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ABSTRACT The growing popularity of unmanned aerial vehicle (UAV) attracts significant research interests
and applications including low-altitude and airborne vehicles. Since there is no declared spectrum allocated
to UAV communications, opportunistic transmission has been commonly considered as an important way
for supporting UAV communications. When sharing the same spectrum with other users such as satellites
and mobile base stations, accurate spectrum sensing and allocation are of critical importance for UAV
communications to avoid serious interference. As the UAVs can constantly move to different locations with
various spectrum environments, the spectrum decision may be invalid only in a short period, leading to
require fast spectrum sensing. Furthermore, an UAV needs to predict possible temporal and spatial vacations
of the spectrum. In this case, the spectrum prediction has a high dimensional state space which is notoriously
difficult to solve. In this paper, some other issues such as how to determine the spectrum processing time
and how to detect the primary signals with high priority to avoid interference, are also discussed. Finally,
a fast spectrum sensing algorithm is proposed to improve the energy detection performance by optimizing
the error estimation and a constant ratio of missed detection. Our proposed algorithm does not require high
computational capability and can achieve relatively accurate sensing in low signal-to-noise ratio scenarios.

INDEX TERMS Unmanned aerial vehicles, ultra dense networks, spectrummanagement, spectrum sensing.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been widely applied
to applications such as aerial photogrammetry, plant pro-
tection, security, live broadcast and video screaming. They
can be low-altitude platforms (LAPs) of altitude 0∼1 km
and airborne vehicles of altitude 1∼20 km [1]. Currently,
UAV systems coexist with other systems such as mobile,
airborne, and satellite communications in the same spec-
trum bands. Recently, the FCC adopted new rules for
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the millimeter wave (mmWave) spectrum above 28GHz,
i.e., 27.5∼28.35GHz, 37∼38.6GHz, and 38.6∼40GHz,
requesting further comments on sharing these bands between
satellite, terrestrial 5G and other unlicensed users. These
bands include the spectrum currently occupied by some
high-altitude UAV communications as in the Ku∼Ka bands.
Another example is that some LAPs like multi-rotor
UAVs/drones operated in 840MHz∼2.4GHz band which
overlaps with ground cellular base stations and satellite
communication/navigation for civilian airplanes. To avoid
interference between different technologies, the spectrum
access and scheduling between different systems must
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be carefully managed. Opportunistic spectrum access is a
promising solution to alleviate cross-interference among
coexisting technologies. Each UAV needs to first sense the
spectrum [2] and only access the spectrum that is vacant at
the moment.

Since the UAV moves from one locations to another,
the sensing/detection result of spectrum occupancy is only
valid within a short period. This has been exacerbated by the
fact that the ultra dense networks (UDNs) consisting of a large
number of closely located base stations (BSs), i.e., 50∼1000
BSs/km2 [3], [4] or with distances about 30∼150 m, will be
quite popular in 5G systems. In this case, UAVs are expected
to switch among different cellular BSs more frequently caus-
ing uncontrollable and uncertain dynamics for UAVs’ spec-
trum environments. For example, a dronewith velocity 20m/s
and altitude 500 m can transfer from one BS to another with
a distance of 50 meters within 2.5 seconds, indicating that
the user may transfer into another wireless environment in
such a short period. In this period, the users should implement
spectrum sensing, accessing and communication, where the
last procedure consumes the most time. Therefore, the time
of spectrum sensing should bemuch less for UAVs comparing
to the terrestrial users with no and low speeds, requiring that
the spectrum sensing must be fast and be able to adopt to such
highly time varying environments.

One way to improve the spectrum sensing is to per-
form spectrum prediction [5]. Different from the terrestrial
communications where the users generally predict spectrum
based on the historical information only in the temporal
dimension, the UAVs should predict based on the historical
information according to both temporal and spatial variations,
since the UAVs are constantly changing wireless environ-
ments. Currently, how to predict the spectrum dynamics by
jointly considering the information of temporal and spatial
dimensions is still a challenging problem for UAV systems.

In this article, we first describe the opportunistic trans-
mission for UAVs and discuss some challenges. Then we
propose a fast and accurate algorithm of spectrum sensing in
a fast-changing environment. The main contributions include
two improvements. One is optimizing the noise power esti-
mation to improve the energy detection (ED) based spectrum
sensing. As a simple and fast sensing approach, the ED has
been widely adopted in many applications where the sens-
ing time is limited [2], [6]. Unfortunately, the ED usually
suffers from the errors of estimated noise power, or com-
monly referring to as the noise uncertainty [7]. This problem
is so crucial that it makes the ED-based sensing become
inefficient when the signal-to-noise ratio (SNR) is much
decreased. An important reason why the noise parameters
cannot be accurately estimated is that the statistics of noise
in different frequency bands are not accurately evaluated
since a strict i.i.d. property is generally not satisfied in
practice. We will present a new perspective to solve this
problem that the convex optimization [8] is introduced to
improve the estimated noise power. It is reported that the
convex optimization has been used to overcome the problem

caused by dependent statistics, such as the dependent sources
separation [9]. The reason is that the performance of con-
vex optimization is mainly related to whether the design of
optimization model is reasonable or not. In another word,
the focus of the problem is transferred from the statistical
property to the optimization model. Therefore we propose a
new scheme for ED by optimizing parameters of noise esti-
mation, referring to as the optimized noise estimation based
ED (ONED). Simulations indicate that the noise variance
estimation becomes much more accurate after optimization
by low computational costs. As the final detection perfor-
mance is experimentally improved comparing to the conven-
tional ED, the proposed ONED could be considered as an
efficient approach for fast spectrum sensing.

