α and β first. By setting γ = 0.001, the detection
results with t-SNE visualizations of features with different α
and β are shown in Fig. 7 and Fig. 8, respectively. For better
grouping of features, we finally set γ = 0.001, α = 1 and
β = 1 to achieve the best performances by simulations.

III. SIMULATION RESULTS
In order to evaluate the proposed method, we conduct simu-
lations in this section. The descriptions of dataset, evaluation
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criterion, data augmentation, experimental results and discus-
sions are detailed as the following subsections.

A. DATASET
The performances of the proposed scheme were evaluated by
using two well-known training and testing datasets, Tusim-
ple [33] and CuLane [34], which contain images recorded in
front of the car. In particular, Tusimple contains the images
acquired in USA, while CuLane comprises the images cap-
tured in China.

Tusimple dataset is collected under nice weather condi-
tions and clean highway at day times. Every image contains
2-5 lanes. The dataset comprises 3,626 images for training,
and 2,782 images for testing. This dataset provides an algo-
rithm to transform the point labels to segmentation labels,
where the different lanes have different label values. In our
experiments, because this dataset does not contain validation
data, we set 20% of the training data for validation while the
remaining 80% is used for training, then use cross validation
technique to train all the training data after five iterations.
Tusimple dataset contains an annotation file of ground truth.

CuLane dataset is captured by six vehicles in Beijing with
various traffic conditions of highways, regular roads, side
streets in day and night. The dataset contains 133,235 frames,
where 88,880 frames are used for training, 9,675 for valida-
tion and 34,680 for testing. CuLane dataset also contains an
annotation file of ground truth. The details of configurations
of datasets are shown in TABLE 2.

TABLE 2. The adjusted configurations of datasets.

B. EVALUATION CRITERIA
The performance of the proposed and the existed methods,
are evaluated in terms of F1 metric. F1-score is a common
criterion for evaluating the performance of a classification
algorithm defined as

F1 =
2 · TP

2 · TP+ FN + FP
, (7)

where TP, FN, and FP denote true positive, false negative and
false positive rates, respectively. Of course, we can evaluate
it by recall and precision rates respectively given as

Recall rate = TP/(TP+ FN ), (8)

Precision rate = TP/(TP+ FP), (9)

In CuLane dataset, F1-score is calculated in lane-wise fash-
ion, which computes the intersection over union (IoU) with
lane prediction and ground truth. If the IoU is higher than
a threshold, the lane prediction belongs to true positive.
As shown in Fig. 9, green line denotes the ground truth of

FIGURE 9. The IoU criterion for performance assessment: Green line
denotes ground truth, blue line is TP and red line is FP.

FIGURE 10. Data augmentation. Upper are original images, bottom are
images with random brightness.

the image, while blue and red lines indicate true positive and
false positive, respectively.

In Tusimple dataset, they also suggest a different evalua-
tion criterion by sampling the detected lanes with lane points
in fixed y-coordinate and comparing the distance between
ground truth and prediction x-coordinate of the lane point.
If the distance is lower than the threshold, the test point is
treated as correct. Finally, it calculates the accuracy rate of
the correct points over total points as:

Accuracy rate =
number of correct points
number of total points

. (10)

C. DATA AUGMENTATION
Data augmentation is used for making the model robust in
different lightness situations. In training step, every input
image is added a random brightness. It makes the model
adapt the same image in different illumination. Especially
in the evening, the model can minimize the influence of the
low luminescence, and maintain good recognition quality.
Fig.10 shows the data augmentation with random brightness

D. TRAINING SET UP AND DETAILS
The loss function parameters are assigned the setting given
in [1]. It combines the pixel embedding loss and the binary
segmentation loss to give a total loss for training process.
In addition, the training process is performed in accordance
with the following loss function,

LTotal = LEBS + LRPE . (11)

The training process resizes the images to 512x256, and sets
4 images for a batch as an input, and tests for validation
data very 2,000 iterations. In addition, the training model is
optimized using Adam with a 5e-4 initial learning rate.
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TABLE 3. Running speeds of all lane detection networks.

E. EXPERIMENTS
In this subsection, we compare the proposed model to other
methods, including two-branch models such as LaneNet,
FCN-32s [36], FCN-8s [36] as well as the famous back-
bones such as DenseNet [37], MRFNet [38], ResNet-50 [39],
and ResNet-101 [39]. For pixel-wise segmentation networks,
we can duplicate another decoder for pixel imbedding. For
backbone networks, we can introduce two decoders, which
are symmetrically constructed by reversely changing the con-
volution and pooling units to deconvolution and upsampling
ones, respectively. For fair comparisons, we trained the net-
works using the same loss functions as the proposed network
with the same coefficients as α = 1, β = 1, γ = 0.001.
δv = 0.5 and δd = 3. Table 3 shows the computation speeds
of all the lane detection networks, where the superscript, ‘‘+’’
denotes the networks, which originally are not re-designed
for lane detection segmentation and will be evaluated for the
comparisons. All the methods were tested in Tensorflow with
GPU GTX 1080Ti. LaneNet with 62.6 fps has the fastest
computation while VGG-16+SCNN [21] with 8.4 fps is the
slowest one. The proposed network achieves the reasonable
speed, which is good enough for real-time applications. Gen-
erally, the more complex backbone CNNs have the lower
computation speeds.

