
Received November 4, 2019, accepted November 25, 2019, date of publication December 2, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957062

Wind Speed Forecasting System Based on the
Variational Mode Decomposition Strategy and
Immune Selection Multi-Objective Dragonfly
Optimization Algorithm
HE BO 1, XINSONG NIU 2, AND JIANZHOU WANG 2
1Dongbei University of Finance and Economics Postdoctoral Research Mobile Station, Dalian 116025, China
2School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China

Corresponding author: Xinsong Niu (xinsongniu@gmail.com)

This work was supported by the National Natural Science Foundation of China under Grant 71671029.

ABSTRACT In the development of the wind power industry, short-term wind speed forecasting is necessary,
and many researchers have made substantial efforts to establish wind speed prediction models. However,
realizing the accurate prediction of wind speeds remains a challenging task. The current prediction models
do not consider the preprocessing of the data, and each model has various shortcomings. Considering the
disadvantages of the available models, in this paper, an advanced combined forecasting system is applied
that utilizes a data preprocessing strategy and parameter optimization strategy to obtain accurate prediction
values. The proposed prediction system employs linear and nonlinear models that can take into account the
characteristics of wind speed sequences, successfully combine the advantages of various single models, and
yield accurate and stable prediction values. Finally, according to the experimental analysis and discussion,
the proposed combined prediction system outperforms the compared models in prediction. In conclusion,
the powerful combined prediction model provides a feasible scheme for wind power prediction.

INDEX TERMS Artificial intelligence, combined forecasting system, data preprocessing, developed
optimization algorithm, wind speed forecasting.

I. INTRODUCTION
Resource depletion and global climate change are becoming
increasingly severe. Accelerating the extraction and utiliza-
tion of clean energy is an effective approach for solving these
problems. In recent years, the use of renewable energy power
generation technology has become increasingly widespread.
Compared with traditional power generationmethods, renew-
able energy power generation technology has many advan-
tages [1]. Renewable energy not only protects the natural
environment but also makes more effective use of limited
space. Wind energy, as an environmentally friendly energy
source, is an important type of renewable resource and occu-
pies a dominant position in the world’s energy mix [2].

Wind energy is the energy that is produced by the move-
ment of air on the surface of the earth. It is favored by
many countries because it is regenerative and clean [3].
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Coastal and open continental contraction belts are rich in
wind energy resources. From the perspective of regional dis-
tribution, North America, Asia and Latin America are major
sources of wind energy resources. According to estimates
by authoritative institutions, the total amount of wind power
in the world is approximately 130 billion kilowatts, and the
portion that can be used is approximately 15%, which is
10 times that of hydropower resources, and can reach 53 tril-
lion kilowatt hours per year. China is very rich in wind power
resources. Vigorously developing the wind power industry
is regarded as an important measure for transforming the
development model and realizing sustainable development.
According to statistics from the Global Wind Energy Council
(GWEC), from the perspective of the development of the
entire global wind power industry, the total installed capacity
has been increasing year by year. In 2017, the cumulative
installed capacity of global wind power was approximately
539 GW [4]. Fig. 1 presents the regions of the world with
high installed wind power capacity.
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FIGURE 1. Application of wind energy resources on the global scale.

In the past decade, due to the strong support of the Chinese
government, wind energy has played an indispensable role
in China’s energy industry structure. In addition, due to the
large amount of power resources provided by the wind power
industry, the recent power shortages in China were effectively
alleviated [5]. The prediction and assessment of wind energy
resources are practical and challenging tasks [6].

Over the years, many methods have been proposed for
the prediction of wind energy, and these prediction methods
are divided into the following categories: physical methods,
general statistical methods, artificial intelligence methods,
and combined models (or hybrid models) [7], [8]. Numerical
weather prediction (NWP) modeling is a typical method
that uses physical models, and these physical models have
great advantages in the field of long-term prediction [9].
However, the physical models require substantial support
from meteorological data, which complicates the predic-
tion [10]. The general statistical modeling methods mainly
include the autoregressive (AR) method, the autoregressive
moving average (ARMA) method, and the autoregressive
integrated moving average (ARIMA) method. These linear
models show good performance in short-term predictions
[11], [12]. However, the nonlinear characteristics of time
series render accurate prediction impossible [13].

In the past years, artificial intelligence (AI) methods have
developed rapidly and have been applied to a variety of fields.
Many researchers have used these approaches to prediction,
especially in the field of wind energy forecasting. Artificial
neural networks (ANNs) such as the echo state network
(ESN), extreme learning machine (ELM), and the back-
propagation neural network (BPNN) are typical AI meth-
ods [14]–[17]. Other AI approaches include support vector
machine (SVM) and least-squares support vector machine
(LSSVM) [18]. Intelligent methods have been widely used in
economic forecasting, energy forecasting, power load fore-
casting, and even air quality predictions [19]–[22]. Among
them, the ANN method can accurately capture the nonlin-
ear features in the time series. If the sequence has strong
nonlinear features, it shows good prediction performance

on the prediction surface, and can realize high prediction
accuracy. According to Ma et al, the ANN method can
describe the complex relationships in historical data; hence,
it is a suitable method for predicting wind speed [23]. For
example, Li & Shi considered the wind speed sequence in
hours as a comparison experiment, and via the comparative
analysis of various neural network methods, they found that
each single method has its own advantages and disadvan-
tages [24]. Wang et al. applied a method that uses ESN,
compared it with other ANNs methods, and obtained more
accurate prediction results [25]. In addition, Niu et al. demon-
strated that the ANNs approach has the natural advantage of
being able to extract the nonlinear features of the sequence
and, hence, realizes more accurate predictions than other
methods [26]. In recent years, deep learning applications
have grown rapidly due to the satisfactory performance of
deep learning in dealing with big data and high-performance
computing power. Wang et al. proposed deep convolutional
neural network (DCNN) based wavelet transform (WT) for
forecasting photovoltaic (PV) energy and obtained accurate
results [27]. Hu et al. used the long short-termmemory neural
network (LSTM), the hysteretic extreme learning machine
(HELM) and the differential evolution algorithm (DE) meth-
ods to forecast wind energy data and obtained a satisfactory
forecasting result [28].