Another contribution is introducing a decision rule based
on the constant missed detection rate (CMDR). Conventional
signal detection usually employs the constant false alarm
rate (CFAR) based decision rule, where the false alarm rate
is pre-fixed and the detection probability is varying at dif-
ferent SNRs. However, for UAV second users, the missed
detection rate is more crucial than the false alarm rate because
the second users would have interference to the primary users
if the missed detection rate is high. Therefore the missed
detection rate should be fixed to ensure the primary signal can
be always effectively detected at different SNRs.Wewill pro-
pose a CMDR based ED, giving a theoretical threshold deter-
mined by a pre-set missed detection rate. Finally, the CMDR
is jointly used with the ONED to sense the primary signals.

The rest of this paper is organized as follows: In Section II
we review the existing works and describes the scheme
of opportunistic spectrum access for UAV communications.
Main challenges and potential research topics are discussed
in Section III. Finally, we propose a spectrum sensing algo-
rithm in Section IV-A. This algorithm employs the linear
programming (LP) method to optimize the noise estimation
to improve the energy detection (ED), leading to a fast and
accurate sensing approach which can work at SNR= −13 dB
with low complexity. A modified decision rule in sense of
CMDR is also considered for the sensing algorithm. Finally,
we conclude this article in Section V.

II. OPPORTUNISTIC TRANSMISSION FOR UAVs
UAVs have attracted significant interests recently. Both low
altitude and airborne UAVs are widely adopted in applica-
tions such as environmental monitoring, smart agriculture,
etc. However, according to the altitudes and speeds of UAV
systems, the spectrum sensing and accessing requirements
are generally different. In particular, at low altitude 0∼1 km,
UAVs including drones and fixed-wing planes mainly com-
municate in low frequency bands noted as the sub-6GHz.
Some of them can also operate in licensed bands such as
840MHz, 1.4GHz and 2.4GHz for applications of aerial pho-
togrammetry, plant protection and military. Most LAP-UAVs
may employ opportunistic transmission to access unlicensed
spectrum. At the altitude 1∼20 km, UAVs, which are mainly
fixed-wing planes, may transmit in higher frequency bands
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FIGURE 1. The wireless communications of UAVs by using opportunistic spectrum access.

such as Ku, K and Ka bands (12∼40GHz), with possible
extension to other mmWave bands (30∼300GHz). There-
fore we can classify the UAVs into two categories of
sub-6GHz UAVs and meta-K UAVs, similar to the sugges-
tion of FCC for 5G communications. It is worth to note that
the LAP-UAVs may also use the Ka-band as the FCC has
decided to release some mmWave bands for better commu-
nication services.

For different categories, the communication mechanism
should be designed specifically for issues including data
rate, capacity, bandwidth, antenna and so on. For instance,
the meta-K UAVs are able to transmit at high data rates while
the sub-6GHz UAVs communicate at lower rates. In follow-
ing content, we will discuss several issues of the difference
between the two categories.

Next we briefly review some communications related to
the UAVs, including communications based on satellites,
high-altitude platforms (HAPs), airplanes, LAPs, and so on.
Then we will describe the procedure of spectrum sensing and
prediction.

A. COMMUNICATIONS RELATED TO UAVs
There are many wireless transmissions in or through the air,
related to the UAV communications, as shown in Figure 1.
Some topics are briefly concluded as follows.

1) LAP/AIRBORNE COMMUNICATIONS
The LAP/airborne UAVs have been developed for decades
and widely used in many scenarios, including drones flying
at low altitudes and fixed-wing planes flying at higher alti-
tudes. The literatures show that the LAP communications
are closely related to the terrestrial communications [10].
Since both of their altitudes and speeds are not very high,
the terrestrial communication theories and architectures are

adopted in LAP communications, including 5G, LTE and
MIMO based technologies [1], [11].

2) HAP COMMUNICATIONS
In recent years, the HAPs working in the near space (alti-
tude 20∼100 km) have attracted much interests, especially
for applications of relay platforms and navigation. Many
schemes have been proposed to design the communication
frameworks, including wideband, MIMO, LTE and OFDM
based communications [11], [12]. The HAP communications
work in the Ku∼Ka bands as the same as the satellite com-
munications.

3) SUPERSONIC/HYPERSONIC AIRCRAFT
COMMUNICATIONS
At present, the supersonic/hypersonic aircrafts in the near
space are mainly employed for military purposes such as
for SAR imaging. For civilian using, some plans have been
proposed to send special people to destinations in very short
time, such as the ‘‘AS2’’ which is now being developed by
Airbus & Aerion with a speed of Mach 1.6, and the model of
‘‘Antipode’’ jet which is designed to fly at a speed of Mach
24 with 10 passengers. However, the communications for
supersonic/hypersonic aircrafts are not maturely investigated.
In another word, there are many topics in this area, e.g.,
communication interruption caused by large doppler shift and
blackout problem of plasma sheath.

