
Received September 3, 2019, accepted November 20, 2019, date of publication December 2, 2019,
date of current version December 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957034

Object-Level Segmentation of Indoor Point Clouds
by the Convexity of Adjacent Object Regions
NAN LUO , QUAN WANG , QI WEI, AND CHUAN JING
School of Computer Science and Technology, Xidian University, Xi’an 710071, China

Corresponding author: Quan Wang (qwang@xidian.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61802294, Grant 61702400, and Grant
61972302, in part by the China Postdoctoral Science Foundation under Grant 2018M633472, in part by the Key Technology Research and
Development Program of Shaanxi under Grant 2019ZDLGY13-07, and in part by the Fundamental Research Funds for the Central
Universities under Grant XJS18034.

ABSTRACT The issue of achieving an appropriate segmentation for indoor point cloud scenes remains
difficult. Although available methods continue to improve the benchmark performance, more attentions need
to be paid to deal with the drawbacks of inaccurate or incomplete segments in division. To push the research
to the next level, this work proposes an learning-free algorithm for the segmentation of indoor point clouds
which consists of two stages. The first stage extracts edges of RGBD point clouds and applies them in
the voxel clustering process to avoid generating supervoxels which are situated across object boundaries.
After this pre-segmentation, a two-phase merging procedure is presented in the second part. By conducting
region growing on optimized supervoxels, a set of local regions is obtained. Then we propose to define
the convexity-concavity of adjacent regions based on the observations of object structures and merge
the convexly connected regions to achieve object-level segmentation. This algorithm is straightforward
to implement and requires no training data. Experimental results show that it produces supervoxels with
plausible boundaries and arrives at better object-level segmentation.

INDEX TERMS Object segmentation, supervoxels, indoor point clouds, convexity-concavity, merging of
adjacent regions.

I. INTRODUCTION
Applications based on 3D point cloud have pervaded in
various fields with the widespread use of 3D scanners and
rapid growth of open-source project on point cloud data. As a
crucial fundamental research topic in point cloud processing,
segmentation divides point cloud into a series of local regions
by investigating implicit information contained in the original
data, making that each segmented region corresponds to an
actual object or entity with specific function or semantic
meaning [1], [2]. The segmentation results can be widely
used in applications like object recognition [3], [4], scene
understanding [5], [6], and 3D reconstruction [7], [8], etc.

Despite decades of research, dividing scenes into objects
remains one of the most challenging topics in computer
vision community, and two main issues are still unsettled.
Firstly, due to the limitations of scanning devices, captured
point clouds inevitably contain noises or outliers, which
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impacts the segmentation accuracy since most methods oper-
ate directly on the original data. Besides, large data amount of
point cloud itself lowers the processing efficiency. Secondly,
available methods usually just employ normal, curvature, or
colour components of input data in segmentation, and this
insufficiency of features leads to under- or over-segmentation
of point clouds. Hence object segmentation with precise
boundaries cannot be guaranteed.

The quality and speed of segmentation are vitally impor-
tant to point cloud based studies, such as object recog-
nition, scene analysis & reconstruction, etc. If integrated
entities with smooth borders cannot be labeled correctly
from the host point clouds, the subsequent algorithms would
reconstruct incomplete rough object models, or cause failure
in object recognition and scene analysis. In view of this,
in this paper we investigate the structure property of indoor
objects and propose a convexity guided segmentation algo-
rithm for indoor point cloud which includes two stages: over-
segmenting and merging. The over-segmenting stage detects
and utilizes edges in point clouds to restrain the border of
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FIGURE 1. Framework of proposed algorithm. The input point cloud is firstly over-segmented into a series of sparse
supervoxels by edge-constrained clustering method. Then the region growing principle is applied on generated supervoxels
to obtain local facets of objects. After that, we propose the convexity definition of adjacent facets and employ
convexity-guided merging algorithm to achieve object-level segmentation.

clustered supervoxels [9], [10]. The second stage first pre-
segments a set of local parts in region-growing principle, and
then merges the adjacent parts with respect to their convexity-
concavity to achieve perfect segments for the objects in a
scene. The whole framework is illustrated in Fig.1.

Sec.2 summarizes the current research progress of point
cloud segmentation. The details of two stages of proposed
algorithm are described in Sec.3, with Sec.4 evaluates it
experimentally and Sec.5 draws a conclusion.

II. RELATED WORK
Over the last decade, point cloud segmentation has gained
sufficient research focus and achieved great improvements.
A number of segmentation methods have sprung up which
extend the traditional image segmentation techniques to
divide point clouds on the basis of local surface features
(i.e. coordinates, normals, or curvatures), e.g. region grow-
ing [11], clustering [12], model-fitting based method [13],
etc. These ways are simple in principle and easy to imple-
ment, however, the drawbacks in robustness often lead to
under- or over-segmentation in the final results. Graph-cut
method transforms the point cloud to graph structure and
then cut the graph via defining a minimum function, for
instance, advanced Min-cut [14] and Grab-cut [15]. Besides,
many researchers utilize probabilistic model, i.e. Markov
Model [16] or Conditional Random Field [17], to solve
the graph-cut problem for complicated point cloud scenes
at the expense of efficiency. To promote the effectiveness,
Stein et al. [18] firstly extract over-segmented supervoxels by
voxel clustering, and then perform object partitioning using
local convexity in region growing style. An octree-based
segmentation [2] partitions voxelized point cloud into a group
of incomplete regions and then add unassigned voxels to the
regions, which speeds up the segmentation significantly.

