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ABSTRACT In the development of the wind power industry, short-term wind speed forecasting is necessary,
and many researchers have made substantial efforts to establish wind speed prediction models. However,
realizing the accurate prediction of wind speeds remains a challenging task. The current prediction models
do not consider the preprocessing of the data, and each model has various shortcomings. Considering the
disadvantages of the available models, in this paper, an advanced combined forecasting system is applied
that utilizes a data preprocessing strategy and parameter optimization strategy to obtain accurate prediction
values. The proposed prediction system employs linear and nonlinear models that can take into account the
characteristics of wind speed sequences, successfully combine the advantages of various single models, and
yield accurate and stable prediction values. Finally, according to the experimental analysis and discussion,
the proposed combined prediction system outperforms the compared models in prediction. In conclusion,
the powerful combined prediction model provides a feasible scheme for wind power prediction.

INDEX TERMS Artificial intelligence, combined forecasting system, data preprocessing, developed

optimization algorithm, wind speed forecasting.

I. INTRODUCTION
Resource depletion and global climate change are becoming
increasingly severe. Accelerating the extraction and utiliza-
tion of clean energy is an effective approach for solving these
problems. In recent years, the use of renewable energy power
generation technology has become increasingly widespread.
Compared with traditional power generation methods, renew-
able energy power generation technology has many advan-
tages [1]. Renewable energy not only protects the natural
environment but also makes more effective use of limited
space. Wind energy, as an environmentally friendly energy
source, is an important type of renewable resource and occu-
pies a dominant position in the world’s energy mix [2].
Wind energy is the energy that is produced by the move-
ment of air on the surface of the earth. It is favored by
many countries because it is regenerative and clean [3].
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Coastal and open continental contraction belts are rich in
wind energy resources. From the perspective of regional dis-
tribution, North America, Asia and Latin America are major
sources of wind energy resources. According to estimates
by authoritative institutions, the total amount of wind power
in the world is approximately 130 billion kilowatts, and the
portion that can be used is approximately 15%, which is
10 times that of hydropower resources, and can reach 53 tril-
lion kilowatt hours per year. China is very rich in wind power
resources. Vigorously developing the wind power industry
is regarded as an important measure for transforming the
development model and realizing sustainable development.
According to statistics from the Global Wind Energy Council
(GWECQ), from the perspective of the development of the
entire global wind power industry, the total installed capacity
has been increasing year by year. In 2017, the cumulative
installed capacity of global wind power was approximately
539 GW [4]. Fig. 1 presents the regions of the world with
high installed wind power capacity.

178063


https://orcid.org/0000-0003-1850-7697
https://orcid.org/0000-0001-8638-126X
https://orcid.org/0000-0001-9078-7617
https://orcid.org/0000-0001-8678-2805

IEEE Access

H. Bo et al.: Wind Speed Forecasting System Based on VMD and Immune Selection Multi-Objective Dragonfly Optimization Algorithm

The Accumulative Installed Capacity and Top 10 New Installed Capacity

*I)am source: | from Jan. to Dec. in 2017 in the world

Global Wind |
i Energy Council |
""""""""" Finlan
d

- Gliiza
a\ % - "”‘”’,Gefmany - 19660 MW
s1% o $ OV 3759

12.5%

Francg ’
w -
MW 766

7017 MW. < 1.5%
13.4% South 7.9%

5:
79

2] M

) w2
w 432650
7 = 369852
MW 2
oy 282850 B4 *
3.9% rozes ik° ;
159052 He
120696 i
raw N j
06 2007 2008 2009 2010 2011 2012 2015 2014 2015 2016 2017

FIGURE 1. Application of wind energy resources on the global scale.

In the past decade, due to the strong support of the Chinese
government, wind energy has played an indispensable role
in China’s energy industry structure. In addition, due to the
large amount of power resources provided by the wind power
industry, the recent power shortages in China were effectively
alleviated [5]. The prediction and assessment of wind energy
resources are practical and challenging tasks [6].

Over the years, many methods have been proposed for
the prediction of wind energy, and these prediction methods
are divided into the following categories: physical methods,
general statistical methods, artificial intelligence methods,
and combined models (or hybrid models) [7], [8]. Numerical
weather prediction (NWP) modeling is a typical method
that uses physical models, and these physical models have
great advantages in the field of long-term prediction [9].
However, the physical models require substantial support
from meteorological data, which complicates the predic-
tion [10]. The general statistical modeling methods mainly
include the autoregressive (AR) method, the autoregressive
moving average (ARMA) method, and the autoregressive
integrated moving average (ARIMA) method. These linear
models show good performance in short-term predictions
[11], [12]. However, the nonlinear characteristics of time
series render accurate prediction impossible [13].

