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ABSTRACT This paper presents a barrier Lyapunov function based nonsingular fast terminal sliding mode
control with fixed-time non-recursive disturbance observer for the blended-wing-body (BWB) aircraft in
the presence of mismatched disturbances and output constraints. The fixed-time non-recursive disturbance
observer based nonsingular fast terminal sliding mode control is proposed for matched and mismatched
disturbances attenuation. Furthermore, in order to pursue high-precision attitude tracking regarded as output
tracking errors constraints before disturbance observer tracking errors converge to a small prescribed range,
the barrier Lyapunov function is designed to constrain the sliding mode variables before states reach the slid-
ing mode surface. Consequently outputs tracking errors constraints can be satisfied by the sliding variables
constraints. More importantly, barrier Lyapunov function based terminal sliding mode controller ensures
the finite-time convergence. Finally, the numerical simulations demonstrate the chattering attenuation and
high-precision attitude tracking of the BWB aircraft in the presence of mismatched disturbances and output
constraints.

INDEX TERMS Barrier Lyapunov function, blended-wing-body aircraft, fixed-time non-recursive
disturbance observer, mismatched disturbances, output constraints.

I. INTRODUCTION
Recent years have witnessed the extensive researches of
Blended-Wing-Body (BWB) aircraft, for its advantages in
stealth, aerodynamics, and structural strength. However,
in contrast with traditional aircraft, BWB aircraft also
causes directional static instability, low pitch damping, strong
longitudinal and lateral coupling [1]–[3]. In addition, the
system uncertainties including unmodeled dynamics and
external disturbances further increase the pressure of BWB
aircraft control system. These properties bring some critical
challenges to BWB aircraft high-precision attitude tracking,
which will be regarded as output tracking error constraints in
the following parts.

To solve these challenges, advanced nonlinear control
methods of the BWB aircraft attitude tracking have been
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gradually proposed. One attractive BWB aircraft control
method is the sliding model control method for its robustness
to the uncertainties. In particular, the terminal sliding mode
control is capable of driving the aircraft attitude to desired
states in finite-time [4], while the inherent singularity in
terminal sliding mode control prevents its practical appli-
cations. Feng et al. [5] proposed the nonsingular terminal
sliding mode control to avoid this problem. The nonsingular
fast terminal sliding mode control approach proposed by
Yang and Yang [6] achieves faster convergence, but this
method’s settling time depends on the initial error states of
fight vehicle attitude. Such dependence is relaxed with the
method of fixed-time convergence by Polyakov [7]. Recently,
integral terminal sliding mode control [29], [30] for its less
chattering effect contrast to conventional terminal sliding
mode control methods attracts much attention. However,
aforementioned sliding mode control (SMC) methods are
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only insensitive to the matched disturbance, furthermore,
these methods cannot avoid chattering problem.

The mismatched disturbance is still the main control chal-
lenge in BWB aircraft high-precision control, which can
also be identified in various control scenarios. Some more
effective methods are studied to tackle this challenge. The
traditional control methods combined with SMC have been
gradually established for the mismatched disturbances, such
as the LMI-based control [8], the Riccati approach [9], the
adaptive control [10] Apart from integration way, integral
sliding mode control [11] adopts the high frequency switch-
ing gain for the mismatched disturbances. However, these
methods handle the mismatched disturbances at the cost of
sacrificing its nominal control performance.

Recently, the disturbance observer (DO) based sliding
mode control have been gradually developed, since the distur-
bance observer can reduce themagnitude of the discontinuous
coefficient which can mitigate the chattering problem and
recovery the nominal control performance. Different distur-
bance observer, such as the nonlinear-DO [12], extended
DO [13], finite-time robust exact DO [14], and uniform robust
exact DO [15], fixed-time DO [16], have the possibility of
integrating with the different sliding mode control to han-
dle the mismatched disturbances. Yang [17]–[19] proposes
a novel continuous NTSM with the finite-time disturbance
observer and nonlinear disturbance observer for systems with
mismatched disturbance, which can realize the fine nominal
control performance and chattering alleviation. Ginoya [15]
proposes the extended disturbance observer and modifies
the sliding surface for general nth order system with mis-
matched disturbance. Zhang et al. [20] develops the distur-
bance observer based integral SMC for linear systems with
mismatched disturbance. Nowadays, the DO based SMC
method for mismatched disturbance have been gradually
applied in unmanned helicopter [21], reusable launch vehi-
cles [22], MAGLEV suspension vehicles areas and so on.

However, the disturbance observer based sliding mode
control method cannot guarantee high-precision attitude
tracking regarded as the output constraints before the distur-
bance observer tracking errors converge to a small prescribed
range. The output constraints problem can be regarded as a
special case of states constraints problem. There exist vari-
ous methods to address the states constraints problem, such
as model predictive control [23], reference governors [24],
barrier Lyapunov function and so on. Among these meth-
ods, the barrier Lyapunov function (BLF) is an effective
method to constrain the transient performance, such as the
convergence accuracy and overshoot. The BLF is first pro-
posed by Ngo et al. [25] for state-constrained systems in
the Brunovsky form, then Tee et al. [26] extends it in a
strict feedback form. Later, Tee and Ge [27] also develops
partial state-constrained control method. Wang et al. [28]
proposes a novel exponential barrier Lyapunov function to
address state constraints and external disturbance problem.
However, the above barrier Lyapunov function methods are
mainly combined with backstepping technique, and outputs

can converge to an invariant set, but large control inputs are
needed to guarantee that the invariant set is small enough
given the requirement of high-precision tracking perfor-
mance.

This paper proposes a barrier Lyapunov function based
nonsingular fast terminal sliding mode control with
fixed-time non-recursive disturbance observer for blended-
wing-body aircraft high-precision attitude tracking with
mismatched disturbance and output constraints. The main
contributions of this paper are stated as follows:

1) A fixed-time non-recursive disturbance observer
(FxTDO) based nonsingular fast terminal sliding mode
control (NFTSMC) method is established to attenu-
ate matched and mismatched disturbance and recov-
ery its nominal control performance. The advantages
of non-recursive FxTDO lie in that its structure are
simpler than recursive FxTDO and its disturbance
estimations are smoother than finite-time disturbance
observer. Moreover, its disturbance estimation errors
are convergent in a fixed time, independent of the initial
estimation errors.