4) SATELLITE COMMUNICATIONS
The demands of satellite communications are highly increas-
ing, e.g., ‘‘Digital Agenda for Europe’’ was defined to
require broadband speeds of at least 30 Mbps to all users
in Europe and 100 Mbps to at least 50% of households by
2020, where the number of users is expected to grow up to
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FIGURE 2. Spectrum prediction and sensing for UAV communications.

5∼10 Million [13]. Cognitive spectrum utilization is an effi-
cient solution tomeet such ambitious requirements of satellite
communications by sharing spectrum with other users to
increase both of bandwidth and data rates [14], [15]. As an
important step in spectrum awareness, spectrum sensing is
developed to detect signals at a SNR as low as −10 dB [13].

5) TERRESTRIAL COMMUNICATIONS
A typical example of terrestrial communications related to the
UAV transmissions is the mobile communication. For spec-
trum sensing, many reports have introduced various meth-
ods including ED, cyclostationary, eigenvalue, compressed
sensing based methods and so on [2]. Moreover, to further
improve the efficiency of spectrum sensing, spectrum pre-
diction has been proposed to predict possible holes before
sensing [16]. In literature, many prediction approaches have
been introduced such as neural network model, autoregres-
sive model, machine learning, and Markov model/hidden
Markov model based methods [17]. The joint use of predic-
tion and sensing greatly reduces the sensing time comparing
with sensing all or random bands. At the same time, it also
improves the sensing accuracy as the predicted holes are
probable idle.

B. OPPORTUNISTIC SPECTRUM ACCESS
From Figure 1 it is observed that the UAV communications
work in the air, sharing the same areas with other trans-
missions. Therefore, it is expected that the UAVs would
perform communication in the way of opportunistic trans-
mission, e.g., access a spectrum hole or share spectrum with
other users. The UAV communications are not allowed to
interfere the licensed communications, including ground↔
satellite, ground ↔ civilian airplane, satellite ↔ airplane,
etc., as shown in Figure 1. Some of these licensed communi-
cations, e.g., civilian airplane related communications, have
very high priority in using the spectrum, i.e., no interference
should be allowed since an interference may cause serious
accidents. This leads to that the detection of sensing the
primary signals must be as accurate as possible, or the missed
probability should be low enough. Therefore, it is required

a spectrum sensing approach achieves a very low missed
detection rate, while the false alarm probability seems to be
not crucial.

A more important issue of the spectrum sensing is the
limited time cost as the UAVs travel different wireless envi-
ronments in a short time period. It is known that the time
cost is mainly determined by the complexity of method, while
there is a trade-off between the complexity and the sensing
accuracy. That is, the requirements of fast and accurate sens-
ing are difficult to be meet at the same time. Therefore the
spectrum prediction is implemented to reduce the complex-
ity of sensing procedure, as well as to improve the sensing
accuracy. In this way, it is only to sense the predicted possible
holes instead of all or random frequency bands [16]. However,
the prediction methods for terrestrial communications could
not be directly deployed on the UAV communications, since
the terrestrial users with low speeds would not frequently
change wireless environments. For terrestrial users, the spec-
trum prediction needs the historical information of the tem-
poral dimension only. For UAVs, the prediction needs the
historical information of both time and space.

The spectrum access procedure of the UAV communica-
tions can be simply illustrated in Figure 2. In this figure,
(tn, ELn) denotes the temporal-spatial index of the nth wireless
environment, where ELn is a 3D location including latitude,
longitude and altitude. The interval 1t between the nth and
(n+1)th time instants is the travel duration from one wireless
environment to the next. In 1t , two procedures are parallel
implemented as one is ‘‘spectrum sensing→ access→ com-
munication’’, and another is ‘‘spectrum prediction’’. Espe-
cially, the prediction occurred at (tn, ELn) is actually finding
possible holes at (tn+1, ELn+1). From Figure 2 it is observed
that the time required by sensing/prediction is closely related
to 1t , implying that 1t is a crucial parameter.

III. OPEN ISSUES
Although the opportunistic transmission has been employed
on scenarios such as themobile and satellite communications,
there are still some challenges when it is used for UAV
communications. We briefly conclude four possible issues in
this section, as follows.
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FIGURE 3. Two examples for the definition of MSR: R.

A. MINIMUM SPECTRUM RANGE
It has been noticed that the interval of traveling between two
environments, 1t in Figure 2, is an important factor that
decides the time duration required by sensing and prediction.
Let us first consider how to how to define 1t . Since the
traveling time duration equals to distance

speed , if the distance could
be confirmed, the traveling time is easily calculated by a
specific speed. Therefore we transfer this problem with two
factors of distance and speed into a new one with only one
factor of distance, as the speed of UAV can be obtained
easily. We define the minimum range of one wireless envi-
ronment to be the distance related to 1t , denoted as mini-
mum spectrum range (MSR) to indicate the minimum valid
scope of one sensing result. When the UAV travels to exceed
the MSR, the wireless environment is believed changed and
the UAV must interrupt communication and re-sense the
spectrum.