Each forecasting model has disadvantages, and no pre-
diction model is perfect [29], [30]. Hence, researchers have
recently shifted their attention to combined and hybrid mod-
els, which can produce more accurate predictions by combin-
ing several approaches. For instance, Hao & Tian proposed
an improved nonlinear combined prediction system, which
processed the original data via a data preprocessing approach
and used a developed SVM to combine all single predic-
tors to obtain the final forecasting results. This approach
overcame the shortcomings of the single models and yielded
accurate prediction results [31]. Ma & Liu applied the kernel
function method to the grey model, proposed a new time-
series forecasting model, and demonstrated that this method
outperforms the traditional grey model in practical applica-
tions [32]. Heng et al. proposed a hybrid prediction model
that is based on empirical mode decomposition (EMD) and
the cuckoo search algorithm, which is used to obtain more
accurate results for power load forecasting [33]. Wang et al.
proposed another hybrid prediction method for wind speed
prediction that uses the decomposition method, BPNN and
the genetic algorithm (GA) [34]. In addition, Zhou et al.
proposed a new approach that combines multiple single pre-
diction models via the genetic algorithm and particle swarm
optimization to obtain a combined prediction model, and
they demonstrated that developed model has superior predic-
tion performance [35]. Several additional examples are listed
in Table 1.

Previous traditional models have flaws that can lead to
inaccurate predictions. The combined (hybrid) model is supe-
rior to single traditional models, but most combined (hybrid)
models focus on the improvement of the model forecasting
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TABLE 1. Summary of reviewed wind speed forecasting models.

accuracy and often ignore the importance of predictive
stability. The forecasting accuracy and stability of the model
must be guaranteed, and both need to be considered com-
prehensively. Therefore, the single-objective optimization
method cannot solve this problem, and a multi-objective
optimization method needs to be considered.

For the above discussion, a developed combined wind
speed prediction system that is based on the variational mode
decomposition (VMD) approach and the immune selection
multi-objective dragonfly optimization algorithm (ISMODA)
is applied for multi-step wind speed prediction. The proposed
combined wind speed prediction system consists of four

main parts: the data preprocessing part, the optimization part,
the prediction part and the evaluation part. This combined
wind speed forecasting system overcomes the shortcomings
of single-model prediction and can capture the nonlinear
features of the wind energy sequence accurately, which not
only greatly improves the accuracy but also ensures the
stability of the prediction. In the data preprocessing stage,
the wind energy data are decomposed via a decomposition
strategy to eliminate the high-frequency noise signals. More-
over, in the forecasting stage, four single forecasting compo-
nents are used for short-time wind speed prediction, namely,
three ANN models and a linear model. Next, an advanced
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multi-objective optimization algorithm, namely, ISMODA,
is used to determine the weights of the four single-model
components and to obtain the final combined model results.
To the best of our knowledge, determining the weight of a
single model via this method can combine the advantages
of each component well and can yield highly accurate wind
speed forecasting results.

The forward-looking contributions and innovations of
this paper are as follow:

I. The stability and accuracy of the prediction are taken
into account. In the prediction of wind speed series, stability
is an important index, but it is easy to ignore. Therefore, a
multi-objective optimization method is used to improve the
accuracy and stability of the system.

II. An improved optimization algorithm that uses the
immune selection operator is applied to the construction of
prediction system. The improved algorithm can update the
population using immune selection operations in the late opti-
mization iteration. Via this approach, it can effectively sup-
press the premature stagnation problem in the convergence
process and improve its global optimization performance and
optimization accuracy.

III. The organic combination of linear and nonlinear mod-
els has strong linear and nonlinear characteristics. The pro-
posed combined prediction system combines the advantages

of each model, captures the linear and nonlinear charac-
teristics of the data series, and yields stable and accurate
prediction results.

The structure of this paper is as below. Theoretical intro-
duction of VMD and ISMODA algorithm are shown in
Section 2. The information of the data is summarized in
Section 3. In Section 4, we introduce the accuracy evalu-
ation index and validity evaluation index in detail. Several
comparative experiment analyses are displayed in Section 5.
Section 6 draws several discussions to confirm the forecasting
models. Finally, the summary is placed in Section 7. Themain
flow of the article is shown in Fig. 2.

II. METHODS INTRODUCTION
In this section, the methods that are proposed in the paper
are discussed in detail. These are VMD data preprocessing
method and the immune selection multi-objective optimiza-
tion dragonfly algorithm (ISMODA).

A. VARIATIONAL MODE DECOMPOSITION
VMD is an effective technique for preprocessing signals that
outperforms other signal processing approaches. The VMD
method is based on variational constraint theory and can
decompose real-valued signals into modalities with nonre-
cursive screening structures [50]. Each decomposition mode

FIGURE 2. Main structure of this study.