2) To pursue high-precision attitude tracking, a barrier
Lyapunov function is developed to constrain sliding
mode variables rather than directly constrain the out-
puts tracking errors before the disturbance observer
tracking errors converge to a small prescribed range,
and then output tracking errors constraints are satisfied
by the sliding mode variables constraints. More impor-
tantly, its finite-time convergence will be guaranteed.

The remainder of this paper is arranged as follows.
Section II introduces the BWB aircraft dynamic model.
In Section III, the formulation of BWB aircraft attitude
tracking problem is stated. In section IV, a fixed-time
non-recursive disturbance observer based NFTSMC method
and a barrier Lyapunov function based NFTSMC method are
presented for Section III problem. Simulation results are pro-
vided in Section V followed by the conclusion in Section VI.

II. BWB AIRCRAFT DYNAMIC MODEL
The mathematical dynamic model of the BWB aircraft has
beenwidely investigated. To the best knowledge of the author,
in most literature, the force and moment coefficients in
BWB aircraft dynamic model are in the form of aerodynamic
derivative or polynomial fitting rather than in the form of the
raw wind tunnel data. This section introduces dynamic mode
with raw wind tunnel data which is more accurate. Then this
mode is transformed into aerodynamic derivative form for
control design and the transformation errors are regarded as
external disturbances.

A. BWB AIRCRAFT OVERVIEW
The BWB aircraft (in 1:10 scale) is designed to verify
the control laws based on wind tunnel free flight tests.
As shown in Fig. 1, BWB aircraft’s control surfaces are
elevator, aileron, split rudder and thrust vector engine.
Besides, onboard sensors consist of the Airdata boom, Inertial
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FIGURE 1. BWB aircraft configuration.

Measurement Unit (IMU), Attitude and Heading Reference
System (AHRS).

B. BWB AIRCRAFT DYNAMIC MODEL
The BWB aircraft dynamic model is derived by the Newton
approach. Before addressing the dynamic mode, following
assumptions are presented to simplify the induction: the
BWB aircraft is a rigid body; the earth’s rotation and gravita-
tional perturbation are neglected; and the wind-related terms
are ignored as well. With above assumptions, the BWB air-
craft attitude dynamics can be formulated as the following
form:

α̇= q− tanβ(p cosα+r sinα)

+
1

MV cosβ
(−L+Mg cosγ cosµ−Tx sinα+Tz cosα)

(1)

β̇ =−r cosα+p sinα+
1
MV

(Y cosβ+Mg cos γ sinµ)

+
1
MV

(−Tx sinβ cosα+Ty cosβ−Tz sinα sinβ)

(2)

µ̇ = secβ(p cosα+r sinα)+
L
MV

(tanβ+tan γ sinµ)

+

(
Y + Ty

)
MV

tan γ cosµ cosβ−
g
V

cosγ cosµtanβ

+
Tx
MV

(tan γ (sinµ sinα−cosµ sinβ cosα)+tanβsinα)

−
Tz
MV

(tan γ (sinµ cosα+cosµsinβsinα)+tanβ cosα)

(3)

ṗ =
Iz (laero + lT )+ Ixz (naero + nT )

IxIz − I2xz

+
pqIxz

(
Ix − Iy + Iz

)
+ qr

(
IyIz − I2z − I

2
xz
)

IxIz − I2xz
(4)

q̇ =
(maero + mT )+ (Iz − Ix) pr − Ixz

(
p2 − r2

)
Iy

(5)

ṙ =
Ixz (laero + lT )+ Ix (naero + nT )

IxIz − I2xz

+
pq
(
I2z − IyIz + I

2
xz
)
− qrIxz

(
Ix − Iy + Iz

)
IxIz − I2xz

(6)

where α, β, γ, µ represent angle of attack, angle of sideslip,
flight path angle, and flight roll angle; p, q, r represent roll
rate, pitch rate, and yaw rate; M represents mass of the
BWB aircraft; Ix , Iy, Iz, Ixz represent rotational inertia of the
x-axis, y-axis, z-axis, x-z plane; L,Y represent aerodynamic
lift force and aerodynamic side force; Tx ,Ty,Tz represent the
x-axis, y-axis, z-axis force produced by thrust vector engine;
laero,maero, naero represent aerodynamic roll torque, aerody-
namic pitch torque, and aerodynamic yaw torque; lT ,mT , nT
represent roll torque, pitch torque, and yaw torque produced
by thrust vector engine.

The aerodynamic forces and torques are expressed as
L = QSCL , Y = QSCY , l = QSbCl , m = QScCl , n =
QScCn, where Q represents dynamic pressure, S represents
aerodynamic reference area. The lift force, drag force, side
force, roll torque, pitch torque, and yaw torque coefficients
are given as follows:

CL = CLbasic(α, β)+1CLde(α, δe)+1CLda(α, β, δa)

+1CLdr (α, β, δr )

CD = CDbasic(α, β)+1CDde(α, δe)+1CDda(α, β, δa)

+1CDdr (α, β, δr )

CY = CYbasic(α, β)+1CYda(α, β, δa)+1CYdr (α, β, δr )

(7)

Cl = Clbasic(α, β)+1Clda(α, β, δa)+1Cldr (α, β, δr )

+
(
pb
/
2V
)
Clp (α)+

(
rb
/
2V
)
Clr (α)

Cm = Cmbasic(α, β)+1Cmde(α, δe)+1Cmda(α, β, δa)

+1Cmdr (α, β, δr )+
(
pc̄
/
2V
)
Cmq (α)

Cn = Cnbasic(α, β)+1Cnda(α, β, δa)+1Cndr (α, β, δr )

+
(
pb
/
2V
)
Cnp (α)+

(
rb
/
2V
)
Cnr (α) (8)

where CYp ,CYr ,CZq ,Cnp ,Cnr are dynamic derivative
coefficients.
The forces and torques of thrust vector engine are:

Tx = T
Ty = 0.75T δy
Tz = −T δz

,


lT = 0
mT = XTTz
nT = −XTTy

(9)

where T , δy, δz represent engine thrust, lateral and normal
thrust vectoring control deflection angles.
The force and torque coefficients in Equ. (7) and (8) is

obtained by interpolation with wind tunnel test data. How-
ever, most advanced nonlinear flight control methods are
designed for affine nonlinear system, and it’s difficult to
adopt feedback linearization for system with interpolation.
Therefore, aerodynamic derivatives form will be introduced.