We may explain how to define the MSR by two examples.
One is for the sub-6GHz UAVs such as a drone, shown
in Figure 3(a). It can be observed that the MSR actually is the
range of base station, i.e., theMSR R = Db whereDb denotes
the distance between adjacent base stations. In fact, the UDN
based BSs are built closely as Db is in the range of 30∼150
m, resulting that1t is in the range of 1.5∼7.5 seconds when
the drone flies at a velocity of 20 m/s. Another example
is for the meta-K UAVs shown in Figure 3(b). In the air,
the MSR is mainly determined by the airplane and HAP
communications since other users such as satellites usually
cover relatively larger scopes. By the ground scope of air-
plane/HAP communication (denoted as Ds) and the altitudes
of airplane/HAP & meta-K UAV (denoted as H & HUAV ),
the MSR can be calculated as R = (H − HUAV )Ds/H . For
instance, an airborne P3/SAR works with H = 7620 m,
Ds = 3.2 km, v = 608 km/h, plus a UAV for topogra-
phy flies at HUAV = 5000 m with vUAV = 70 km/h in
the opposite direction, then the MSR would be 1.1 km and
1t = MSR/(v + vUAV )≈ 5.84 seconds. It is hoped these
two simple examples may give some ideas on the discussion
of MSR.

B. FAST ALGORITHMS FOR SPECTRUM
PREDICTION AND SENSING
The UAVsmay transfer into new environments in several sec-
onds, implying that the spectrum prediction and sensing must
be accomplished in such a short time duration. Specifically,
from Figure 2 it is observed that the time duration required
for spectrum prediction could be simply as1t , while that for
sensing is much less than1t since the communication would
make use most of 1t . For example, the sensing time may be
set in the order of millisecond (ms) if 1t equals to a couple
of seconds. It may be different from the situation of the terres-
trial communications where the processing time is more than
a couple of seconds. This issue may be not easily deal with
because the algorithms are also required to be highly accurate
at low SNRs, e.g., SNRmay be−6.5 dB for 500meters above
the BS [18]. Although some reports show that the sensing
time is as small as in the order of microsecond (µs), the SNR
is required > −5 dB [19] that could not be employed here.
In Subsection IV-A we will introduce a fast approach for
spectrum sensing, working at SNR= −13 dB. This approach
may be used for UAV communications since it requires time
duration in the order of ms in simulations.

C. SPECTRUM PREDICTION BASED ON
TEMPORAL-SPATIAL INFORMATION
The UAV communications need to predict possible holes
in the next time and next space location. Comparing to the
terrestrial prediction which gives possible holes in the next
time but at the same location, the theory and algorithms for
UAV prediction become much more complex as this problem
seems to be of high dimensions.

For unlicensed sub-6GHz UAVs, there is another situation
that although a suitable hole is found, a licensed user begins to
access the hole just after the UAV starts to communicate. This
is because the sub-6GHz bands are maturely developed, con-
taining a large number of users with high spectrum utilization.
To avoid the conflict, it should be predicted to be the spectrum
idle time (or spectrum occupancy) [20]. Among the possible
holes predicted firstly, some holes with enough idle time for
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the UAV communication are selected for the next spectrum
sensing. That is, the predicted holes should be possibly with
an idle period approximating to1t . Of course, the prediction
of spectrum idle time is also based on the temporal-spatial
information.

Besides, how to generate the data base of temporal-spatial
information is another important topic. If the data base saves
information of each point in dimensions of time, latitude,
longitude and altitude (similar to the terrestrial data base with
information of each time slot), it would be a difficult and huge
work. This problem may be approximated to some simple
boundary issues such as homotopy based models, to reduce
the prediction complexity.

D. CONSTANT MISSED DETECTION RATE
BASED SPECTRUM SENSING
In literature, many works reported that the spectrum sensing
is based on the detection theory of CFAR, which is detecting
signals by a threshold decided from a pre-defined false alarm
probability. The CFAR based detection is widely used in
many fields such as radar where the false alarm probability
should be fixed. However, for some UAV communications,
themissed rate may bemore crucial. In this situation, the false
alarm probability is not cared since the cost of sensing another
hole may be much less than the cost of interfering licensed
users with a missed detection. Therefore a new topic of con-
stant missed rate based spectrum sensing may give a solution,
implying that the threshold is determined by a pre-defined
missed rate or detection probability. This issue will be further
discussed in Subsection IV-B.

IV. AN IMPROVED ENERGY DETECTION
FOR FAST SPECTRUM SENSING
In this section, we will show a fast sensing scheme based on
the ED forUAVcommunications. There are two contributions
for improving the ED including an optimization of noise
estimation errors, and a modified decision rule to maintain
the missed detection rates.

A. AN OPTIMIZED NOISE ESTIMATION
BASED ENERGY DETECTION
The ED usually suffers from the errors of estimated noise.
That is, the estimated noise variance σ̃ 2

e generally has some
errors comparing with the true value σ 2, leading to an inap-
propriate threshold which does not differentiate the signal
and noise. As a result, the accuracy of detection is seriously
degraded including low detection probability or high false
alarm probability. One reason for poor performance of noise
parameter estimation is that the statistics of noise in different
frequency bands are not accurately evaluated. It is known that
the problem caused by inaccurate statistical model is usually
difficult to be solved in conventional estimation methods.
Therefore, it is necessary to seek some solution that is not
relied on the statistic property.