Machine learning based segmentation, a newly devel-
oped category, extracts and fuses low-level features of point
cloud, and then push them into the trained classifier for
segmentation, such as Support Vector Machine [19], Random
Forest [20], Deep Learning network [21], [22], etc. Among
them, the deep neural network represented by CNN and
RNN shows great potential in many fields because of its
powerful ability of model learning and feature expression.

In general, deep neural network requires regularized inputs,
whereas point clouds are often unorganized and large in data
volume, which brings challenges to these methods. Before
2017, most work operate on multi-view data [23] or volu-
metric point cloud [24]. Point-based approach draws great
attention in 2017. PointNet [25] is the first end-to-end deep
neural network operating directly on unordered point clouds.
It introduces max-pooling to deal with the ordering issue
of input points, and then merges the local and global fea-
tures for pointwise classification. Kd-network [26] employs
k − d tree to tackle the problem of unorganized structure
of point cloud. Later, PointNet++ [27], the layered version
of PointNet, is proposed to manipulate the point cloud by
layered learning to improve the segmentation. Deep learning
based approach [28], [29] achieves good result in point cloud
segmentation, however, new ideas are expected to promote
the efficiency due to the large volume and redundancy of
point cloud data.

Besides considering low-level data characteristics, many
approaches enhance the segmentation with the aid of object
structure or other semantic information, for instance, the local
appearance [30] or the relationship between objects [31].
Image assisted method is usually applied for labeling of
RGBD scenes [32], and similar interactive scene annotation
system [33] has also been developed. Except that, other infor-
mation, like density [34] or thermal of captured points [35],
are used as assistance for labeling. Point cloud segmentation
aims to realize object-level labeling or recognition, which is
the initial preliminary understanding of scenes.

Among all these approaches, region growing is widely
used in point cloud segmentation because of its simplicity.
To improve the robustness and accuracy of segmentation,
this work runs region growing on the basis of supervoxels
to eliminate the influence of data noises, and then intro-
duces the prior-knowledge of object structure and performs
further merging on pre-segmented regions by the convexity-
concavity of adjacent regions to realize accurate object-level
segmentation.

III. SEGMENTATION ALGORITHM
Proposed work adopts a two-stage framework ‘‘over-
segmenting and merging’’ for object segmentation of indoor
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FIGURE 2. Pipeline of boundary constrained supervoxel over-segmentation, consisting of two stages: boundary extraction (upper
dotted box) and supervoxel generation (lower dotted box). For RGBD point cloud, ’Canny’ method extracts and prunes the object
boundaries from the gradient of point cloud normal. For unorganized point cloud, AGPN analyzes the geometric properties of each
point’s neighborhood and determines the edges by the angular gap. The extracted boundaries are then utilized in the seeding and
clustering steps to constrain the supervoxel generation.

point clouds. The first stage detects edges in a point cloud
and employs the edges to constrain the supervoxel clustering
process so that the generated supervoxels do not step over
the object boundaries. The original point cloud is then con-
cisely represented by the sparse supervoxels, which weakens
the influence of data noises and simplifies the segmenta-
tion. After that, the second stage merges the over-segmented
patches in region growing style with respect to the simi-
larity between adjacent supervoxels, and then defines the
convexity-concavity between merged regions to conduct fur-
ther fusion for object-level segmentation.

A. EDGE RESTRAINED SUPERVOXEL
OVER-SEGMENTATION
Papon et al. [9] proposed the voxel cloud connectivity seg-
mentation (VCCS) which voxelizes input points with the
octree structure and then clusters the voxels into a group of
irregular voxel sets, known as supervoxels. Voxelization can
effectively reduce the computation time and the inference of
noises. However, the supervoxels grown out of this approach
often step over the boundaries of objects, which disaccords
with the connotation of supervoxel. Proposed procedure
solves this problem by extracting the object boundaries reside
in the point cloud and applying them in supervoxel seeding
and clustering processes, making the generated supervoxels
strictly attached to object borders. The pipeline consisting of
two main parts is shown in Fig.2.

1) BOUNDARY EXTRACTION
Boundaries correspond to the parts with significant variations
of surface normals in point cloud, mainly lying in the inter-
sections of different objects or adjacent facets of one object.

RGBD point cloud has the similar organized structure as
image matrix, hence the variant of ‘Canny’ edge detecting
algorithm based on depth image [36] is employed to deter-
mine the boundaries of entities. Different from detecting
edges of gray images, ‘Canny’ boundary detection takes the
normals of organized point cloud as input and chooses the

FIGURE 3. Illustration of boundary extraction of RGBD point cloud.
(a)-(b) the normal components of point cloud in x and y directions.
(c) the gradient of point cloud. (d) extracted boundires.

areas with dramatic normal changes as boundaries. This algo-
rithm extracts the components of normals in x and y direc-
tions, Nx and Ny (as Fig.3(a) and Fig.3(b) show), which are
later smoothed with Gaussian filter to eliminate the noises.
Then it computes the corresponding first-order gradients to
get the gradient of point cloud normals G (Fig.3(c)) for
detecting the high response areas. At last, the non-maximum
depressing process is applied on G to determine the final
object boundaries (Fig.3(d)).