C. BWB AIRCRAFT AERODYNAMIC DERIVATIVE
The weighted least squares algorithm are adopted to obtain
aerodynamic derivatives, which transforms primitive system
into affine nonlinear system. Equ. (7) and (8) are transformed

VOLUME 7, 2019 175343



Z. Chen et al.: Barrier Lyapunov Function-Based SMC for BWB Aircraft With Mismatched Disturbances and Output Constraints

into the following form:

CL = CLbasic + C
δe
L (α)δe + d11

CY = CYbasic + C
δr
Y (α, β)δr + C

δa
Y (α, β)δa + d12

CD = CDbasic + C
δe
D (α)δe + d13 (10)

Cl = Clbasic + C
δa
l (α, β)δa + C

δr
l (α, β)δr

+
(
pb
/
2V
)
Clp (α)+

(
rb
/
2V
)
Clr (α)+ d21

Cm = Cmbasic + Cδem (α, β)δe +
(
pc̄
/
2V
)
Cmq (α)+ d22

Cn = Cnbasic + Cδan (α, β)δa + Cδrn (α, β)δr
+
(
pb
/
2V
)
Cnp (α)+

(
rb
/
2V
)
Cnr (α)+ d23 (11)

where da1 = [d11, d12, d13]T , da2 = [d21, d22, d23]T are
transformation errors.

III. PROBLEM FORMULATION
The attitude dynamic model in the form of aerodynamic
derivatives can be rewritten as the following compact form{

ẋ1 = F(x1, x2)+ d1
ẋ2 = H(x1, x2)+ G(x1, x2)u+ d2

y = x1 (12)

where x1 = [α, β, µ]T , x2 = [p, q, r]T , u =

[δe, δa, δr , δy, δz]T . d1 are mismatched disturbances, which
contain da1 and neglected dynamics; d2 are matched dis-
turbances, which contain da2 and external disturbances;
F(x1, x2), H(x1, x2), G(x1, x2) are continuous vector func-
tions, expressed as:

F(x1, x2) =

− tanβ cosα 1 − tanβ sinα
sinα 0 − cosα

secβ cosα 0 secβ sinα

 pq
r

 ,

H(x1, x2) = J−1

− x×2 Jx2

+


QSb(Clbasic +

pb
2V

Clp +
rb
2V

Clr )

QSc(Cmbasic
qc
2V

Cmq )

QSb(Cnbasic +
pb
2V

Cnp +
rb
2V

Cnr )




G(x1, x2) = J−1W ,

where J =

 Jx 0 Jxz
0 Jy 0
Jxz 0 Jz

,
W =

 0 QSbCδal QSbCδrl 0 0
QScCδem QScCδam 0 0 −XTT

0 QSbCδan QSbCδrn −0.75XTT 0

 .
Transforming the equation (12) into the following form:{

ε̇ = F(x1, x2)− ẋd + d1
ẋ2 = H(x1, x2)+ G(x1, x2)u+ d2

(13)

where ε = x1 − xd represent tracking errors.

In this paper, our ultimate aim is to develop a control
algorithm such that x1 can track the given commands xd in
finite-time in the presence of mismatched disturbances and
output constraints.

IV. CONTROL DESIGN
To pursue high-precision attitude tracking of BWB attitude,
a novel composite nonsingular fast terminal sliding mode
control, combining with barrier Lyapunov function and fixed-
time non-recursive disturbance observer, is proposed. The
fixed-time non-recursive disturbance observer is constructed
to estimate matched disturbance and mismatched disturbance
simultaneously for chattering attenuation, which results in the
reduction of the switching gains. To accelerate the conver-
gence rate, a novel nonsingular fast terminal slidingmode sur-
face is constructed. Besides, considering the output tracking
errors constraints, the barrier Lyapunov function is developed
to constrain the sliding mode variables, further satisfy output
tracking errors constraints. The BWB aircraft high-precision
attitude tracking control scheme is shown in Fig. 2.

FIGURE 2. BWB aircraft control scheme.

In the following part, the FxTDO based NFTSMC will be
firstly introduced followed by the barrier Lyapunov function
based NFTSMC.

A. FxTDO DESIGN
Considering the system dynamic (13), a fixed-time non-
recursive disturbance observer (FxTDO) is proposed to esti-
mate d1 and d2 simultaneously, which is inspired by [16].
Moreover it can be divided into two sub-observers. Consid-
ering practical properties of the BWB aircraft disturbances,
following assumption is presented.
Assumption 1 [31]: Considering the engineering prac-

tice of the BWB aircraft disturbances, there exist a small
enough constant ρ and the fixed-time non-recursive distur-
bance observer orders l1 = 3, l2 = 2 such that

∥∥∥d (l1−1)1

∥∥∥ ≤ ρ,∥∥∥d (l2−1)2

∥∥∥ ≤ ρ.
Then a FxTDO is adopted to estimate d1 and ḋ1, the con-

crete form is shown as follows:

˙̂ε = F(x1, x2)− ẋd + v0
v0 = −k10

∣∣ε̂ − ε
∣∣α1 ◦ sgn(ε̂ − ε)

− κ10
∣∣ε̂ − ε

∣∣β1 ◦ sgn(ε̂ − ε)+ ε1

ε̇1 = v1
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v1 = −k11
∣∣ε̂ − ε

∣∣α2 ◦ sgn(ε̂ − ε)