Generally, for engineering, the convex optimization con-
sidered in signal detection is theoretically nonsensitive to

the statistics of decision variables [8]. The reason is that
the performance of convex optimization is mainly related to
whether the design of optimization model is reasonable or
not. In another word, the focus of the problem is transferred
from the statistical property to the design of optimization
model. Therefore it can be employed to solve problems
caused by poor statistic property.

Motivated by the idea of using convex optimization to
improve practical performance, we introduce a new scheme
for ED by optimizing parameters of noise estimation, refer-
ring to as the ONED. The optimization problem for estimated
noise is formulated by linear programming (LP) method,
which is a special case in the convex theory [8]. Simula-
tions indicate that the noise variance estimation becomes
much more accurate after optimization by low computational
costs. As the final detection performance is experimentally
improved comparing to the conventional ED, the proposed
ONED could be considered as an efficient approach for fast
spectrum sensing.

1) BASIC ASSUMPTIONS OF THE ED
Let us briefly review the procedure of ED. At the receiver,
we have a typical binary hypothesis testing expressed
as

H0 : x (t) = w(t), (spectrum hole)

H1 : x(t) = s(t)+ w(t), (no spectrum hole) (1)

where x(t), s(t) and w(t) denote the received signal, clean
signal and noise, respectively. Here we consider w(t) ∼
N (0, σ 2), where σ 2 is the noise variance needed to be esti-
mated. If the estimated noise variance is accurate, we can
perform the conventional ED as [21]

γ =
1
T

∫
T
|x (t)|2dt ⇒

{
> VT → H1,

≤ VT → H0,
(2)

where VT denotes the detection threshold. If the CFAR based
decision rule is adopted, the threshold VT can be calculated
by a pre-defined false alarm probability Pfa.

2) THE LP-BASED OPTIMIZATION OF ESTIMATED NOISE
The ED is very vulnerable to the estimation errors of noise,
i.e., the estimation error ee (ee = |σ − σ̃e|/σ ) much
degrades the detection performance. In another word, if the
noise estimation is improved to give a more accurate result,
the accuracy of detection can be further improved. Figure 4
describes a spectrummodel including signals, noise and spec-
trum holes. Among them, there are some special reversed
bands which are not generally opened, implying that they
are probably idle. Usually, the noise levels in different
bands are not the same, even if these bands are all idle
such as spectrum holes or reserved bands. If the noise
power is estimated with errors, we propose an optimization
scheme to solve this problem. The optimization for estimated
noise standard variance σ̃e can be modeled as the following
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FIGURE 4. A spectrum model including signals, noise, reserved bands and
spectrum holes in K bands.

problem,

min 1σ,

s.t. 1σ ≥
∣∣σk − σ̃ek ∣∣ , σk > 0, for all k,∑K

k=1
σk = K σ̄ + ε, (3)

where σk and σ̃ek are the standard variances of true and
estimated values for noise in different frequency bands bk ,
k = 1∼K , respectively; 1σ denotes the absolute differ-
ence between the true and estimated values; σ̄ is called an
average noise level, pre-provided by special idle bands such
as some reserved bands; ε is a pre-set parameter to control
the precision of standard variances. The model in (3) is to
minimize the difference between true and estimated values
for all bands, providing a solution of optimized estimation of
noise, denoted as σ̃optk for all k bands. As the unlicensed users
implement spectrum prediction before spectrum sensing [16],
the number of bands, K , to be sensed is not large since the
spectrum prediction usually provides a limited number of
possible holes. Therefore our optimization is a small scale
problem and we employ the algorithm of Simplex to solve
the model in (3), as shown in Algorithm 1. In the problem
in (3) , the true standard variances σk are the variables which
are attempted to be solved, formed as the vector X in the
Algorithm 1. The constraints in (3) are transformed to a
relationship ofA·X=b including the coefficient matrixA and
vector b of estimations. With the matrix of A, we transfer the
absolute value inequalities into a bunch of linear inequalities.
Then the problem can be input into the LP tool CPLEX and
calculated the optimal solution easily by the following steps:

a) Use the coefficient matrix A to transfer the absolute
value constraints into linear ones.

b) Set the value of the matrix production according to
standard variance estimations σ̃ek .

c) Use CPLEX to find out the optimal solution 1σ and
get the optimal noise estimations σ̃optk . Make sure the second
constrain in problem (3) is satisfied at the same time.

Before the optimization, there are two parameters σ̄ and ε
needed to be set. In simulations, σ̄ is set as the average noise
standard variance of several reserved idle bands. It should
be noted that these idle bands are not included in K sensing
bands. Moreover, the true noise levels in idle bands and K

Algorithm 1 The LP-Based Optimization for Noise Vari-
ance Estimation
Input: standard variance estimation σ̃ek , average noise
level σ̄ , ε.
Output: optimized estimations of standard variances,
denoted as σ̃optk .
BEGIN:

1 According to the constraints in (3), it can be set that the
restriction 1σ ≥

∣∣σk − σ̃ek ∣∣ is ensured by A·X=b, with

the coefficient matrix as A =
[
M−1 diagK1
M1 diagK1

]
, where

M1 =
T

[1, 1, . . . , 1]︸ ︷︷ ︸
K

, M−1 =
T

[−1,−1, . . . ,−1]︸ ︷︷ ︸
K

,

diagK1 =


1 0 · · · 0

0
. . . 0

...
... 0

. . . 0
0 · · · 0 1

 .
2 Set b =

[
σ̃e1 , σ̃e2 , . . . , σ̃eK ,−σ̃e1 ,−σ̃e2 , . . . ,−σ̃eK

]
, and

X = [σ1, σ2, . . . , σK ].
3 Calculate X satisfied A·X=b by LP tools. For example,
input A, b and X into the CPLEX.