For unorganized point clouds, an AGPN (Analysis of Geo-
metric Properties of Neighborhoods, [37]) procedure could
be followed to detect the 3D edges by analyzing geometric
properties of each point’s neighborhood. For each unlabeled
point po, AGPN firstly searches the neighboring point set P
based on the Euclidean distance and fits a local plane on set
P by RANSAC algorithm. Then P is divided into two parts,
inliers and outliers, by the fitted plane, and point po is labeled
as edge or non-edge according to the angular gap between
itself and the inlier points. If po is an interior point (Fig.4(a)
and (b)), the distribution of the angles between vectors−−→popi is
consecutive, and there will be no substantial angular gap, then
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FIGURE 4. Distribution of the neighbors of an unlabeled point on a
surface. (a)-(b) the neighborhood of an interior point, (c)-(d) the
neighborhood of an edge point. po the current point, pi the neighboring
point, Gθ the angular gap. Inliers and outliers are respectively filled in red
and blue.

po is labeled as non-edge. If po is an edge point, there will be a
substantial angular gapGθ (Fig.4(c) and (d)) between vectors
−−→popi. Otherwise, point po is defined as noise or isolated point.
After all the points are labeled, the boundaries are extracted.

2) SUPERVOXEL GENERATION
Supervoxels are the sparse homogenous representation of
a point cloud. It brings great convenience to point cloud
segmentation by expressing dense points with sparse local
patches. The supervoxel generating procedure is stated as
follows.

1) Voxelization. Partition point cloud space with prede-
fined voxel resolution Rvoxel and create voxel cloud
with the centroid of each voxel. Then establish the
adjacency graph considering 26-neighbours in voxel
space. Voxel is considered as the 3D version of image
pixel, and the parameter Rvoxel specifies the resolution
(i.e. voxel size) in which the cloud is voxelized. Vox-
elization is considered as the gridding of the original
point cloud which can filter the data noise in the mean-
time. Large Rvoxel means sparse voxels with less local
features of point cloud, and too small Rvoxel makes the
voxelization lack of robustness to data noise. In prac-
tice, Rvoxel is mainly decided by the density of point
cloud, i.e. large for sparse point clouds and small for
dense ones. By quantizing the continuous point cloud
space to an ordered discrete voxel cloud space, we can
establish 3D neighboring relations between voxels and
then construct supervoxels.

2) Supervoxel seeding. Define the distance between
supervoxels with a resolution Rpatch, which is larger
than Rvoxel and used to control the size of generated
supervoxels. Usually, Rpatch is preferred not to oversize
the smallest object in the scene to avoid possible under-
segmentation. Then divide the voxel cloud space by
Rpatch and extract the closest voxel to the centroid

of each occupied cell as the candidate seed, followed
by a pruning process to determine the qualified seeds
to initialize supervoxels. There are two principles for
pruning. Firstly, isolate voxels should not be selected as
seeds. Secondly, edge voxel or the voxel that has edge
neighbors cannot be chosen as seeds, since it can easily
lead to the circumstance that supervoxels stepping over
the object borders.

3) Similarity measuring. Knowing that the visual color
information does not always relate to object bound-
aries, in this work we only consider the spatial distance
and geometric feature of voxels for similarity measur-
ing. As Eq.(1) defines, Ds denotes the spatial distance
between two voxels, which is normalized in the formula
by Rpatch, the controlling factor of supervoxel size. Dn
is the sine value of two voxel normals. λs and λn are the
weighting factors of two parts. For indoor point clouds,
λs is empirically set to 0.2.

D =

√√√√λs
Ds2

3R2patch
+ λnDn2, λs + λn = 1 (1)

4) Voxel clustering. The supervoxel generating procedure
is similar to that of VCCS algorithm [9]: beginning at
each seed voxel, we flow outward to adjacent voxels
and measure the similarity distance from each neigh-
boring voxel to the supervoxel center by Eq.(1). If the
distance is the smallest this voxel has seen, its label is
set, and we add its neighbors which are not edge voxels
to the search queue for this supervoxel. Then proceed
to the next supervoxel, so that each supervoxel is con-
sidered at the same level. This process is iteratively
operated until all voxels are checked.

By combining extracted boundary information with the
voxel clustering process, the supervoxels could stop grow-
ing at the edges of point cloud, avoiding that the gener-
ated patches stepping over the object boundaries. Fig.5 gives
examples of generated supervoxels on four point clouds
from Object Segmentation Database (OSD-v0.2 [38]) with
local details enlarged. In this experiment, Rvoxel and Rpatch
are respectively set to 0.007m and 0.06m. Compared with
VCCS [9] (third row in Fig.5), proposed supervoxel gener-
ating procedure (bottom row in Fig.5) obtains supervoxels
with more plausible borders which are consistent with object
boundaries (indicated by yellow dashed lines). On the price
of 18% more computations on boundary detecting (Fig.6(a)),
it achieves comparable number of patches (Fig.6(b)) to
provide better pre-segmentation for subsequent region
fusion.