− κ11
∣∣ε̂ − ε

∣∣β2 ◦ sgn(ε̂ − ε)+ ε2

ε̇2 = −k12
∣∣ε̂ − ε

∣∣α3 ◦ sgn(ε̂ − ε)

− κ12
∣∣ε̂ − ε

∣∣β3 ◦ sgn(ε̂ − ε)

d̂1 = ε1,
ˆ̇d1 = ε2 (14)

Here, αi = iα − (i − 1), βi = iβ − (i − 1), i = 1, 2, . . . , l
where α ∈ (1− ε, 1) and β ∈ (1, 1+ ε) with 0 < ε <

0.25 being a sufficiently small number. The observer gains
k1i and κ1i are assigned such that matrices

A1 =

−k10 1 0
−k11 0 1
−k12 0 0



A2 =

−κ10 1 0
−κ11 0 1
−κ12 0 0


are Hurwitz. Operator ◦ represents Hadamard multiplication,
ε1, ε2 are the estimates of d1, ḋ1, respectively.
Theorem 1: Considering the observer (14), d1, ḋ1 can be

estimated precisely in a fixed time

Tf ≤
λ
ρ
max (P1)
rµ

+
1

r0ηγ η
(15)

where µ = 1−α, η = β−1, r = λmin (Q1)
/
λmax (P1), r0 =

λmin (Q2)
/
λmax (P2), the positive number γ ≤ λmin (P2),

the symmetric positive definite matrices Q1, Q2, P1, P2 sat-
isfy P1A1 + AT1 P1 = −Q1, P2A2 + AT2 P2 = −Q2.

Proof:Combining (14) and (13), the observer estimation
error system takes the form

ė01 = −k10
∣∣∣e01∣∣∣α1 ◦ sgn(e01)− κ10 ∣∣∣e01∣∣∣β1 ◦ sgn(e01)+ e11

ė11 = −k11
∣∣∣e01∣∣∣α2 ◦ sgn(e01)− κ11 ∣∣∣e01∣∣∣β2 ◦ sgn(e01)+ e21

ė21 = −k12
∣∣∣e01∣∣∣α3 ◦ sgn(e01)− κ12 ∣∣∣e01∣∣∣β3 ◦ sgn(e01)+ d̈1

(16)

where e01 = ε− ε̂, e11 = d1− ε1, e21 = ḋ1− ε2. Considering
the condition in Assumption 1, it follows from [16] that
observer error (16) will be fixed-time convergent, and there
exists a time constant Tf such that ei1(t) = 0(i = 0, 1, 2) for
t > Tf .
The similar form will be adopted to estimate d2:
˙̂x2 = H(x1, x2)+ G(x1, x2)u+ v

v=−k20
∣∣ε̂−ε

∣∣α1◦sgn(ε̂−ε)−κ20
∣∣ε̂ − ε

∣∣β1◦ sgn(ε̂−ε)+d̂2
˙̂d2= −k21

∣∣ε̂−ε
∣∣α2◦ sgn(ε̂− ε)−κ21

∣∣ε̂ − ε
∣∣β2◦ sgn(ε̂−ε)

(17)

where all parameters are designed in the same way. Let e02 =
x2−x̂2, e12 = d2−d̂2, where d̂2 is the estimates of d2, then the
observer error system will be also fixed-time convergent, and
there exists a time constant Tf such that ei2(t) = 0(i = 0, 1, 2)
for t > Tf .

B. FxTDO BASED NFTSMC DESIGN
A classical nonlinear dynamic sliding variables will be
designed as [6]:

s = ε +31sign01ε +32sign02 ε̇0 (18)

where ε̇0 = F(x1, x2) − ẋd + d̂1 , 31 > 0, 32 > 0, 1 <
02 < 01 < 2, sign01ε = |ε|01 ◦ sgn(ε). The derivative
of s is

ṡ = ε̇ +3101 |ε|
01−1 ◦ ε̇ +3202 |ε̇0|

02−1 ◦ ε̈0 (19)

where

ε̈0 =
∂F(x1, x2)
∂x1

ẋ1 +
∂F(x1, x2)
∂x2

ẋ2 − ẍd +
˙̂d1

=
∂F(x1, x2)
∂x1

(F(x1, x2)+ d1)− ẍd +
˙̂d1

+
∂F(x1, x2)
∂x2

(H(x1, x2)+ G(x1, x2)u+ d2) (20)

The following control law will be adopted:

U =
(
∂F(x1, x2)
∂x2

G(x1, x2)
)† [
−
∂F(x1, x2)
∂x2

H(x1, x2)

−
∂F(x1, x2)
∂x2

d̂2 −
∂F(x1, x2)
∂x1

(
F(x1, x2)+ d̂1

)
−
ˆ̇d1+ẍd−

1
3202

|ε̇0|
2−02 ◦sgnε̇0◦

(
I1+3101|ε|

01−1
)

−M1 |s|α ◦ sgn(s)−M2s
]

(21)

where 0 < α < 1, I1 = [1, 1, 1]T , M1 > 0, M2 > 0. It’s
obvious that ∂F(x1,x2)

∂x2
is a nonsingular matrix andG(x1, x2) is

a full row rank matrix, so X = ∂F(x1,x2)
∂x2

G(x1, x2) is a full row
rank matrix and its pseudo inverse matrix can be expressed as
X†
= XT (XXT )−1.
Substituting the control law (20) into (18) and (19), the fol-

lowing equations will be obtained:

ṡ = 3202 |ε̇0|
02−1 ◦

[
e21 +

∂F(x1, x2)
∂x2

e12

+
∂F(x1, x2)
∂x1

e11 −M1 |s|α ◦ sgn(s)−M2s
]

+

(
I1 +3101 |ε|

01−1
)
◦ e11 (22)

ε̈0 = e21 +
∂F(x1, x2)
∂x2

e12 +
∂F(x1, x2)
∂x1

e11

−M1 |s|α ◦ sgn(s)−M2s

−
1

3202
|ε̇0|

2−02 ◦ sgnε̇0 ◦
(
I1 +3101 |ε|

01−1
)
(23)

Theorem 2: Considering system (13) with mismatched
disturbance, the control law (21) with FxTDO is adopted,
then Lyapunov function V1 =

(
1
/
2
) (
sT s+ εT ε + ε̇T0 ε̇0

)
will be finite-time bounded.