4 Make sure X satisfied
∑K

k=1 σk = K σ̄ + ε at the same
time.

5 Calculate the value of 1σ and check its optimality.
Do steps 3 ∼ 5 iteratively in CPLEX until the minimum
1σ is obtained.

6 Return X.
END

sensing bands are not the same, i.e.,

σi 6= σj 6= σl 6= σk , for i 6= j and l 6= k,

where σi & σj are from J idle bands with (i, j = 1, 2, . . . , J ),
and σl & σk are from K sensing bands with (l, k =
1, 2, . . . ,K ) including busy bands and spectrum holes. How-
ever, we believe that the average true value of K sensing
bands is equal to σ̄ since the noise from different bands in
a certain environment has the same background. The setting
of ε is based on experimental results. Numerical tests show
that ε = 0.001 is a good choice that the optimized errors eopt
are the smallest, where

eopt = |σ − σ̃opt |/σ (4)

presenting the errors between the true and optimized values.
Table 1 presents the average optimized errors eopt by

1000Monte Carlo trials with estimated errors ee = 0.05, 0.10
and 0.15, SNR = −18, −16, −14 and −12 dB, the number
of sensing bands K = 2, 4, and 8. It is observed that the
optimized errors of noise standard variances are mostly in
the order of 10−3, which are much smaller than the estimated
errors ee, indicating that the optimization procedure designed
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TABLE 1. Average optimized errors eopt (×10−3, ε = 0.001).

FIGURE 5. The flowchart of ONED-based spectrum sensing.

in (3) works well in such low SNR scenarios. The table
also shows that the increases of both K and ee degrade the
performance of noise optimization, leading to larger eopt .

Referring to Subsection III-B, it is required a low com-
putational complexity of sensing. As the LP-based optimiza-
tion is implemented by using Simplex algorithm for a small
scale problem, the cost of optimization is not high. We test
the experimental computation costs of the optimization pro-
cedure with 1000 Monte Carlo trials on the platform of
MATLAB and obtain the following results:
a) When K = 2, for ee = 0.05, 0.10 and 0.15, the average
numbers of iterations are all 1, the time costs are between 1.7
ms and 2.0 ms.
b) When K = 4, for ee = 0.05, 0.10 and 0.15, the average
numbers of iterations are all 4, the time costs are between 2.3
ms and 2.5 ms.
c) When K = 8, for ee = 0.05, 0.10 and 0.15, the average
numbers of iterations are all 10, the time costs are between
4.3 ms and 4.5 ms.
The results show that the optimization can be converged by
only several iterations and costs time in the order of ms, when
the spectrum prediction provides a few possible holes for
sensing.

3) EXPERIMENTAL PERFORMANCE
OF ONED BASED SENSING
Based on the optimized estimation of noise variance,
the ONED is proposed as shown in Figure 5 with the
following steps:

FIGURE 6. Simulation comparisons of spectrum sensing performance
based on conventional ED, ONED and cyclostationary detection for BPSK
signals by detection probability Pd (K = 4, Pfa = 0.01, ε = 0.001).

a) Estimate noise standard variances σ̃ek for K sensing
bands.

b) Optimize the estimated noise standard variances based
on LP given in (3), and provide more accurate values σ̃optk ,
following the steps as in Algorithm 1.

c) Compute the thresholds based on the optimized standard
variances σ̃optk , perform the ED for received signals, and
make the decisions.

First we test the ONED-based sensing for a simulated
BPSK signal with sample length Ns = 8192 for K = 4
by 104 Monte Carlo trials, comparing the detection prob-
ability Pd with other methods including the conventional
ED and cyclostationary [2], [22] based sensing in Figure 6.
The CFAR-based detection is adopted and Pfa = 0.01. It is
observed that the proposed approach performs better than the
conventional ED due to the optimization of noise estimation.
For example, with the estimated error ee = 0.05, the ONED
detects the signal as Pd ≥ 0.95 when SNR≥ −13.6 dBwhile
the conventional ED requires SNR≥ −8 dB, improving over
5 dB. The cyclostationary based sensing considers the known
signal detection, i.e., searching the peaks in the spectral
correlation function of the input and comparing with those
of the known signal. Therefore the cyclostationary based
sensing could be supposed not related to noise power errors.
Figure 6 shows that the ONED has similar performance as the
cyclostationary based sensing when considering Pd ≥ 0.95.
Next an experimental scenario will be tested. We con-

sider the data provided by OpenCelliD which is the world’s
largest open database of cell towers and WiFi access points
(available: opencellid.org) to select a region in City of
Chengdu (China) including 6 BSs, shown in Figure 7. The
latitudes and longitudes of BSs are available. We set BS-1
is the station whose bands would be accessed by UAV com-
munication. Within 60 meters of the region of BS-1, there
are 5 adjacent BSs as BS-2 ∼ 6. The parameters of BSs are
height = 50 m, power = 43 dBm, bandwidth = 20 MHz,
and noise floor = −100 dBm. The mobile signals near a
GSM-BS are measured and GMSKmodulated signals are are
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FIGURE 7. The selected region in City of Chengdu (China), showing the
distribution of 6 BSs.

collected at the band of 953.8MHz by using software defined
radios. Then the GMSK signals were de-noised within SNR
over 42 dB and down-converted into approximately clean
baseband signals. The AWGN noise and errors (ee = 0.05,
0.10 and 0.15) are preset and mixed in simulations. The loss
of signal propagation is computed by the empirical formula:
Loss = 32.44+20 log10(frequency)+20 log10(distance). The
sequence length of GMSK signal samples in each simulation
is Ns = 8192 and constant Pfa = 0.01.