178066 VOLUME 7, 2019



H. Bo et al.: Wind Speed Forecasting System Based on VMD and Immune Selection Multi-Objective Dragonfly Optimization Algorithm

is a quasi-orthogonal band-limited subsignal that is sparse
and must be the most compact near its center frequency. The
implementation process of the VMD method is as follows:
Step 1: Determine the number of decomposition modes

uk(t)k = (1, 2, . . . , k), set the balance parameter α, and then
initialize.
Step 2: The analytical signal that is consistent with the

Hilbert transform is calculated via the following equation.

Auk(t)= uk(t)+
i
π

∫
+∞

−∞

uk(τ )
t − τ

dτ = (δ(t)+
i
π t

)× uk(t),

i =
√
−1 (1)

Step 3: The complex exponential term e−ifk t is mixed with
the analytical signal Auk (t) to transfer the spectrum of the
mixed signal to a consistent estimated center frequency. Next,
a constraint variation problem is formulated:

min
{uk},{f k}

{∑
k

∥∥∥∥∥∂t
[(
δ(t)+

i
π t

)
∗ uk(t)

]
e−ifk t

∥∥∥∥2
2

}
(2)∑

k

uk(t) = x(t) (3)

Here, x(t) is the raw sequence, δ represents the Dirac dis-
tribution, and ∗ is used to represent the convolution operator.
Step 4: Define a new constraint problem as follows:

L
(
{uk}

{
f k
})
= α

∑
k

∥∥∥∥∥∂t
[(
δ(t)+

i
π t

)
∗ uk(t)

]
e−ifk t

∥∥∥∥2
2

+

∥∥∥∥∥∥x(t)−
∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), x(t)−

∑
k

uk(t)

〉
(4)

and

f n+1k =

∫
∞

0 f
∣∣ûk(f )∣∣2 df∫

∞

0

∣∣ûk(f )∣∣2 df (5)

A more detailed explanation can be found in Ref. [51].

B. IMMUNE SELECTION MULTI-OBJECTIVE
OPTIMIZATION DRAGONFLY ALGORITHM
The dragonfly algorithm (DA) simulates the behavior of the
dragonfly population and performs global and local searches
[52], [53].

1) DRAGONFLY ALGORITHM
Behavior pattern of group movement of dragonflies:

Spacing: Avoid collisions between two individuals

Si = −
∑N

j=1
(X − Xj) (6)

Here, Si is the separation of the i− th individual, and X
and Xj represent the positions of two individuals.
Alignment: Keep themovement of oneself in harmonywith

the movements of other individuals in the group.

Ai =
∑N

j=1
Vj/N (7)

Algorithm 1 Pseudo Code of the VMD
1: Select the number of the decomposed modes and the

balance parameter α. Initialize
{
û1k
}
,
{
f̂ 1k
}
, λ̂, n← 0

2: Repeat
3: Start counting n← n+ 1
4: FOR (k=1:k) DO
5: /∗Decomposing real-valued multi-component signals

into modalities∗/
6: Update ûk for all f ≥ 0

ûn+1k (f ) =
[
f̂ (f )−

∑
i<k

ûn+1k (f )−
∑
i>k

ûnk(f )+
λ̂n(f )
2

]/
[1+ 2α(f − f nk )

2

7: Update center frequency f̂ k :

f kn+1 =
∫
∞

0 f
∣∣∣ûn+1k (f )

∣∣∣2 df/∫∞0 ∣∣∣ûn+1k (f )
∣∣∣2 df

8: /∗Decomposed mode must be the most compact around
its center frequency∗/

9: END FOR
10: Dual ascent for all f ≥ 0 :

λ̂n+1(f ) = λ̂n(f )+ τ
(
f̂ (f )−

∑
k
ûn+1k (f )

)
11: /∗Until convergence to the specified convergence toler-

ance criteria∗/
12: UNTIL convergence:

∑
k

∥∥∥ûn+1k − ûnk
∥∥∥2
2

/∥∥ûnk∥∥22 < ε

whereAi is the alignment quantity andVj represents the speed
of the j− th neighboring individual.
Cohesion: An individual tries to approach a group to which

it believes it belongs.

C i =

∑N
j=1 Xj
N

− X (8)

Finding prey: Individual dragonflies finding prey.

Fi = X+ − X (9)

Here,Fi represents the attraction of individuals to prey, and
X+ denotes the location of the prey.

Avoid enemies: Dragonflies avoid enemies during
predation.

Ei = X− + X (10)

where Ei is the individual escape distance, and X− represents
the location of the enemy.

Update process of step and position vectors of dragon-
flies:

Step vector 1Xt+1 indicates the direction and step length
of a dragonfly:

1Xt+1 = (sSi + aAi + cC i + f Fi + eEi)+ w1X t (11)

The position vector X t+1 of a dragonfly is calculated as
follows:

X t+1 = X t +1X t+1 (12)
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If there is no adjacent solution near the individual, the ran-
dom walk (Le′vy) strategy is used to search in the search
space.

X t+1 = X t + Le′vy(d)× X t (13)

Here, d represents the dimension of a single position
vector. The Le′vy function is expressed as follows:

Le′vy(x) = 0.01×
r1 × σ

|r2|
1
β

, r1, r2 = rand(0, 1) (14)

σ =

 0(1+ β)× sin(πβ2 )

0( 1+β2 )× β × 2(
β−1
2 )

 1
β

, 0(x) = (x − 1)!

(15)

where β is a constant.

2) IMMUNE ALGORITHM
The immune algorithm (IA) is based on the principle of bio-
logical immunity. The immune system is a complex adaptive
system, which can protect the body from external pathogens.
It attaches all the cells and molecules of the body to its own
species, and divides external sources into non-self molecular
species. It can optimize the solution by imitating the process
of the biological immune system, which produces an immune
response when it fights against foreign antigens and auto-
matically produces corresponding antibodies for destroying
invading antigens [54], [55].