In the past years, artificial intelligence (AI) methods have
developed rapidly and have been applied to a variety of fields.
Many researchers have used these approaches to prediction,
especially in the field of wind energy forecasting. Artificial
neural networks (ANNSs) such as the echo state network
(ESN), extreme learning machine (ELM), and the back-
propagation neural network (BPNN) are typical Al meth-
ods [14]-[17]. Other AI approaches include support vector
machine (SVM) and least-squares support vector machine
(LSSVM) [18]. Intelligent methods have been widely used in
economic forecasting, energy forecasting, power load fore-
casting, and even air quality predictions [19]-[22]. Among
them, the ANN method can accurately capture the nonlin-
ear features in the time series. If the sequence has strong
nonlinear features, it shows good prediction performance
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on the prediction surface, and can realize high prediction
accuracy. According to Ma et al, the ANN method can
describe the complex relationships in historical data; hence,
it is a suitable method for predicting wind speed [23]. For
example, Li & Shi considered the wind speed sequence in
hours as a comparison experiment, and via the comparative
analysis of various neural network methods, they found that
each single method has its own advantages and disadvan-
tages [24]. Wang et al. applied a method that uses ESN,
compared it with other ANNs methods, and obtained more
accurate prediction results [25]. In addition, Niu et al. demon-
strated that the ANNs approach has the natural advantage of
being able to extract the nonlinear features of the sequence
and, hence, realizes more accurate predictions than other
methods [26]. In recent years, deep learning applications
have grown rapidly due to the satisfactory performance of
deep learning in dealing with big data and high-performance
computing power. Wang et al. proposed deep convolutional
neural network (DCNN) based wavelet transform (WT) for
forecasting photovoltaic (PV) energy and obtained accurate
results [27]. Hu et al. used the long short-term memory neural
network (LSTM), the hysteretic extreme learning machine
(HELM) and the differential evolution algorithm (DE) meth-
ods to forecast wind energy data and obtained a satisfactory
forecasting result [28].

Each forecasting model has disadvantages, and no pre-
diction model is perfect [29], [30]. Hence, researchers have
recently shifted their attention to combined and hybrid mod-
els, which can produce more accurate predictions by combin-
ing several approaches. For instance, Hao & Tian proposed
an improved nonlinear combined prediction system, which
processed the original data via a data preprocessing approach
and used a developed SVM to combine all single predic-
tors to obtain the final forecasting results. This approach
overcame the shortcomings of the single models and yielded
accurate prediction results [31]. Ma & Liu applied the kernel
function method to the grey model, proposed a new time-
series forecasting model, and demonstrated that this method
outperforms the traditional grey model in practical applica-
tions [32]. Heng et al. proposed a hybrid prediction model
that is based on empirical mode decomposition (EMD) and
the cuckoo search algorithm, which is used to obtain more
accurate results for power load forecasting [33]. Wang et al.
proposed another hybrid prediction method for wind speed
prediction that uses the decomposition method, BPNN and
the genetic algorithm (GA) [34]. In addition, Zhou et al.
proposed a new approach that combines multiple single pre-
diction models via the genetic algorithm and particle swarm
optimization to obtain a combined prediction model, and
they demonstrated that developed model has superior predic-
tion performance [35]. Several additional examples are listed
in Table 1.

Previous traditional models have flaws that can lead to
inaccurate predictions. The combined (hybrid) model is supe-
rior to single traditional models, but most combined (hybrid)
models focus on the improvement of the model forecasting

VOLUME 7, 2019



H. Bo et al.: Wind Speed Forecasting System Based on VMD and Immune Selection Multi-Objective Dragonfly Optimization Algorithm

IEEE Access

TABLE 1. Summary of reviewed wind speed forecasting models.

Model dataset Result Advantage Disadvantage
Physical forecasting method
Through economic analysis, the researchers found that
NWP methods [36] Wind energy data in Malaysia Malaysia has high wind energy potential, in contrast to

Spatial correlation
method [37]
Numerical weather
prediction Eta model
[38]

etc.

Wind direction with wind speed

Wind energy data collected from
the Nasudden power plants

widespread publicity.
Wind image data are used to improve the prediction
accuracy of the wind speed.

The Eta model is applicable as a meteorological driver for
wind energy modeling and prediction.

Has great advantages in the
field of long-term
forecasting and plays an
important role in long-term
forecasting.

The physical model requires
substantial support from
meteorological data, which
renders the prediction more
complicated and provides
only ultra-short-term wind
speed forecasting.