Proof: the proof will be given in Appendix.
Since V1 is finite-time bounded, then s, ε, ε̇0 won’t escape

to infinity before observer errors converge to zero. Once the
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observer errors reach zero, (22) will be transformed into the
following formulation

ṡ = 3202 |ε̇0|
02−1 ◦

[
−M1 |s|α ◦ sgn(s)−M2s

]
(24)

Define another Lyapunov function V2 = 0.5sT s, then

V̇2 = sT
(
3202 |ε̇0|

02−1 ◦
[
−M1 |s|α ◦ sgn(s)−M2s

])
≤ −ρ1 (ε̇0)V

(1+α)/2
2 − ρ2 (ε̇0)V2 (25)

where

ρ1 (ε̇0) = 2(1+α)/23202M1min
i
|ε̇0i|

02−1 ,

ρ2 (ε̇0) = 23202M2min
i
|ε̇0i|

02−1 .

When ε̇0 = 0, Equ. (22) becomes:

ε̈0 = −M1 |s|α ◦ sgn(s)−M2s (26)

It’s evident that ε̇0 = 0 isn’t an attractor, so the system
will keep moving until reaching the sliding mode surface.
Therefore, it can be concluded that system (24) is finite- time
stable.

After reaching the sliding mode surface, the partial
dynamic system will be ε + 31sign01ε + 32sign02 ε̇ = 0,
which will converge to the origin with fast convergence.

However, FxTDO based terminal sliding mode control
method cannot guarantee the output tracking error constraints
before the disturbance observer tracking errors converge to
a small prescribed range. Consequently, barrier Lyapunov
function based terminal sliding mode control will be adopted.

C. BARRIER LYAPUNOV BASED NFTSMC DESIGN
Considering the output tracking error constraints, our main
approach is to constrain the sliding mode variables, the fol-
lowing barrier Lyapunov function is adopted

V =
1
2

3∑
i=1

log

(
k2i

k2i − s
2
i

)
(27)

where ki = ci1e−ci2|εi| + ci3(i = 1, 2, 3) with ci1, ci2 and
ci3 being nonnegative constants, s = [s1, s2, s3]. The sliding
variables adopt the same form of (17).

The derivative of V is given

V̇ =
1
2

3∑
i=1

k2i − s
2
i

k2i

2kik̇i
(
k2i − s

2
i

)
− k2i

(
2kik̇i − 2siṡi

)(
k2i − s

2
i

)2
=

3∑
i=1

si
(
ṡi −

(
k̇i
/
ki
)
si
)(

k2i − s
2
i

)
= J (ṡ− Ks) (28)

where J =
[

s1
k21−s

2
1
, s2
k22−s

2
2
,

s3
k23−s

2
3

]
, K = diag

(
k̇1
k1
, k̇2k2

,
k̇3
k3

)
.

To simplify the control design and guarantee finite-time
convergence, the control laws are divided into two categories.

The first category will guarantee the sliding variables con-
straints before disturbance observer tracking errors converge
to a small prescribed range, the second category will guaran-
tee the finite-time convergence of output tracking errors with
sliding variables constraints.

1) While |si| >
∣∣ki − ci1/2∣∣ (i = 1, 2, 3) and t ≤ Tf , then

the following control law will be adopted:

u =
(
∂F(x1, x2)
∂x2

G(x1, x2)
)† [
−
∂F(x1, x2)
∂x2

H(x1, x2)

−
∂F(x1, x2)
∂x2

d̂2 −
∂F(x1, x2)
∂x1

(
F(x1, x2)+ d̂1

)
−
ˆ̇d1+ẍd−

1
3202

|ε̇0|
2−02 ◦sgnε̇0◦

(
I1+3101 |ε|

01−1
)

−M1Kα |s|α ◦ sgn(s)−M2Kγ s−
1

3202
|ε̇0|

2−02 ◦ Kβs
]

(29)

where Kα=diag
(
(k1−s1)

1−α
2 , (k2−s2)

1−α
2 , (k3 − s3)

1−α
2

)
,

Kβ=diag (c12, c22, c32), Kγ = diag
(

1
k21−s

2
1
, 1
k22−s

2
2
, 1
k23−s

2
3

)
.

Then substituting the control law (29) into Equ. (19):

ṡ = 3202 |ε̇0|
02−1 ◦

[
e21 +

∂F(x1, x2)
∂x2

e12 +
∂F(x1, x2)
∂x1

e11

−M1Kα |s|α ◦ sgn(s)−M2Kγ s
]
− |ε̇0| ◦ Kβs

+

(
I1 +3101 |ε|

01−1
)
◦ e11 (30)

When si approaches ki, Kγ i becomes infinity, then |si| will
decrease sharply, so never will si exceed ki in this case.