IA can effectively maintain the population diversity by uti-
lizing the diversity generation and maintenance mechanisms
of the biological immune system, overcome the premature
stagnation in the complex optimization process, and yield the
globally optimal solution. This avoids the problem that DA
method is prone to falling into a local optimum at the end
of the optimization iterations and improves the global search
performance.

3) IMMUNE SELECTION OPERATION FOR THE DRAGONFLY
ALGORITHM
During the algorithm optimization stage, if the optimal-
ity of successive generations of groups is not significantly
improved, then the immune selection operation produces a
new population. The implementation steps of the transformed
immune selection operation are as follows:
Step 1: Calculated the fitness value FA(Xi) of dragonfly

Xi. The fitness function includes two indicators, one is accu-
racy and the other is stability, and is defined as: FA1 =
1/N

∑N
i=1

∣∣ŷi − yi∣∣,FA2 = std(ŷi−yi), yi is the true value, ŷi
is the predicted value.
Step 2: Calculate the similarities between dragonfly indi-

viduals:

Dij =
∣∣FA(Xi)− FA(Xj)∣∣ (16)

dij =
{
1, Dij < minD
0, Dij ≥ minD

(17)

Algorithm 2 Pseudo Code of the ISMODA
Initialize the dragonfly population with random solutions;
Initialize step vectors 1Xi(i = 1, 2, · · · ,N );
1: Set DS=8; (after every DS iteration, check whether the

optimal individual has improved)
Set replaceP=0.5; (individuals with lower expected
reproduction probability than replaceP will be immune
replaced)
Set minD = 1e − 10; (the minimum distance between
individuals)

2: Calculate the fitness function for each search agent
3: Find the nondominated PO solution and initialize the

external archive (A) with them.
4: WHILE (t < Itermax)
5: Calculate the fitness of all dragonflies; Select the best

solution as the food source; Select the worst solution
as the enemy;
Update s, a, c, f, e and w;

6: FOR i = 1: N
7: Calculate Si, Ai, Ci, Fi, and Ei;

Update the neighboring radius;
8: IF a dragonfly has at least one neighboring

dragonfly
9: Update the velocity vector and position vector:

1Xt+1 = (sSi + aAi + cCi + fFi + eEi)
+w1Xt ,Xt+1 = Xt +1Xt+1

10: ELSE
11: Update the position vector via a random

walk (Le’vy flight):
Xt+1 = Xt + Le′vy(d)× Xt

12: END IF
13: Check and correct the new positions based on the

boundaries of the variables;
14: END FOR
15: Identify the optimal individual of the current

iteration Xbest(t);
16: IF t >DS
17: IFmod(t,DS) == 0&&(Xbest(t − DS + 1))

−Xbest < 1e− 20
18: FOR i = 1: N
19: FOR j= 1: N
20: Calculate the distance between each

individual and all other individuals and calculate
the similarity between individuals: Dij =∣∣FA(Xi)− FA(Xj)∣∣ dij = { 1, Dij < minD

0, Dij ≥ minD
21: END FOR
22: Calculate the individual concentration between

each individual and calculate the expected
reproduction probability;
ICi = 1

N

∑N
j=1 dijPR(i) = α

FA(Xi)∑N
j=1 FA(Xj)

+(1− α) ICi∑N
j=1 ICj

23: IF PR(i) < replaceP
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Algorithm 2 (Continued.) Pseudo Code of the ISMODA
24: Randomly generated a new individual to replace the

original individual i;
25: END IF
26: END FOR
27: END IF
28: END IF
29: t = t+1
30: ENDWHILE Output the best solution that was found.

where minD represents the minimum distance between
individuals.
Step 3: Calculate the individual concentration of ICi.

ICi =
1
N

∑N

j=1
dij (18)

Step 4: Calculate the expected reproduction probabilities
of individuals.

PR(i) = α
FA(Xi)∑N
j=1 FA(Xj)

+ (1− α)
ICi∑N
j=1 ICj

,

α ∈ rand (0, 1) (19)

Step 5: Conduct the immune selection operation on indi-
viduals according to their expected reproductive probabil-
ities. If the probability of the current individual is large,
the elite retention strategy will be adopted for the individual;
if the probability is small, the immune replacement operation
will be conducted for the individual.

The expected reproduction probability of an individual is
proportional to its fitness value and inversely proportional to
its individual concentration. This not only ensures the diver-
sity of individuals but also effectively prevents the iteration
from falling into a local optimum and further improves the
convergence performance of the algorithm.

III. DATA PREPROCESSING MODULE
The randomness and complexity of wind energy data lead
to inaccurate prediction results. The processing of the raw
wind energy data has become an important step in wind

speed prediction. To obtain satisfactory prediction values,
data preprocessing is necessary. In this section, we introduce
a data preprocessing module that uses the VMD strategy
to eliminate high-frequency noise signals from the original
wind speed sequence, and the strategy of decomposition and
reconstruction is used to preprocess the original data.