1) TUSIMPLE DATASET
In TuSimple dataset, we first test the networks, which satisfy
the real-time requirements, i.e., their speeds are larger than
30 fps. Marked by superscript, ‘‘∗’’, we also show the results
of the top fivemethods enlisted in TuSimple Benchmark Lane
Detection Challenge for references. As shown in Table 4,
VGG-16+SCNN [21], which won the 1st place on the Chal-
lenge. It performs better than the proposed method with
about 2.7% accuracy performance. However, its speed cannot
detect the results in real time. Hsu et. al. [35] uses a similar
concept and retains the low-level feature to restore details.
They adopted symmetric decoder and encoder structure with
task-specific layers to integrate all information and needmore
computation. Tables 4 and 5 show that the proposed method
performs best for accurate and F1 performances among all
two-branch methods on Tusimple dataset.

As shown as Fig. 11, the proposed network performs best.
FCN-8s has excellent result in general, however, the pix-
els which are close to vanishing point and image boundary

TABLE 4. Accurate performance of the methods on TuSimple.

TABLE 5. F1-score performance of two-branch methods on TuSimple.

TABLE 6. F1-score performance on CuLane dataset.

are not accurate enough. Actually, FCN-8s [36], which also
retains the feature maps from the last three maxpooling layer
and adds to three deconv layers, is very close to the proposed
model. FCN-8s lacks the information from the first two level
feature maps such that it cannot achieve fine details by con-
volution computing. DenseNet [37] uses more features that
make the performance higher than FCN-8s.

2) CULANE DATASET
Since the propose network is better than FCN-8s [36],
FCN-32s [36], LaneNet [27], and DenseNet [37] on Tusimple
dataset, we ignored them for comparisons. We only evaluate
the other complex networks, such as VGG-16+SCNN [21],
MRFNet [38], ResNet-50 [39], and ResNet-101 [39] on
CuLane database. As shown in Table 6, VGG-16+SCNN
still obtains the best F1-score in lane-wise detection. The
SCNN combines all feature maps obtained from different
convolutional directions to collect most information from the
image for prediction. Comparing to ResNet-50, the proposed
method has lower 0.2% in F1-score, but achieves faster speed
more than 14.2 frames per second (fps), which is exhibited in
Table 5.

As shown in Fig. 12, the detected results on CuLane datast
also show similar conclusions as Tusimple dataset. However,
the proposed network performs well in the regions, which
are close to vanishing point and image boundary. Further-
more, some occulated area, where the lanes are covered by
scooters, vehicles, or sunlight reflection, can influence the
results of most lane detection networks. For the occluded
lane restoration, the proposed method is better than FCN-8s.
In summary, the proposed method utilizes more low-level
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FIGURE 11. Detected results on Tusimple dataset with other two-branch segmentation models.

FIGURE 12. Detected results on CuLane dataset with other two-branch segmentation models.

feature maps to keep more accurate spatial information. The
proposed network, which can help for restoring the occluded
lanes, is robust to actual road conditions to achieve complete
lane segmentation for real-time applications.

3) EVALUATION OF ENHANCED LEVEL FEATURE MAPS
In order to evaluate the effectiveness of multiple level features
suggested in the proposed method, we tried to remove the
first enhanced low feature (1st ELF) map in Fig. 3 and tested
it by simulations. As shown in Fig. 13, the proposed model
without the 1st ELF map lost some entire lanes in the testing
images. Most of missed lanes are caused by the condition of
light intensity or occlusion by other objects. It is noted that
missing a whole lane is a serious problem for lane detection.
It will greatly affect the safety problem for the driver. The low
level features not only help to restore the details but also help

to detect the occluded lanes. Furthermore, the additions of
the 1st and 2nd ELF maps do not increase the calculation too
much for including low-level features. The proposal network
with the speed over 42 fps acquires a good balance between
processing speed and detection accuracy.

4) EVALUATION OF DATA AUGMENTATION
In training processing, we also tested different proportion of
data augmentation is set. Fig.14 shows two images obtained
from CuLane dataset. The left images are clean street in
daytime while the right ones are regular road at night. With
data augmentation (lower images), we can correctly detect
the missing lane in the night image. The results show that
the lighting data augmentation can improve the cases which
are in night or poor lighting conditions. To test different
ratios of data augmentation from 0% to 100% with random
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FIGURE 13. The detected results achieved by the proposed method:
(a) without low-level feature (upper); (b) with low-level feature adding
(lower).

FIGURE 14. Data augmentation: original day (left) and night (right)
images at top and their augmented images with 100% random lighting
variations at bottom.

FIGURE 15. Performance curves with different data augmentation
proportion for Tusimple and CuLane datasets.

brightness, the augmentation makes the model become robust
to recognize lanes in night scene or poor lighting condition.
Fig. 15 shows the performance improvements of Tusimple
and CuLane datasets are 1.2% and 4.6%, respectively. The
main reason is that Tusimple data are collected in good
weather and clean highwaywhile CuLane data are captured in
complex traffic and night conditions. Therefore, the improve-
ment of data augmentation in CuLane is more than Tusimple.

IV. CONCLUSION
This paper presents a real-time lane detection model based
on LaneNet with one encoder and two decoders. By using
the multiple level feature concept, the proposed lane detec-
tion network uses 16-layer VGG-16 as the encoder for
feature extraction and adopts 3-layer deconv decoders to
perform binary segmentation and pixel embedding branches.
The proposed network achieves better performances than
LaneNet with a reasonable increase of computation. The
5 low level features are added into the enhanced binary
segmentation (EBS) branch, in which we use max pooling

layers and 1×1 convolutional units to adjust the sizes of
feature maps, which can directly added to 2 deconv layers.
Simulations show that the multiple level features can help
to increase the accuracy performances of lane detection
and reach the real-time requirements. Compared to other
well-known methods, the proposed network under real-time
requirement shows the superiority in maintaining both speed
and accuracy. The proposed lane detection network has better
ability of restoring details and recognizing the occluded lanes
due to the usages of multiple level features.
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