2) While |si| ≤
∣∣ki − ci1/2∣∣ (i = 1, 2, 3) or t > Tf , then

the following control law will be adopted:

u =
(
∂F(x1, x2)
∂x2

G(x1, x2)
)† [
−
∂F(x1, x2)
∂x2

H(x1, x2)

−
∂F(x1, x2)
∂x2

d̂2 −
∂F(x1, x2)
∂x1

(
F(x1, x2)+ d̂1

)
−
ˆ̇d21+ẍd−

1
3202

|ε̇0|
2−02 ◦sgnε̇0◦

(
I1+3101 |ε|

01−1
)

−M1Kα |s|α ◦ sgn(s)−M2s−
1

3202
|ε̇0|

2−02 ◦ Kβs
]

(31)

where Kα , Kβ have the same forms of (29).
Then substituting the control law (31) into the derivative of

sliding variables s (19):

ṡ = 3202 |ε̇0|
02−1 ◦

[
e21 +

∂F(x1, x2)
∂x2

e12 +
∂F(x1, x2)
∂x1

e11

−M1Kα |s|α ◦ sgn(s)−M2s
]
− |ε̇0| ◦ Kβs

+

(
I1 +3101 |ε|

01−1
)
◦ e11 (32)
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Substituting (32) into (28) results in

V̇ = J (ṡ− Ks)

=J
(
3202 |ε̇0|

02−1◦

[
e21+

∂F(x1, x2)
∂x2

e12+
∂F(x1, x2)
∂x1

e11

])
− J

(
3202 |ε̇0|

02−1 ◦
[
M1Kα |s|α ◦ sgn(s)+M2s

])
− J |ε̇0| ◦ Kβs+ J

((
I1 +3101 |ε|

01−1
)
◦ e11 − Ks

)
(33)

Obviously the first category control law will guarantee the
sliding variables constraints while t ≤ Tf , then ε and ε̇0
won’t escape to infinity according to the following Theo-
rem 3. Once the observer errors reach zero, then

V̇ = J (ṡ− Ks)

= −J
(
3202 |ε̇0|

02−1 ◦
[
M1Kα |s|α ◦ sgn(s)+M2s

])
− J |ε̇0| ◦ Kβs− JKs (34)

Besides, the following inequalities can be set

K ≥ diag (−c12 |ε̇1| ,−c22 |ε̇2| ,−c32 |ε̇3|) (35)

‖‖ε̇‖ − ‖ε̇0‖‖ ≤

∥∥∥∥∥∥ε̇0 + e11∥∥∥− ‖ε̇0‖∥∥∥ ≤ ∥∥∥e11∥∥∥ (36)

Then

V̇ ≤ −J
(
3202 |ε̇0|

02−1 ◦
[
M1Kα |s|α ◦ sgn(s)+M2s

])
(37)

Since log(x) ≤ x − 1 for x ≥ 1, then

V̇ ≤ −3202

(
min
i
|ε̇0i|

02−1
)(

M1V (α+1)/2 +M2V
)
(38)

In the same way, ε̇0 = 0 isn’t an attractor, so the system
will keep moving until reaching the sliding mode surface.
Therefore, it can be concluded that system (38) is finite- time
stable.
Before disturbance observer tracking errors converge to

a small prescribed range, it’s hard to predict the trajectory
of sliding variables, so it’s meaningful to constrain sliding
variables in the initial period in order to constrain the outputs
tracking errors.
Theorem 3: When the sliding variables satisfy the con-

straints
∣∣εi +31sign01εi +32sign02 ε̇0i

∣∣ ≤ ci1e−ci2|εi| + ci3,
for i = 1, 2, 3, then outputs will never exceed the region
[min {εic, εid } ,max {εia, εib}].

Proof: The proof is divided into four parts:
1) if εi > 0 and e11i > 0, then:

εi +31sign01εi +32sign02
(
ε̇i − e11i

)
≤ ci1e−ci2|εi| + ci3

(39)

Let εia satisfies εia+31ε
01
ia = ci1e−ci2|εia|+ci3+32e11i

02 .

Define f (εia) = εia +31ε
01
ia and g (εia) = ci1e−ci2|εia| + ci3

+32e11i02, since f (εia) is monotonous increasing func-
tion and g (εia) is monotonous decreasing function while
εia > 0, besides f (εia) is odd and coercive function, so equa-
tion f (εia) = g (εia) has a unique solution. If εi > εia, then
ε̇i < 0, so the εi will decrease. Considering the continuity and
initial condition of εi, εi will never exceed the εia.
2) if εi > 0 and e11i < 0, then:

εi +31sign01εi +32sign02
(
ε̇i − e11i

)
≤ ci1e−ci2|εi| + ci3

(40)

Let εib satisfies εib+31ε
01
ib = ci1e−ci2|εib|+ci3+32e11i

02 .
Similarly, the existence of εib can be verified. If εi > εib, then
ε̇i < 0, so the εi will decrease. Considering the continuity and
initial condition of εi, εi will never exceed the εib.
3) if εi < 0 and e11i > 0, then:

εi+31sign01εi+32sign02
(
ε̇i − e11i

)
≥−ci1e−ci2|εi| − ci3

(41)

Let εic satisfies εic + 31ε
01
ic = −ci1e

−ci2|εic| − ci3 +
32e11i

02 . Similarly, the existence of εic can be verified. If εi <
εic, then ε̇i > 0, so the εi will increase. Considering the
continuity and initial condition of εi, εi will never exceed
the εic.
4) if εi < 0 and e11i < 0, then:

εi+31sign01εi+32sign02
(
ε̇i−e11i

)
≥−ci1e−ci2|εi|− ci3

(42)

Let εid satisfies εid + 31ε
01
id = −ci1e

−ci2|εid | − ci3 +
32e11i

02 . Similarly, the existence of εid can be verified. If
εi < εid , then ε̇i > 0, so the εi will increase. Considering
the continuity and initial condition of εi, εi will never exceed
the εid .
In conclusion, the εi will never exceed the region

[min {εic, εid } ,max {εia, εib}]. Besides, the parameters of this
region can be solved by some numerical analysis methods
such as Newton method and dichotomy.

V. SIMULATION RESULTS
In order to illustrate the effectiveness of the FxTDO based
NFTSMC and BLF based NFTSMC design for the blended-
wing-body aircraft attitude tracking, two simulation cases and
comparison results will be presented in this section.
The BWB aircraft relevant parameters are chosen as

J =

 1.017 0 0
0 0.738 0
0 0 1.692

 .
Its aerodynamic forces and torques coefficients will be

given in the forms of charts. The initial states value
are given by (α0, β0, µ0) = (0, 0, 0), (p0, q0, r0) =
(0, 0, 0), and the commanded attitude angle is set as
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FIGURE 3. BWB aircraft attitude tracking response.