A. INFORMATION ON THE ORIGINAL DATASETS
Wind energy resources are widely distributed in northwest,
east and northeast China. Shandong (north latitude: 37◦48’,
east longitude: 120◦45’) is a coastal province of China with
natural advantages. There are rich wind energy resources and
developed wind power industries. Therefore, short-term wind
speed datasets of the Shandong Peninsula with a time interval
of 10 minutes were collected for the study (as presented
in Fig. 3 and Table 2). The humidity and air pressure in this
region are 65% and 1012.7 hPa, respectively. The data sites
are in mountainous and hilly areas, the altitude ranges from
100 m to 240 m, and the measurement height is 70 m. The
researchers found that the spatiotemporal variability of wind
resources in China is large. Temporally, the wind resources
over all of China are more abundant in the cold season (spring
and winter with peaks in April) than in the warm season
(summer and autumn with minimal values in August) [56].
To more effectively evaluate the performance of the predic-
tion model, we conducted seasonal data collection. Shandong
peninsula has a typical warm temperate monsoon climate.
According to its climatic characteristics, we choose the repre-
sentative month of each season for constructing the dataset:
April is the representative month of spring, July is the rep-
resentative month of summer, October is the representative
month of autumn, and January is the representative month of
winter. Consider the winter dataset as an example. These data
were sampled from January 1, 2011 to January 20, 2011; this
period spans 20 days and includes 2880 samplings. We divide
each wind speed sequence into two groups: a training sample
and a testing sample. This division is illustrated in Fig. 3. The
data from the initial 16 days, namely, from January 1, 2011 to
January 16, 2011, are used as the input for training to establish

TABLE 2. Main information characteristics of the raw wind energy data.
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FIGURE 3. Information on the original data.

the matrix for the model and the remaining data, namely,
the data from January 17, 2011 to January 20, 2011, are used
for testing. This same rolling prediction mechanism was used
on the training sample and the testing sample.

B. WIND SPEED SEQUENCE AFTER PROCESSING
In the prediction process, the processing of the original
data sequence is necessary. By analyzing the characteristics
of the original sequence, the prediction accuracy can be
effectively improved. Via the data preprocessing strategy,
the original signal is decomposed, and the high-frequency
noise signals that affect the prediction are removed and
reintegrated into a stable sequence. Based on the integra-
tion strategy, the adverse impact of high-frequency noise
is eliminated. By this approach, the initial wind speed
sequences are reconstructed. Moreover, each reconstructed
wind speed sequence extracts the main characteristics of
the initial sequence; the instability and randomness of the
wind speed sequence are significantly reduced. The predic-
tion performance could be enhanced effectively. The data
characteristics of the denoised sequence are listed in Table 3.
In addition, the reconstructed sequence will be used for future
predictions.

TABLE 3. Main information characteristics of the wind energy data after
processing.

IV. ACCURACY EVALUATION INDEX AND VALIDITY
EVALUATION INDEX
To evaluate the prediction performance of the proposed
model, we designed several evaluation indices for testing
the accuracy of prediction. On this basis, a discussion mod-
ule was added to examine the prediction performance of
the model in terms of several special evaluation indices.
A detailed explanation of these indicators is as follows.
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A. ACCURACY EVALUATION INDEX
Predictive accuracy evaluation is an indispensable part
of this research, and multiple performance indicators are
used to test the predictive performance of the predictive
model. However, there are no systematic regulations regard-
ing evaluation indicators of prediction models. This study
uses several commonly used evaluation criteria, namely,
MAPE, MAE, RMSE, and SSE, to evaluate the forecasting
performance [57].

The MAE and RMSE can be used to represent the aver-
age error of the predicted result with respect to the ground-
truth result. The total prediction error is represented by SSE.
Among the several evaluation indices, the most commonly
used index in the application is MAPE, which can be used
to evaluate the prediction accuracy of the forecasting model.
The criteria are described in detail in Table 4 [58].

TABLE 4. Four evaluation criteria.

B. TESTING METHODS
The predictive performance of the proposed model is
evaluated statistically via the detection of several special
indicators.

1) FORECASTING EFFECTIVENESS
The effectiveness of prediction is measured by the sum of
the squares of the prediction errors, which is an effective
method. In contrast, in this section, we introduce a new sci-
entific validity measure: the mean variance of the prediction
accuracy. The index is defined by the following formula [59]:
An is the prediction accuracy:

An = 1− |εn| (20)

εn =


−1, (yn − ŷn)/yn < 1
(yn − ŷn)/yn, −1 ≤ (yn − ŷn)/yn
1, (yn − ŷn)/yn > 1

< 1 (21)

The k-order forecasting validity is expressed by the follow-
ing formula:

mk =

N∑
n=1

QnAkn,
N∑
n=1

Qn = 1 (22)

The probability distribution is discrete, and its prior infor-
mation cannot be obtained. We assume it is 1; hence,
Qn is expressed here as 1/N. H represents a continuous

function of a kth-order prediction effectiveness element.
H
(
m1,m2, · · · ,mk

)
is the k-order prediction effectivenesses.

The frist-order and second-order forecasting effective-
nesses are expressed as follows:

H
(
m1
)
= m1 (23)

H
(
m1,m2

)
= m1

(
1−

√
m2 − (m1)2

)
(24)

2) DIEBOLD-MARIANO TEST
The DM test is a hypothesis testing method that determines
whether the statistical hypothesis of an inference is estab-
lished by examining the magnitude of the statistic, thereby
determining whether the hypothesis is true. This paper uses
this method to prove the significant difference among the
forecasting results of the combined forecasting system and
other models, and more effectively proves the predictive
performance of the predictive model [60]. The DM test is
introduced as follows [61]:

The error of the predicted results with respect to the
ground-truth results is defined by the following formulas:

e1n+h = yn+h − ŷ1n+h (25)

e2n+h = yn+h − ŷ2n+h (26)

Here, yn+h and ŷn+h are the ground-truth value and the
forecasting result, and n and h represent the number of pre-
diction series and the forecast step size, respectively.