We test the ONED-based sensing for K = 4 by 104 Monte
Carlo trials, shown in Figure 8. The performance is shown as
cumulative distribution functions (CDF) calculated with 95%
confidence intervals, regarding to the detection of GMSK
signals. A higher value of CDF indicates better detection
performance. It is observed that the proposed approach per-
forms better than the conventional ED due to the optimization
of noise estimation. For example, with the estimated error
ee = 0.05, the ONED has CDF > 0.9 when UAV height
< 360 m while the conventional ED requires UAV height
< 120 m, implying that the ONED-based UAV can work
in higher/farther space. The performance of cyclostationary
based sensing degrades mainly because the GMSK signal
may not have the same cyclic autocorrelation property as the
BPSK signal used in Figure 6. Comparing to the cyclostation-
ary based sensing, the ONED could be applied on more types
of signals since it does not require the signal has some certain
properties.

It is worth to noted that the three curves based on theONED
for different ee are closely distributed in both Figures 6 and 8,
because all the values of optimized errors are quite small as in
the order of 10−3, which can be seen in Table 1 (K = 4). This
implies that our method is always able to provide satisfied
performance when the estimated error varies from 0.05 to
0.15. In another word, the ONED may be not very sensitive
to the noise uncertainty while the conventional ED does.

The ONEDworks better than the conventional ED because
the noise power estimation is improved by the optimization.

FIGURE 8. Experimental comparisons of spectrum sensing performance
based on conventional ED, ONED and cyclostationary detection by CDF
regarding to detection of the real GMSK signals (K = 4, ε = 0.001, CFAR is
used with Pfa = 0.01).

An important reason why the noise power cannot be accu-
rately estimated is that the statistics of noise in different fre-
quency bands are not accurately evaluated. Usually, the con-
ventional estimation theory is based on an assumption that
the statistics of noise in different frequency bands are i.i.d.
However, in practice, a strict i.i.d. property is generally not
satisfied, resulting that the statistics of noise are difficult to be
accurately evaluated. For example, the power of random sig-
nal and interference may leak into adjacent bands and affect
the noise statistics. The proposed optimization uses a differ-
ent view to solve this problem. We use a-prior information of
some reserved bands which are usually unused to get a very
accurate average noise level, to better infer the noise power of
other bands. This is because the noise levels at different bands
have the same background in a certain environment, as shown
in Figure 4. Since the noise statistics in different bands are not
independent, they should be optimized together, considering
the effects of other bands.

B. CONSTANT MISSED DETECTION RATE
BASED SENSING BY USING ONED
As we noted in Subsection III-D, to guarantee the UAV com-
munications not to affect the primary user communications,
it is required that the UAVs can always detect the primary sig-
nals in all situations with different SNRs. In a word, a method
which can provide a low and constant missed detection rate
is more suitable for the UAV communications than the CFAR
based sensing, which is to keep the false alarm rate to be
constant while the missed detection rate is varying at different
SNRs [23]. We propose a CMDR based sensing approach
to stably and reliably detect the primary signals at differ-
ent SNRs by pre-setting a low missed detection rate Pmd .
This idea was firstly introduced in our previous conference
paper [24]. Here we improve the formula derivation, verify
the assumptions of distribution, and test using real practice
signals. At last, the idea of CMDR is jointly used with the
ONED to sense the GSM-BS signals of GMSK signals.
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1) THE CMDR IN ED
For discrete signals with sample length Ns, the test statistics
of ED introduced in (2) can be rewritten as

γ =
1
Ns

Ns∑
n=1

x2 (n). (5)

Under hypothesis H0, γ follows a central chi-square dis-
tribution. As the random variables are i.i.d. and Ns � 1,
by employing the central limit theorem, γ can be
approximated as

H0 : γ ∼ N
(
σ 2, 2σ 4/Ns

)
. (6)

For H1, we have

γ =
1
Ns

Ns∑
n=1

(
s2 (n)+ 2s (n)w (n)+ w2 (n)

)

=
1
Ns

Ns∑
n=1

s2 (n)+
1
Ns

Ns∑
n=1

2s (n)w (n)+
1
Ns

Ns∑
n=1

w2 (n).