FIGURE 4. BWB aircraft actuators.

(αc, βc, µc) = (8◦, 0◦, 4◦), then it will pass the command
filter 64

/(
s2 + 12.8s+ 64

)
. In this paper, the disturbances

are mainly resulted from dynamic model errors.

A. CASE I
In this case, the FxTDO based NFTSMC are designed
for BWB aircraft attitude tracking with mismatched distur-
bances, moreover finite-time disturbance observer (FTDO)
based NFTSMC and FxTDO based command filtered
back-stepping (CFBS) are designed for comparison. The
FxTDO and NFTSMC parameters are selected according
to simulation tuning to achieve the prescribed performance,
which are shown in the Table 1:

Besides, in the simulation the sign function is substi-
tuted by the saturation function for chattering attenuation.
The attitude tracking process and control inputs are shown
in Fig. 3 and Fig. 4, the FxTDO based NFTSMC and FTDO
based NFTSMC’s tracking performances such as overshoot,
response time and tracking accuracy are better than FxTDO
based CFBS’s, since NFTSMCmethod has strong robustness
and quick response. Moreover, the FxTDO based NFTSMC’s
actuators inputs are smoother than FTDO based NFTSMC’s,
the latter method’s actuators chattering problem is severe.
This simulation adopts non-recursive FxTDO and recursive
FTDO, since non-recursive form doesn’t need the sign func-
tion of the high order derivative, which makes it smoother..
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FIGURE 5. BWB aircraft attitude tracking response.

FIGURE 6. BWB aircraft attitude tracking errors.

FIGURE 7. Sliding mode surfaces.

In conclusion, the FxTDO based NFTSMC performs better
than others.

B. CASE II
In this case, barrier Lyapunov function (BLF) based
NFTSMC is designed for BWB aircraft attitude tracking with
mismatched disturbances and output constraints. The output
tracking errors constraints will be bounded by [−0.5◦, 0.5◦].
The parameters for FxTDO and NFTSMC are chosen to be
the same as those in case I, the parameters of sliding variable
constraints are chosen as (c11, c21, c31) = (0.05, 0.05, 0.05),

TABLE 1. Control scheme parameters.

(c12, c22, c32) = (0, 0, 0), (c13, c23, c33) = (0, 0, 0) in
this case for convenience. The attitude tracking process and
tracking errors are shown in Fig. 5 and Fig. 6, which indicates
that attitude tracking errors satisfy the output constraints.
In Fig. 7, the sliding variables are constrained in the given
region.

VI. CONCLUSION
This paper presents a barrier Lyapunov function based non-
singular fast terminal sliding mode control with fixed-time
non-recursive disturbance observer for the blended-wing-
body (BWB) aircraft high-precision attitude tracking in the
presence of mismatched disturbances and output constraints.
The fixed-time non-recursive disturbance observer can atten-
uate matched and mismatched disturbance, and the barrier
Lyapunov function can be developed to constrain the slid-
ing variables to achieve high-precision attitude tracking. The
effectiveness of the proposed control scheme have been
verified in the numerical simulation. In the future, how to
constrain the sliding mode surfaces in the presence of dis-
turbances will be another meaningful idea.

APPENDIX
The Lyapunov function is chosen as:

v1 =
1
2
sT s+

1
2
εT ε +

1
2
ε̇T0 ε̇0 (43)
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The derivative of Lyapunov function is:

V̇1 = sT ṡ+ εT ε̇ + ε̇T0 ε̈0

= sT
[
3202 |ε̇0|

02−1 ◦

[
e21 +

∂F(x1, x2)
∂x2

e12

+
∂F(x1, x2)
∂x1

e11 −M1 |s|α ◦ sgn(s)−M2s
]

+

(
I1 +3101 |ε|

01−1
)
◦ e11

]
+ εT [F(x1, x2)

− ẋd + d1 ]+ ε̇T0

[
e21 +

∂F(x1, x2)
∂x2

e12+
∂F(x1, x2)
∂x1

e11

−M1 |s|α ◦ sgn(s)−M2s

−
1

3202
|ε̇0|

2−02 ◦ sgnε̇0 ◦
(
I1 +3101 |ε|

01−1
)]
(44)

It’s easy to verify the following inequalities:

sT
[
3202 |ε̇0|

02−1 ◦M1 |s|α ◦ sgn(s)
]
≥ 0

sT
[
3202 |ε̇0|

02−1 ◦M2s
]
≥ 0

ε̇T0

[
1

3202
|ε̇0|

2−02 ◦ sgnε̇0 ◦
(
I1 +3101 |ε|

01−1
)]
≥ 0

(45)

Then Equ. (44) can be transformed as below:

V̇1 = sT ṡ+ εT ε̇ + ε̇T0 ε̈0

≤ sT
[
3202 |ε̇0|

02−1 ◦

[
e21 +

∂F(x1, x2)
∂x2

e12

+
∂F(x1, x2)
∂x1

e11

]
+

(
I1 +3101 |ε|

01−1
)
◦ e11

]
+ εT

[
ε̇0 + e11

]
+ ε̇T0

[
e21 +

∂F(x1, x2)
∂x2

e12

+
∂F(x1, x2)
∂x1

e11 −M1 |s|α ◦ sgn(s)−M2s
]

(46)