The loss functionF(ein+h)i = 1, 2 is defined for calculating
the prediction accuracy. The general method of determining
the loss function is as follows:

F(ein+h) = (ein+h)
2 (27)

F(ein+h) =
∣∣∣ein+h∣∣∣ (28)

The DM statistic is defined by Eq. (21) as follows:

DM =

1
T

T∑
n=1

(F(e1n+h)− F(e
2
n+h))√

S2/T
(29)

Here, S2denotes the variance estimate of F(e1n+h)−F(e
2
n+h).

Two prior assumptions are specified: the original
hypothesisH0 and the alternative hypothesisH1. The original
hypothesis is H0 : F(e1n+h) = F(e2n+h), and the alterna-
tive hypothesis is H1 : F(e1n+h) 6= F(e2n+h).

3) GREY RELATIONAL ANALYSIS
By using the grey relational analysis (GRA) index, we can
calculate the degree of fit between the predicted values
and the ground-truth values, and we can judge whether the
predicted sequence is similar to the original sequence. The
method is introduced as follows:

The original sequence and forecasting sequence are
denoted as

X0 = (X0(1),X0(2), · · · ,X0(n))

Xi = (Xi(1),Xi(2), · · · ,Xi(n)) (30)
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The series are standardized by

xi(t) =
Xi(t)− 1

n

∑n
t=1 Xi(t)√

1
n−1

∑n
t=1 (Xi(t)−

1
n

∑n
t=1 Xi(t))

(31)

The correlation between the two sequences is calculated as
follows:

ξi(k)=
min
i

min
k
|x0(k)−xi(k)|+ρmax

i
max
k
|x0(k)−xi(k)|

|x0(k)−xi(k)|+ρmax
i

max
k
|x0(k)−xi(k)|

,

ρ ∈ (0,∞) (32)

The gray correlation degree of the two sequences is calcu-
lated as follows:

ri =
1
n

∑n

k=1
ξi(k) (33)

The value of ri corresponds to the degree of similarity
between the i-th prediction curve and the ground-truth curve.

4) DIRECTION OF FORECASTING
To determine whether the data trends of the prediction
sequence and the original sequence are consistent, we pro-
pose an effective statistic, namely the directivity (Daccuracy),
for evaluating the degree of consistency between the predic-
tion curve and the original curve:

Daccuracy =
1
N

N∑
i=1

ai × 100% (34){
ai = 1, (yi+1 − yi)(ŷi+1 − yi) ≥ 0
ai = 0, (yi+1 − yi)(ŷi+1 − yi) < 0

(35)

Here, N denotes the length of the forecasting curve, ŷ is a
data point of the prediction sequence, and y is the correspond-
ing data point of the original sequence. Daccuracy represents

the degree of directional consistency of the two sequences,
which is obtained via calculation.

V. EXPERIMENTAL DESIGN AND RESULTS
Four comparative experiments are designed in this part. The
forecasting accuracy of the proposed model is evaluated
via these experiments. The experiments were run on the
MATLAB 2018 platform.

A. EXPERIMENT 1: COMBINE MODEL VS. SINGLE
MODELS
In this section, the prediction accuracies of the combined
model and four single models are compared. The four single
models are VMD-ARIMA, VMD-BPNN, VMD-ENN, and
VMD-ELM, which are the components that are used to build
the combined model.Table 5 presents the experimental result
data, and a more vivid comparison is presented in Fig. 4.
Then, we interpret the comparison results.

During the wind speed prediction process in the spring,
the proposed model realizes the highest forecasting accu-
racy, regardless of whether it uses single-step prediction
or multi-step prediction. The minimum MAPE values are
2.81%, 3.29%, and 3.58%. In the data concentration in the
summer, due to the low values of the rawwind speed sequence
in the climatic characteristics of wind power sites, the accu-
racy index was larger than that predicted value in spring. The
values of the proposed combined model are 5.02%, 6.08%,
and 5.85%. Because the fluctuation of wind speed series in
summer is not as strong as that in spring, the SSE index is
much smaller than that in spring. The wind speed sequence
in autumn is similar to that in summer, and the prediction
results of the model are very similar to those in summer. The
index values of SSE is 6.5172, 8.8690, and 10.3548, and the

TABLE 5. Results of experiment 1.
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FIGURE 4. Results of experiment 1.
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TABLE 6. Results of experiment 2.

accuracy of this prediction performance is very similar that
in summer. Winter differs from the other three seasons. The
wind energy resources in winter are equally abundant as in
spring, but the fluctuation of the wind speed series is not as
strong as in spring, which leads to very good performance in
terms of both the MAPE index and the SSE index.
Remark 1: By analyzing the prediction results that are pre-

sented above, we conclude that our combined model, namely,
VMD-ISMODA, has higher prediction accuracy than the sin-
gle models that are based on VMD method (VMD-ARIMA,
VMD-BP, VMD-ELM, and VMD-ENN). According to the
four predictive index values, our proposed combined model
yields satisfactory prediction results in multi-step prediction.

B. EXPERIMENT 2: COMBINED MODEL VS. TRADITIONAL
MODELS
In this section, the prediction accuracies of the VMD-
ISMODA model and the traditional models are com-
pared experimentally. The four single traditional models are
ARIMA, BP, ENN, and ELM, which are the components that
are used to build the combined model. Table 6 shows the
experimental result data. Then, we interpret the comparison
results.