B. CONVEXITY GUIDED MERGING OF ADJACENT
REGIONS
Point cloud segmentation aims at dividing a point cloud
scene into a group of regions with legible boundaries, and
each region can correspond to an actual object in the scene.
Above edge-assisted over-segmentation method deals with
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FIGURE 5. Comparisons of generated supervoxels on four point clouds. From top to bottom: original scene, extracted
edges, VCCS supervoxels, supervoxels from proposed algorithm. The local details are marked and enlarged, with yellow
dashed lines indicate object boundaries. Compared with VCCS (third row), proposed procedure (bottom row) obtains
supervoxels with more plausible borders which are consistent with object boundaries. Parameters: Rvoxel = 0.007m,
Rpatch = 0.06m.

FIGURE 6. Comparisons of running time and generated supervoxel number on the four point clouds.
(a)running time, (b)the number of supervoxels. Proposed supervoxel generating procedure consumes 18%
extra computations on boundary detecting comparing to VCCS, and achieves comparable number of
patches for subsequent region fusion.

the drawback of boundary crossing in local patches, on the
basis of which the convexity-guided merging algorithm is
presented in this section. The algorithmfirst carries out region

growing on over-segmented supervoxels to gain a few can-
didate segments, each of which usually stands for one facet
of an entity. Then defines the convexity-concavity between
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FIGURE 7. The pipeline of convexity-guided merging of adjacent regions.
The first phase grows local facets from supervoxels, then the second
phase merges them by convexity of adjacent facets to achieve
object-level segmentation.

facets and merges the convexly adjoined ones to achieve
object segmentation, as Fig.7 depicts.

1) REGION GROWING ON SUPERVOXELS
Establish the 128-dimensional feature space (defined in
Eq.(2)) considering the normal and the PFH (Point Feature
Histogram [39]) of supervoxels. Here the variation of normals
implies the surface smoothness and that of PFHs expresses
the geometric characteristic. Then the similarity between two
supervoxels is calculated by Eq.(3), where Sn signifies the
cosine value of the angle between the normal vectors of two
supervoxels, Spfh is the cosine value of the two corresponding
PFH vectors, σn and σpfh are the weights. In region growing,
we empirically set σn to 0.8.

Fs = [nx , ny, nz,PFH1...125] (2)

S =
√
σnSn2 + σpfhSpfh2, σn + σpfh = 1 (3)

Afterwards, choose the supervoxel with minimum residual
as the initial seed, then measure the similarity of the seed
to its adjacent supervoxels by Eq.(3) and add the qualified
ones to the current segments. Meanwhile, push the neigh-
bours that satisfy the residual requirement, i.e. less than a
threshold, into the seed queue for region growing. Continue
this procedure until the queue is empty, namely, the current
segment completes growing. Then select a new seed and start
the next round. Repeat above steps until all the supervoxels
are assigned. At this point, we get the candidate segments.

2) MERGING OF ADJACENT FACETS
The grown segment generally corresponds to an individual
facet rather than a whole object in the scene. To pursue object-
level segmentation, the different facets of one object need
to be further merged. Observations reveal that the adjacent
facets of one indoor object are convexly connected in general,
like a box, a can, or a book, while the contact faces of different
things present a concave joining relationship, such as a box
and its supporting table, a computer and the ground, etc.
Based on this prior knowledge, object-level segmentation can
be realized via fusing the convexly connected adjacent facets,
while with concave ones defining the object borders.

FIGURE 8. Definition of convexity-concavity between two supervoxels.

FIGURE 9. Definition of convexity-concavity of two adjacent facets. It is
determined by the convexity-concavity of the border supervoxel
pairs.

(1) Definition of convexity. The concavity-convexity of
two adjacent facets is determined by the concavity-convexity
of their border supervoxel pairs.

Fig.8 illustrates the convexity definition [18] between
two contiguous supervoxels (given by Eq.(4)). (−→x1 ,

−→x2 ) and
(−→n1 ,
−→n2 ) are respectively the centroid vectors and the normals

of two supervoxels p1 and p2. (α1, α2) are the angles between
each normal and the vector (−→x1 −

−→x2 ), whose relationship
decides the convexity of supervoxels: if α1 < α2 ⇐⇒

(−→n1 −
−→n2 ) · (

−→x1 −
−→x2 ) > 0, then two adjacent supervoxels are

convexly connected. In practice, due to the data noises, two
adjacent supervoxels from the same facet may be misjudged
as concave relationship just because their similar normals
show certain concavity. To avoid that, a threshold βth is
introduced to enhance the robustness: supervoxels will have
convex relationship if the angle between their two normals is
smaller than βth.

c(pi, pj) =

{
convex, (α1 < α2) ∨ (](−→n1 ,

−→n2 ) < βth)
concave, otherwise

(4)