When the sampling duration is much longer than the signal
symbol period, the first term of above equation can be approx-
imated to be the signal average power σ 2

s . For the second
term, assuming s(n) is a known signal, we have

s(n)w(n) ∼ N
(
0, s2(n)σ 2

)
, (7)

resulting as

1
Ns

Ns∑
n=1

2s (n)w (n) ∼ N
(
0, 4σ 2

s σ
2/Ns

)
. (8)

The last term is actually the test statistic under H0 and has
the same result as (6). Also by employing the central limit
theorem, γ is approximated as

H1 : γ ∼ N
(
σ 2
+ σ 2

s ,
(
2σ 4
+ 4σ 2

s σ
2
)
/Ns

)
. (9)

We verify this distribution by using a GMSK signal and
AWGN noise. Figure 9 shows the distribution of decision
statistic with 12000Monte Carlo simulations when we set the
signal power equaling to 0.5 and the noise power equaling
to 0.5. It is observed that the distribution assumption in (9)
is highly consistent with the fact since the normalized mean
square errors (MSEs) of simulation and Gaussian distribu-
tions are quite small at different SNRs. Therefore, the missed
detection Pmd can be obtained as

Pmd = 1−Q

 VT − σ 2
− σ 2

s√(
2σ 4 + 4σ 2σ 2

s
)
/Ns

 , (10)

where Q(·) is the Gaussian tail probability Q-function. When
Pmd is preset as a constant, the threshold VT can be calculated
as

VT =σ 2
+σ 2

s +Q
−1 (1−Pmd )

√(
2σ 4+4σ 2σ 2

s
)
/Ns, (11)

FIGURE 9. Comparison of the simulated test statistic distribution and the
theoretical Gaussian distribution.

FIGURE 10. Experimental missed detection and false alarm rates by using
the conventional ED based on the CMDR when Pmd is preset as 0.1 and
0.01, without noise estimation errors (GMSK, Ns = 8192, 104 Monte Carlo
tests).

and the false alarm rate

Pfa = Q
((
VT − σ 2

)
/

√
2σ 4/Ns

)
. (12)

Figure 10 presents the detection results by using the con-
ventional ED using the CMDR based thresholds. This fig-
ure has double Y-axes that the two blue curves of Pmd corre-
spond to the left Y-axis and the two red curves of Pfa corre-
spond to the right Y-axis. It is observed that the experimental
missed detection rates are tightly around the presetPmd = 0.1
and 0.01, indicating that the CMDR based ED can work well
at different SNRs. The false alarm rates are varying when
the SNR is changing. For low SNRs, a lower presetting Pmd
makes Pfa increase.

It is noted that the CMDR based ED requires a-prior infor-
mation including signal and noise power. The simulation in
previous figure does not consider the estimation errors of
signal and noise power. If the noise power is not accurately
estimated, the optimization procedure of noise power intro-
duced in Subsection IV-A may be also useful for the CMDR
based ED. Therefore, a joint use of CMDR and ONEDwill be

175030 VOLUME 7, 2019



S. Luo et al.: Opportunistic Spectrum Access for UAV Communications Towards Ultra Dense Networks

FIGURE 11. The flowchart of ONED-based spectrum sensing using CMDR
based decision.

FIGURE 12. Experimental comparisons of spectrum sensing performance
based on conventional ED and ONED with CMDR by CDF regarding to
detection of the real GMSK signals (K = 4, Pmd = 0.02, ε = 0.001).

presented in the following content to implement the spectrum
sensing for UAV communications.

2) EXPERIMENTAL PERFORMANCE
OF THE CMDR BASED ONED
We modify the decision rule in Subsection IV-A by using the
CMDR concept instead of the CFAR, to sense the same space
environments as used in Figure 8. The sensing procedure
is shown in Figure 11. Comparing to Figure 5, this sensing
approach adopts the CMDR rule to compute the threshold
used in ED decision.

Figure 12 illustrates the experimental sensing performance
of ONED in sense of CMDRwhere Pmd is preset as 0.02. The
experimental scenario is the same as in Figure 8. It is observed
that the proposed CMDR-ONED is able to effectively sense
signals when the user heights are not high. Comparing to
the CFAR based ONED approach in Figure 8, the CMDR
base sensing may perform better when the heights are higher,
since the CMDR basedmethod uses more a-prior information
than the CFAR based method. For instance, the CFAR based
ONED can not work when the height > 400, while the
CMDR based ONED could partially work.

V. CONCLUSION
This paper introduced opportunistic spectrum access for
UAV communications, including brief reviews of UAV, satel-
lite and terrestrial communications. It was explained that

spectrum management should be employed for UAV com-
munications to avoid interference. Two main challenges
were referred: one is that the processing algorithms are
required to be fast since the UAVs transfer different spec-
trum environments very quickly; another one is that the
spectrum prediction should be based on the joint informa-
tion of temporal-spatial dimension. Other issues such as the
MSR and constant missed rate based detection were also
discussed.

A fast approach of spectrum sensing for UAVs was pro-
posed in the paper. It introduced a new perspective to improve
the ED performance by the LP-based optimization which
greatly suppressed the estimated error of noise variance,
without requiring high additional computation. For different
degrees of noise estimation errors, it was observed that the
ONED always provided good performance from simulated
results, implying that our proposed approach might not be
very sensitive to the noise uncertainty. Besides, the CMDR
based decision rule is able to ensure the detection perfor-
mance of primary signals. Although we used the scenario
of terrestrial BSs to test, the proposed approach can be also
applied for UAVs in other environments illustrated in Figure 1
such as UAV-HAP scenarios.
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