The seasonal performance is similar to that in experi-
ment 1. The prediction accuracies for spring and winter are
relatively high, namely, the MAPE index has low values,
and the prediction accuracies for summer and autumn are
relatively low. In the prediction results of the spring wind
speed series, the BPmodel performs the worst among the four
traditional models. There is a large difference between the
one-step prediction and multi-step prediction performances
of the ARIMA model: The one-step prediction performance
is worse than those of the other traditional models in terms
of accuracy, while the multi-step prediction performance is

better. During the prediction of the summer wind speed
dataset, when forecasting in one step, the prediction perfor-
mances of the four traditional methods from good to bad are
ENN, ELM, BP, and ARIMA, with MAPE values of 11.15%,
11.30%, 11.43% and 12.04%, respectively. The wind speed
sequence in autumn is similar to that in summer, and the
prediction results of the model are very similar to those
in summer. For the winter dataset prediction, the proposed
combined model realizes the optimal prediction accuracy.
Remark 2: Through the above analysis and the experi-

mental results in Table 6, we conclude that the combined
VMD-ISMODA model realizes higher prediction accuracy
than the traditional models and can realize superior prediction
performance.

C. EXPERIMENT 3: VARIATIONAL MODE
DECOMPOSITION VS. OTHER
PROCESSING STRATEGIES
This experimental study aims at evaluating the performance
of the variational mode decomposition strategy (VMD), in
comparison with other widely used decomposition strategies.
Table 7 and Fig. 5 show the prediction results; the best
decomposition methods for various prediction models are
identified. From Table 7 and Fig. 5, the following conclu-
sions are drawn:

Data processing strategies that are combined with the
same optimization algorithms differ in terms of forecasting
accuracy; hence, the data preprocessing method that is used
in a combined forecasting system substantially influences the
prediction accuracy. According to the results of the four pre-
dictive indicators, which are presented in Table 7, the perfor-
mances of the two processing strategies (EMD and EEMD)
in the dataset for each season are highly similar; however,
compared with the CEEMD strategy, a large gap is observed.
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TABLE 7. Results of experiment 3.

FIGURE 5. Results of experiment 3.

The CEEMD strategy outperforms the EMD and EMD strate-
gies in terms of accuracy and stability. In addition, the VMD
strategy that is used in our combined model realizes higher
precision. Among the selected data preprocessing strate-
gies, the VMD strategy yields the most accurate prediction
values.
Remark 3: According the above experimental analysis and

the values of the prediction indicators in Table 7, the proposed

forecasting system, which is based on VMD data processing
strategy, can yield excellent forecasting results.

D. EXPERIMENT 4: IMMUNE SELECTION MULTI-
OBJECTIVE DRAGONFLY VS. OTHER OPTIMIZATION
ALGORITHMS
To evaluate the performance of the ISMODA method,
three additional weight determination methods, namely,
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TABLE 8. Results of experiment 4.

TABLE 9. Results of hypothesis testing.

the cuckoo search algorithm (CS), the firefly algorithm (FA),
and the multi-objective dragonfly algorithm (MODA), are
used in combination with the VMD data preprocessing strat-
egy for comparison. In addition, The results of the forecast
indicators are presented in Table 8, and the value for the
ISMODA algorithm result is marked in bold.

The weight determination method structures with the
VMD data preprocessing strategy differ in terms of predic-
tion performance; hence, the weight determination method
in the combined model plays a vital role in improving the
performance in wind power forecasting. According to the
experimental prediction results that are presented in Table 8,
the performances of the two single-objective algorithms
(CS and FA) in each season are very similar; however, com-
pared with the multi-objective optimization methods (MODA
and ISMODA), a large gap is observed.Multi-objectivemeth-
ods are superior to single-objective methods in terms of accu-
racy and stability. Moreover, our developed multi-objective
method (ISMODA) outperforms the original multi-objective
algorithm (MODA) in forecasting.

Remark 4: From the above experimental analysis and the
prediction results that are presented in Table 8, we conclude
that the proposed multi-objective optimization algorithm
(ISMODA) has made outstanding contributions to wind
speed prediction and has yielded satisfactory prediction
results.

VI. DISCUSSIONS
In this section, several necessary tests have been conducted to
further evaluate the forecasting performance of the proposed
VMD-ISMODA prediction system.

A. RESULTS OF HYPOTHESIS TESTING
The predictive performance of the developed model is tested
with the DM test, and the validity of the proposed model,
which is based on statistical concepts, is further evaluated.
We evaluated other models and the proposed combined
model; the results of the DM test are presented in Table 9
and are briefly described below.
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TABLE 10. Forecasting effectiveness results.

Compared with the traditional model and the single denois-
ing model, the DM test results are much higher than the
critical value of the Compared with the traditional model and

TABLE 11. Grey relational analysis and directionality results.

the single denoising model, the DM test results are much
higher than the critical value of the 10% significance level.
Therefore, in this example, the prediction validity of the
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proposed model and those of the above two models differ
significantly. Comparing the other combined models that
are based on various denoising strategies, we can find that
the proposed VMD-ISMODA combination model performs
the best. The minimum DM test value exceeds the thresh-
old value of the 15% level by 1.47. In comparison with
the combined model with various optimization methods,
the DM test results fluctuate substantially due to the ran-
domness of the algorithm. However, most of the DM values
are greater than the critical value of the 10% level. Hence,
the proposed VMD-ISMODA model has high predictive
performance.

B. DISCUSSION OF THE FORECASTING EFFECTIVENESS
In this section, to further evaluate the performance of the
proposed VMD-ISMODA model, this study applies the indi-
cator of the effectiveness of the prediction. The larger the
indicator value, the better the predictive performance of the
model. In the first- and second-order predictions, the VMD-
ISMODA model has higher forecasting efficiency than the
other methods. Table 10 presents the detailed result values.
Consider the spring dataset as an example. The results of

the proposed model in the first-order prediction process are
97.19%. 96.71%, and 96.42% from one-step forecasting to
three-step forecasting and the values of the proposed model
in the second-order forecasting process are 94.49%, 93.61%,
and 93.22%. The values that are obtained by the comparison
models are smaller than those of this model. Similarly, in the
datasets for the other three seasons, the obtained results are
similar to those of the spring dataset. These results provide
sufficient evidence that the developed forecasting system
outperforms the other models in prediction.