The convexity of two neighbouring facets (as illustrated
in Fig.9) is given by Eq.(5), in which (pi, pj) denotes one
element in the supervoxel-pair set Csvp(A,B) at the border
of facets A and B. The connection of A and B is convex
when more than half of the elements in Csvp(A,B) are judged
as convex, otherwise it is concave. Since robustness has
been taken into consideration in the convexity determination
of border supervoxel-pair, presented convexity definition of
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neighbouring facets is robust to a certain degree.

c(A,B) =


convex,

|c(pi, pj) = convex|
|Csvp(A,B)|

≥ 0.5

concave, otherwise

(5)

(2) Convexly merging. Firstly, assign label to each seg-
mented facet, that is, assign supervoxels in the same facet
with the same label while give different labels to the super-
voxels from different facets. Secondly, find the adjacent
neighbours for each facet and determine the supervoxel-
pair set related to each neighbour. For each supervoxel pj
in one facet Ri, gather its adjacent supervoxels and com-
pare their labels with that of the current supervoxel. If the
labels differ, make this adjacent supervoxel pl and the cur-
rent supervoxel pj a pair (pj, pl), and add it to the set
Csvp(Ri,Rl), assuming Rl is the neighbouring facet corre-
sponding to the adjacent supervoxel pl . Afterwards, decide
the convexity of the current facet to its neighbours by Eq.(5)
and merge the convexly connected ones. This is realized
by simply operating the following procedure: if facet Ri
and its neighbouring facet Rl have convex relation, then
reassign Rl the label of Ri. Through this way, the two
facets are merged. Continue this process until all regions
are checked, and then update the labels to gain the final
merging result. Readers can refer to ‘Algorithm-1’ for more
details.

The above convexity-based merging algorithm originat-
ing from the observations of object structures optimizes the
supervoxel-based region growing results. As shown in Fig.10,
region growing pre-segments the point cloud into a group
of local facets (middle row) from the clustered supervoxels
(top row), then the merging phase fuses the adjacent facets
to reach object-level segmentation (bottom row). In sum-
mary, proposed algorithm deals with the issue of point
cloud over-segmentation, so that each segment semanti-
cally represents one whole object in the indoor environ-
ments. More detailed comparison will be discussed in next
section.

IV. EVALUATION AND DISCUSSION
In this section we evaluate proposed algorithm qualita-
tively and quantitatively on two indoor point cloud datasets,
the Object Segmentation Database (OSD-v0.2 [38]) and
NYU Indoor Database (NYU-v2 [40]). In addition to these
results, we also compared it with four available meth-
ods, including the smoothness constrained region growing
(RG [11]), the locally convex connected patches (LCCP [18]),
and two deep learning based methods PointNet++ [27]
and RSNet [29]. We compared the segmentations against
groundtruth using four standard measures: Weighted Over-
lap (WOv) [40], Mean Intersection of Union (MIoU) [41],
over- (fos) and under-segmentation error (fus) [38]. All the
experiments are conducted on machine equipped with 32GB
memory and Titan-Xp GPU.

Algorithm 1 Convexly Merging of Adjacent Regions
Input: Grown regions R{R1,R2, . . . ,Rm},

all supervoxels P{p1, p2, . . . , pn}
Output:Merged segments S{S1, S2, . . . , Sk}

/*—–Initialization—–*/
1: S = ∅; //store the final segmentation
2: map<int, int> svp; //<region No., count of svp>
3: map<int, int> convex_svp; //<region No., count of convex
svp>

4: Assign label to each region, Label(R,P);
/*—–Start the merging loop—–*/

5: for each Ri in R do
/*collect convex svp of adjacent regions*/

6: Collect the supervoxels pList in Ri;
7: for each pj in pList do
8: Gather its adjacency adjList from P;
9: for each pl in adjList do
10: Get the label l of pl ;
11: if (i!=l) then

/*labels are different, find a svp*/
12: Increase the count in svp related to Rl ;
13: Determine the convexity of (pj, pl) by Eq.(4);
14: if convex then
15: Increase the count in convex_svp related to

Rl ;
16: end if
17: end if
18: end for
19: end for

/*merge convexly connected facets*/
20: for k=0 to svp.size()-1 do
21: Get the region No. j of the kth element in svp;
22: Get the corresponding count n1 in svp;
23: Get the corresponding count n2 in convex_svp;
24: if (n1/n2 ≥ 0.5) then
25: Relabel and merge Rj to Ri;
26: Clear(Rj);
27: end if
28: end for
29: Clear svp and convex_svp for next iteration;
30: end for

/*—–Prepare the final result—–*/
31: for i=0 to |R|-1 do
32: if |Ri| ==0 then
33: continue;
34: else
35: Sk ← Ri;
36: S← S+ Sk ;
37: end if
38: end for

A. PARAMETER ANALYSIS
Before evaluating proposed algorithm on two datasets,
we carried out experimental analysis for parameters Rvoxel ,
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FIGURE 10. Examples of proposed merging process. From top to bottom: supervoxels, result from region growing, final
result by facet merging. As the results show, supervoxel-based region growing pre-segments the scenes into local facets
which are then merged for labeling different objects separately. Parameters: Rvoxel = 0.007, Rpatch = 0.06, βth = 10◦.