It’s convenient to prove that ‖x ◦ y‖ ≤ ‖x‖ ‖y‖,
∣∣xT y∣∣ ≤

‖x‖ ‖y‖, ‖Ax‖ ≤ ‖A‖ ‖x‖, then

V̇1 = sT ṡ+ εT ε̇ + ε̇T0 ε̈0

≤ 3202 ‖s‖
∥∥∥∥|ε̇0|02−1 ◦ [e21 + ∂F(x1, x2)∂x2

e12

+
∂F(x1, x2)
∂x1

e11

]∥∥∥∥+ ‖s‖ ∥∥∥(I1 +3101 |ε|
01−1

)
◦ e11

∥∥∥
+ ‖ε‖

∥∥∥ε̇0 + e11∥∥∥+ ‖ε̇0‖ ∥∥∥∥e21 + ∂F(x1, x2)∂x2
e12

+
∂F(x1, x2)
∂x1

e11

∥∥∥∥+ ‖ε̇0‖ ∥∥M1 |s|α ◦ sgn(s)+M2s
∥∥

≤ 3202 ‖s‖
∥∥∥|ε̇0|02−1∥∥∥ ∥∥∥e21

+
∂F(x1, x2)
∂x2

e12 +
∂F(x1, x2)
∂x1

e11

∥∥∥∥
+ ‖s‖

∥∥∥I1 +3101 |ε|
01−1

∥∥∥ ∥∥∥e11∥∥∥

+ ‖ε‖
(
‖ε̇0‖ +

∥∥∥e11∥∥∥)+ ‖ε̇0‖ ∥∥∥∥e21 + ∂F(x1, x2)∂x2
e12

+
∂F(x1, x2)
∂x1

e11

∥∥∥∥+‖ε̇0‖ (∥∥M1 |s|α ◦ sgn(s)
∥∥+‖M2s‖

)
(47)

Moreover, considering that |a|l ≤ 1 + |a| while 0 < l < 1,
the following inequalities can be obtained:∥∥∥|ε̇0|02−1∥∥∥≤‖I1+|ε̇0|‖≤‖I1‖+‖ε̇0‖=√3+‖ε̇0‖

(48)∥∥∥I1 +3101|ε|
01−1

∥∥∥ ≤ ‖I1 +3101 (I1 + |ε|)‖

=‖(1+3101) I1+3101|ε|‖≤
√
3 (1+3101)+3101 ‖ε‖

(49)∥∥M1 |s|α ◦ sgn(s)
∥∥ ≤ M1

∥∥|s|α∥∥ ‖sgn(s)‖
≤
√
3M1 ‖I1 + |s|‖ ≤

√
3M1

(√
3+ ‖s‖

)
(50)

Then Equ. 47 is further transformed as follows:

V̇1 = sT ṡ+ εT ε̇ + ε̇T0 ε̈0

≤ 3202 ‖s‖
(√

3+ ‖ε̇0‖
) ∥∥∥e21

+
∂F(x1, x2)
∂x2

e12 +
∂F(x1, x2)
∂x1

e11

∥∥∥∥
+ ‖s‖

(√
3 (1+3101)+3101 ‖ε‖

) ∥∥∥e11∥∥∥
+ ‖ε‖

(
‖ε̇0‖ +

∥∥∥e11∥∥∥)+ ‖ε̇0‖ ∥∥∥∥e21 + ∂F(x1, x2)∂x2
e12

+
∂F(x1, x2)
∂x1

e11

∥∥∥∥+‖ε̇0‖ (√3M1

(√
3+‖s‖

)
+‖M2s‖

)
≤

(
√
33202 ‖s‖ +3202

(
‖s‖2 + ‖ε̇0‖2

2

))
∥∥∥∥e21 + ∂F(x1, x2)∂x2

e12 +
∂F(x1, x2)
∂x1

e11

∥∥∥∥
+
√
3 (1+3101) ‖s‖

∥∥∥e11∥∥∥
+3101

(
‖ε̇0‖

2
+ ‖s‖2

2

)∥∥∥e11∥∥∥+
(
‖ε‖2 + ‖ε̇0‖

2

2

)

+‖ε‖
∥∥∥e11∥∥∥+‖ε̇0‖ ∥∥∥∥e21+ ∂F(x1, x2)∂x2

e12+
∂F(x1, x2)
∂x1

e11

∥∥∥∥
+ 3M1 ‖ε̇0‖+

√
3M1

(
‖ε̇0‖

2
+ ‖s‖2

2

)

+M2

(
‖ε̇0‖

2
+ ‖s‖2

2

)

≤

(
√
33202

(
1+ ‖s‖2

2

)
+3202

(
‖s‖2 + ‖ε̇0‖2

2

))
∥∥∥∥e21 + ∂F(x1, x2)∂x2

e12 +
∂F(x1, x2)
∂x1

e11

∥∥∥∥
+
√
3 (1+3101)

(
1+ ‖s‖2

2

)∥∥∥e11∥∥∥
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+3101

(
‖ε̇0‖

2
+ ‖s‖2

2

)∥∥∥e11∥∥∥+
(
‖ε‖2 + ‖ε̇0‖

2

2

)

+

(
1+ ‖ε‖2

2

)∥∥∥e11∥∥∥+
(
1+ ‖ε̇0‖2

2

)∥∥∥e21
+
∂F(x1, x2)
∂x2

e12 +
∂F(x1, x2)
∂x1

e11

∥∥∥∥
+ 3M1

(
1+ ‖ε̇0‖2

2

)
+
√
3M1

(
‖ε̇0‖

2
+ ‖s‖2

2

)

+M2

(
‖ε̇0‖

2
+ ‖s‖2

2

)
≤ KVV1 + KL (51)

where KV = max{k1, k2}, KL = max
t
{(1 +

√
33202)

∥∥∥e21 + ∂F(x1,x2)
∂x2

e12 +
∂F(x1,x2)
∂x1

e11
∥∥∥ + (1 +

√
3(1 +

3101))
∥∥e11∥∥+ 3M1},

k1 = max
t
{(
√
3+ 1)3202

∥∥∥e21 + ∂F(x1,x2)
∂x2

e12 +
∂F(x1,x2)
∂x1

e11
∥∥∥+

(3101 +
√
3(1+3101))

∥∥e11∥∥+√3M1 +M2},

k2max
t
{(1 + 3202)

∥∥∥∥e21 + ∂F(x1,x2)
∂x2

e12 +
∂F(x1,x2)
∂x1

e11

∥∥∥∥ +
3101

∥∥e11∥∥+ (3+
√
3)M1 +M2 + 1}.

It can be concluded that Lyapunov function V1 is finite-
time bounded.
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