C. GREY RELATIONAL ANALYSIS AND FORECASTING
DIRECTION RESULTS
To more fully evaluate the predictive performance of the
model, we introduce two new evaluation indices for in this

section: the grey relational analysis index and the direction
of forecasting index (GRA and Daccuracy). The GRA index
describes the degree of correlation between the forecasting
values and the ground-truth values. The larger the value
of the GRA index is, the higher the degree of correlation
between the two sequences will be, and the better the model
prediction results will be. The directivity index describes
the directivity of the latter data point, which corresponds
to the directivity of the trend of the original curve and the
prediction curve. The larger the value is, the more consistent
the directivity of the prediction sequence, and the more accu-
rately of the prediction performance. The values for GRA
and Daccuracy are presented in Table 11, and the values of the
developed combined model are identified by bold font in the
table. Compared with other prediction models, our proposed
VMD-ISMODA combination prediction system has realized
excellent prediction performance; hence, the model that is
proposed in this study shows a strong advantage compared
with other prediction methods.

D. FORECASTING STABILITY
The accuracy and stability of prediction are highly important
indices. The evaluation of forecasting performance cannot
rely only on the accuracy, as the stability is indispensable.
The innovative combined prediction system that is introduced
in this paper was developed based on an improved weight
determination method, namely, ISMODA, which aims at
increasing the accuracy and stability of model prediction.
To more effectively evaluate the prediction performance of
the model, we further evaluate the stability of the forecasting
values. The stability of the forecasting results is necessary for
measuring the prediction performance. In many studies, the
variance of the predicted results can often be used to measure
the stability of the prediction. Nevertheless, it is unscientific
to use the variance of the predicted results to measure the
magnitude of the stability because it inadequately reflects the
stability of the predicted sequence. Hence, in this section,

TABLE 12. Forecasting stability results.
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TABLE 13. Results of the sensitivity analysis.

the standard deviation of the prediction error is used to
evaluate the magnitude of the stability index. The improved
stability index combines the sequence characteristics of both
the predicted curve and the ground-truth curve to more effec-
tively demonstrate the predictive performance. The obtained
indicator values are presented in Table 12. In the comparison
with the other considered models, the proposed combined
model realizes the highest stability; hence, it realizes satis-
factory prediction performance.

E. SENSITIVITY ANALYSIS
In the proposed combined prediction system, the optimization
module plays a key role, and the VMD-ISMODA optimiza-
tion algorithm has a substantial influence on improving the
prediction accuracy. Therefore, the parameter setting prob-
lem in the optimization algorithm merits discussion. During
the optimization of the algorithm, a key parameter, namely,
the number of search agents, affects the performance of
the algorithm and affects the prediction performance of the
prediction model. In this section, we conduct a sensitivity
analysis on the number of search agents. We design a variety
of agent number running models, and the prediction results
are presented inTable 13. According to the prediction results,
the forecasting accuracy changes with the number of agents.
Too many agents can lead to inaccurate predictions and can
increase the complexity of the algorithm, whereas if the num-
ber of agents is too small, the optimal weighting factor cannot
be obtained, thereby leading to inaccurate predictions. The
total number of agents is determined via an optimization pro-
cess for the algorithm. According to the results in Table 13,
there is a turning point in the number of agents, which can
be used as the optimal parameter of the algorithm. Based
on the above discussion, we set the number of search agents
to 30, which is the result of several trials that optimized the
performance of the model.

VII. CONCLUSION
The role of wind energy in the field of low-carbon energy can-
not be ignored. Reliable and accurate forecasting has impor-
tant economic and security implications for the operation
of wind farms. Nevertheless, forecasting remains a difficult
problem that must be solved urgently due to the complexity
and nonlinear characteristics of wind speed datasets. In this
study, a combined wind energy forecasting system is pro-
posed, which is based on variational mode decomposition
technology and the immune selectionmulti-objective dragon-
fly optimization algorithm, and stable and accurate forecast-
ing results are obtained. The wind speed data of four seasons
in China’s wind farms are used to evaluate the results, which
prove the predictive accuracy and performance of the com-
bined forecasting system that is proposed in this study. As one
of the countries with the largest installed wind power capacity
in the world, the wind speed data of China is representative
and experimental. The experimental results demonstrate that
the combined forecasting system that is proposed in this paper
has the following advantages: (a) after adopting the improved
multi-objective optimization algorithm, it not only improves
the accuracy of prediction but also ensures the stability of
the prediction results; and (b) the experimental module and
evaluation module show that the model realizes satisfactory
predictive performance. In the end, the above analysis shows
that the proposed combined model forecasting system has
extremely high predictive power and, hence, can be used as
an effective tool for wind energy forecasting. The combined
wind speed forecasting system proposed in this paper can
effectively realize the utilization of wind energy resources
and play a significant role in the power dispatching and man-
agement of wind farms. The proposed forecasting system can
be used for wind speed forecasting in other regions, but none
of the models is perfect. When considering data in different
regions, we need to consider appropriate adjustments to the
forecasting system.
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APPENDIX
See Tables 14 and 15.

TABLE 14. The general settings for model parameters.

TABLE 15. The running time of the models (s).
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