FIGURE 11. Examples of the influence of parameter Rvoxel on segmentation when Rpatch = 0.06 and βth = 10◦. From top to bottom: generated
supervoxels, result from supervoxel region growing, the final segmentation by facet merging. (a)-(e): Rvoxel = 0.003,0.005,0.007,0.009,0.015.

Rpatch and βth that impact the segmentation results to deter-
mine the optimal settings.
Rvoxel and Rpatch are the parameters involved in super-

voxel generating process, which impact the quality of clus-
tered supervoxels and the supervoxel-based segmentation.
In this work, we performed the parameter evaluation by
fixing one and varying the other to be analyzed. By set-
ting Rpatch=0.06 and βth=10◦, we tested the impact of Rvoxel
on supervoxel generation, region growing of supervoxels,
and the final segmentation. Fig.11 examples the intermedi-
ate results and the final segmentation of proposed method

under different Rvoxel . It is observed that too small Rvoxel
(e.g. Fig.11(a)) makes the voxelization and the clustered
supervoxels easily disturbed by data noise, which drags the
performance of region growing and the final segmentation.
Though large Rvoxel can reduce the data volume of voxels
and promote the efficiency of supervoxel generating, it could
cause sawtooth phenomenon in supervoxels and result in
incorrect merging (e.g. Fig.11(e)) due to the inadequate
feature representing of original data for supervoxel cluster-
ing. Fig.12 calculates the average WOv and MIoU of the
final segmentation on 10 randomly selected samples from
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FIGURE 12. The curves of segmentation measures over Rvoxel on 10 testing samples from OSD-v0.2 database when
Rpatch = 0.06 and βth = 10◦. (a) segmentation accuracy curves (WOv and MIoU), (b) segmentation error curves (fus and fos).

FIGURE 13. Examples of the influence of parameter Rpatch on segmentation when Rvoxel = 0.007 and βth = 10◦. From top to bottom: generated
supervoxels, result from supervoxel region growing, the final segmentation by facet merging. (a)-(e): Rpatch = 0.02, 0.04, 0.06, 0.09, 0.15.

OSD-v0.2 dataset, as well as the fos and fus under varying
Rvoxel . The statistics are consistent with the intuitive observa-
tions, which reveals that proposed algorithm achieves good
segmentation (high WOv and MIoU, low fus and fos) on
OSD-v0.2 when Rvoxel is in [0.005, 0.010]. More generally,
it suggests that a ratio of 6 to 12 between Rpatch and Rvoxel is
plausible.

Fig.13 illustrates the multi-stage results of proposed
method under various setting of Rpatch when Rvoxel is fixed at
0.007. It shows that increasing Rpatch brings about larger size
of supervoxel and obvious under-segmentation in the final
result (e.g. Fig.13(d) and (e), and the fus curve in Fig.14(b)),
while smaller patch size can lead to better segmentation. The
intuitive results are verified by the figures in Fig.14, from
which a conclusion can be drawn that the segmentation accu-
racy (WOv andMIoU in Fig.14(a)) on OSD-v0.2 drops when
Rpatch is larger than 0.07, and the segmentation error rises in

the meantime. It is suggested that a relatively small Rpatch is
preferred to segment the objects of different sizes in the scene.
By considering both the Rvoxel and Rpatch evaluations, we rec-
ommend the parameter setting of Rvoxel = 0.007,Rpatch =
0.06 for dataset OSD-v0.2 consisting of close desk scenes
with high point density. For NYU-v2 which focuses on com-
paratively large room scenes with relatively low point den-
sity, the parameters should be adjusted accordingly. In our
experiments, we selected Rvoxel = 0.01,Rpatch = 0.08 for
NYU-v2 dataset on the basis of similar tests.
βth is the tolerance threshold introduced to enhance the

robustness of convexity determining in supervoxel fusing
phase. It shows no obvious influence on the segmentation
results when βth is less than 45◦, and begins to cause under-
segmentation when setting it larger values, which is a trend
that also can be estimated from its definition. Our tests
on both databases show the similar conclusion, and we
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FIGURE 14. The curves of segmentation measures over Rpatch on 10 testing samples from OSD-v0.2 database when
Rvoxel = 0.007 and βth = 10◦. (a) segmentation accuracy curves (WOv and MIoU), (b) segmentation error curves (fus
and fos).

FIGURE 15. Comparison of segmentation result on point clouds from OSD-v0.2 database. From top to bottom: scene images, groundtruth, results from
ours, LCCP, and RG. RG over-segments the each object to several parts with miscellaneous points. LCCP under-segments the point cloud, especially for
simple scenes. Ours achieves the best segmentation and separates each object correctly, comparing to the groundtruth. Parameters: Rvoxel = 0.007,
Rpatch = 0.06, βth = 10◦.

empirically set βth = 10◦ for both two databases in our
evaluations by following Stein et al.’s setting [18].

B. OBJECT SEGMENTATION DATABASE (OSD)
The Object Segmentation Database (OSD-v0.2), developed
by Richtsfeld et al. [38] in 2012, consists of 111 clustered

scenes of objects on a table. The scenes contain multi-
ple objects that have mostly box-like or cylindrical shape,
with partial and full occlusions and heavy clutter in 2D
as well as 3D. This makes the groundtruth data relatively
non-ambiguous. However, this database contains no seman-
tic labels for the objects included, making it nonapplicable
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TABLE 1. Comparison of different segmentation methods on the OSD-v0.2 database. Our results were produced with voxel size Rvoxel = 0.007, seed size
Rpatch = 0.06, and concavity tolerance angle βth = 10◦.

TABLE 2. Comparison of different segmentation methods on the NYU-v2 database. For the learning-free methods LCCP, RG, and ours, we directly
gathered the average segmentation time for each point cloud. For learning-based methods PointNet++ and RSNet, the training time (15.4 hours and
42.8 hours, respectively) and average testing time for each point cloud were both collected. Our results were produced with voxel size Rvoxel = 0.01, seed
size Rpatch = 0.08, and βth = 10◦.

for PointNet++ and RSNet, so we just compare proposed
method with LCCP and RG on this database.

Fig.15 shows the qualitative comparisons of three seg-
mentation algorithms on five point clouds from OSD-v0.2.
It is observed that RG is susceptible to noises and causes
miscellaneous points at the object boundaries, which leads
to outliers in segments (the bottom row). This is due to
that RG only considers smoothness constraint in its grow-
ing process and cannot directly deal with sharp surfaces or
edges. Owing to the supervoxel pre-segmentation, LCCP is
robust to data noises and able to obtain smooth segmenting
regions. However, it causes obvious under-segmentation (the
fourth row). The major reason is that the merging strategy in
LCCP just utilizes the convexity of adjacent supervoxels as
merging standard, hence noisy patches would fail to or unex-
pectedly split the connected surfaces. Proposed algorithm,
in contrast, successfully segments each single object from
the table scenes (the third row). The objects are separated
by the concave boundaries, and objects that have convex
shape are labeled as one segment from others. Also, the
distraction from data noises is commendably disposed of.
These advancements own to the introduction of supervoxels
and the two-phase merging strategy. Hollow objects, such as
bowls, cups, etc., can be observed to showmultiple segments.
This is because that the normals change strongly on these
concave surfaces. Comparing to the groundtruth (the second

row), proposed algorithm realizes accurate segmentation of
contained objects in point cloud scenes.

These qualitative observations are also supported by the
quantitative results. Figures in Table1 demonstrate that our
approach is able to compete with other two methods in seg-
mentation of cluttered scenes with simple objects. Compared
to the points-basedmethod RG, we achieve better point preci-
sion (WOv andmIoU), the over- (fos) and under-segmentation
error (fus) are also lower. Comparing to the supervoxel-based
method LCCP, we obtain similar WOv and fos, but better
mIoU and fus. This is because that LCCP struggles to seg-
ment simple objects from background, especially for simple
scenes. Proposed convexity-guided facet merging strategy
is an indispensable step for segmentation. Comparing to
the method without merging the convexly connected facets
(i.e. ‘Ours without convexity’ in Table1), proposed strategy
greatly improves the segmentation precision and deals with
the over-segmentation problem.

In terms of efficiency, supervoxel-based methods, LCCP
and ours, show great advantage. Compared with point-based
RG, the complexity of segmentation is significantly reduced
when taking supervoxel over-segmentation as a preprocess-
ing step. Compared to LCCP, proposed algorithm consumes
20.8%more time in supervoxel generation and facet merging,
but this compromise, in return, greatly promotes the accuracy
of object segmentation.
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FIGURE 16. Comparison of segmentation result on point clouds from NYU-v2 database. From top to bottom: scene images, groundtruth, results from
ours, LCCP, RG, PointNet++ and RSNet. LCCP under-segments the point cloud, RG over-segments the each object to several parts with miscellaneous
points. The deep learning based methods PointNet++ and RSNet generate ambiguous segmentation labels and unspecific segmenting boundaries. Ours
achieves the best segmentation and separates each object correctly, comparing to the groundtruth. Parameters: Rvoxel = 0.01, Rpatch = 0.08, βth = 10◦.

C. NYU INDOOR DATABASE(NYU)
The NYU Indoor Dataset (NYU-v2) presented by Silber-
man et al. [40] is a large complex dataset which consists
of 1449 scenes under realistic cluttered conditions with
894 semantic labels for objects. In this work we evaluated

proposed algorithm with all the four methods mentioned
before on this dataset. All the segmentations were con-
ducted on the raw point clouds in 3D space and then pro-
jected onto the RGB image for comparing to the labeled
groundtruth.
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FIGURE 17. More results on point clouds from NYU-v2 database. From top to bottom: scene images, groundtruth, results from ours, LCCP, RG, PointNet++
and RSNet. Parameters: Rvoxel = 0.01, Rpatch = 0.08, βth = 10◦.

In contrast to the simple objects in the OSD-v0.2 database,
objects in NYU-v2 database are composed of multiple com-
plex parts. Example scenes in Fig.16 show that proposed
algorithm (the third row) still performs good in object sepa-
ration as expected. The wash basin, towel, and the tissue box
in scene (a) are separated from the table. The wall is also

segmented into several parts by the convexity. Scene (b)
presents how a bedroom is partitioned into floor, bed, wall,
and lamp. Scene (c) shows the segmentation in a kitchen.
The persons are partitioned into head and upper body. The
refrigerator and the objects on the table are correctly labeled.
Scene (d) and (e) reveal that proposed method can output
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meaningful segments for conference rooms. In contrast,
LCCP shows obvious under-segmentation and RG cannot
deal with the noisy backgrounds. Meanwhile, The deep learn-
ing based methods PointNet++ and RSNet show no supe-
rior results on NYU-v2 database either. The segmentation
labels for objects are ambiguous and hardly demonstrate
specific segmenting boundaries. This is major due to the
large amount of semantic labels and the noisy point clouds in
NYU-v2 database.

It is evident that our labeling results disagree with the
groundtruth in several cases, however, we do not consider
either of the labeling wrong in general, but see them as
different views on the data which are equally justifiable in
many cases. Also, our algorithm is designed to segment
objects by their geometrical convexity, very thin objects like
the paintings on the background wall in scene (b) and (e) are
not considered as independent instances. The results for more
scenes are illustrated in Fig.17.

The quantitative results in Table2 show that proposed
algorithm is able to generate good results on the challeng-
ing dataset. Our method achieves better WOv and mIoU,
the under- and over-segmentation error (fus and fos) are rel-
atively reasonable, which reflect the actual segmentation.
Since the groundtruth is a kind of category tag, and the objects
in different positions are labeled the same, the quantitative
results on NYU-v2 database is not as competitive as that
on OSD-v0.2 database. For the segmentation time, learning-
free methods LCCP, RG, and ours can process each point
cloud within half a second, comparing to that PointNet++
and RSNet respectively require 0.88 seconds and 2.28 sec-
onds. And the learning-based approaches need large amounts
of training time, 15.4 hours and 42.8 hours in our tests,
which will be a major issue especially then the training
sets are becoming increasingly large. Compared with LCCP,
ours requires 23.5% more time to improve the segmentation,
which is similar to the results on the OSD-v0.2 database.

D. DISCUSSION
As stated in Section II, semantic prior-knowledge, such
as object structure or object relationship, can be utilized
to enhance the segmentation. Proposed framework intro-
duces the convexity of adjacent facets which is derived
from the convexity of supervoxels, and uses the structure
semantics to assist the segmentation. Benefiting from this
novelty, proposed algorithm fuses the pre-segmented facets
and achieved object-level segmentation (Fig.10). Experimen-
tal results (Fig.15/16/17) prove its advantages to available
methods. Deep learning-based methods PointNet++ and
RSNet can obtain good performance on relatively simple
and accurate point clouds, but the segmenting confidence
on complex datasets with major noises shows that further
attention is required. RG operates directly on the original
point cloud, whereas LCCP employs clustering on supervox-
els with respect to the convexity of supervoxels. This idea
inspires us the potential ways of describing the structure
semantics of sophisticated objects, which can be applied to

promote the efficiency and semantic accuracy of point cloud
segmentation, not limited to the conventional methods or
deep learning-based methods.

However, proposed algorithm has its limitations. Firstly,
there are two more steps in our algorithm, boundary extrac-
tion and convexity fusion, hence more running time is
required. Note that boundaries extraction and supervoxels
generation can be parallelized using GPUs, which should
lead to a 10-fold speed-up. Secondly, there are few small
pieces in the segmented regions for NYU scenes, which is
caused by the supervoxel-based region growing process and
can be avoided by setting up large value of minimum-size.
Overall, proposed algorithm achieves good segmentation for
both simple and complex indoor point cloud scenes.

V. CONCLUSION
This work presents a convexity guided object segmentation
algorithm for indoor point clouds. It follows the ‘‘over-
segmenting and merging’’ principle which starts from the
over-segmented supervoxels and then achieves object-level
segmentation via the two-phase merging procedure.

The merit of the algorithm lies in fusing the pre-segmented
adjacent facets with respect to their convexity relationship
which is derived from the prior-observations of object struc-
tures. The convexity between two facets is determined by
the convexity of their neighbouring supervoxel-pairs. Also
the boundary information of point cloud is detected and
introduced into the supervoxel clustering to avoid generated
supervoxels crossing object boundaries. Improved supervox-
els assure that the grown regions have legible boundaries and
the followed region merging procedure output reliable seg-
ments with reasonable semantics. These contributions effec-
tively advanced the accuracy of object segmentation.

In future work, we plan to promote the adaptability of
convexity judging criterion, model the actual object accord-
ing to the adjacency relationship among its surfaces, and
then combine object recognition or retrieving with segmenta-
tion to pursue superior accuracy. Furthermore, investigating
supervoxel-based deep learning segmentation approach to
promote the training efficiency is also an interesting topic.
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