Statistical forecasting methods

Hammerstein model ,

Three years (2004-2006) from

The HAR model is suitable for a short term 1-24 h

AR method [39] two different sites forecast horizon.
o N The accuracy of the ARIMA for the first 68 hours of . .
ARIMA [40] Historical and synthetic wind wind speed prediction is lower when it is used for longer For §hqrt—term qud Sp ced These models are'hnea: and
speed data periods of time prediction, the statistical they do not effectively
’ model has more advantages capture the nonlinear
Fractional-ARIMA Hourly average wind speeds from  This model can improve the accuracy of wind energy and has higher potential for  characteristics of the data
[41] North Dakota forecasting when compared to the persistence method. short-term forecasting. sequence.
etc.
Artificial intelligent forecasting technologies
24 hourly mean wind speed data The developed model for short term wind speed
ANNSs [42] i 0 o & ine showed d
om La Venta, Oaxaca., México orecasting showed a very good accuracy . ) . The drawbacks of ANN
Differential i . i They can identify nonlinear . .
. Hourly data for a period of 1-3 The proposed model is a new neural network type, which lationshins in the dataset models include becoming
polynomial neural ! relationships in the datasef tranped by local mini
days can model more complex dynamic processes. apped by local mimma,

networks [43]

regardless of whether the

overfitting problems, being

LSSVM [44] Hourly wind speed from North LSSVM outperforms the persistence model in most of ; e()l:ltlonshlps are known or limited by insufficient data
Dakota, USA. cases. ) and requiring larger samples.
etc.
Combined/Hybrid forecasting technologies
The proposed hybrid models show higher forecasting
EMD and ELM[45] Xinjiang wind farm in China accuracy than the ARIMA and the persistence model, Each hybrid model is
among others. designed by researchers

SSA, PSO and BPNN
[46]

Wind speed data collected from
Penglai in China

The proposed method can improve the forecasting
accuracy and is suitable for short-term wind speed
forecasting.

This hybrid model is more efficient and can yield more

By integrating the
individually superior
features of multifarious
algorithms/models, they can

according to their
considerations and shows
highly promising results on a
set of practical problems

i i g i realize higher prediction . "
Adaptive boosting Short-term wind speed data accurate wind speed forecasts than the benchmark models  accuracy than other models under limited conditions but
strategy[ 18] collected from China from the literature. - may perform poorly on other

problems.
etc.
Deep learning technologies
Datasets from a northwestern . . .
The proposed methods increased forecasting accuracies :

WTand DCNN [27] Flanders PV farm and a unde]i selzisonal variations and various predié;tion horizons The representation .

northeastern Limburg PV farm . performance of deep learning

. . The proposed GT-DBN model outperforms other models Its capability for dealin does not mean that deep
Er Eyftﬁeg;};ﬁ(n&%?ep Flz;:f]\z isvznpower plant in in terms of forecasting accuracy and is suitable for day- with lgig datt}; and high-g leam%ng perfqrms better'for
chetne ce ahead PV power output prediction. performance computing learning nonlinear functions,

Stacked autoencoder . . and it is theoretically difficult
Levenbero— Real-world data collected from The deep architecture of the neural network approach is power. for deep learning to train the
Marquar dgt [49] the M6 freeway in the U.K. used to realize accurate traffic forecasting. deep network and to optimize

etc.

its parameters [47].

accuracy and often ignore the importance of predictive
stability. The forecasting accuracy and stability of the model
must be guaranteed, and both need to be considered com-
prehensively. Therefore, the single-objective optimization
method cannot solve this problem, and a multi-objective
optimization method needs to be considered.

For the above discussion, a developed combined wind
speed prediction system that is based on the variational mode
decomposition (VMD) approach and the immune selection
multi-objective dragonfly optimization algorithm (ISMODA)
is applied for multi-step wind speed prediction. The proposed
combined wind speed prediction system consists of four
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main parts: the data preprocessing part, the optimization part,
the prediction part and the evaluation part. This combined
wind speed forecasting system overcomes the shortcomings
of single-model prediction and can capture the nonlinear
features of the wind energy sequence accurately, which not
only greatly improves the accuracy but also ensures the
stability of the prediction. In the data preprocessing stage,
the wind energy data are decomposed via a decomposition
strategy to eliminate the high-frequency noise signals. More-
over, in the forecasting stage, four single forecasting compo-
nents are used for short-time wind speed prediction, namely,
three ANN models and a linear model. Next, an advanced

178065
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multi-objective optimization algorithm, namely, ISMODA,
is used to determine the weights of the four single-model
components and to obtain the final combined model results.
To the best of our knowledge, determining the weight of a
single model via this method can combine the advantages
of each component well and can yield highly accurate wind
speed forecasting results.

The forward-looking contributions and innovations of
this paper are as follow:

I. The stability and accuracy of the prediction are taken
into account. In the prediction of wind speed series, stability
is an important index, but it is easy to ignore. Therefore, a
multi-objective optimization method is used to improve the
accuracy and stability of the system.

II. An improved optimization algorithm that uses the
immune selection operator is applied to the construction of
prediction system. The improved algorithm can update the
population using immune selection operations in the late opti-
mization iteration. Via this approach, it can effectively sup-
press the premature stagnation problem in the convergence
process and improve its global optimization performance and
optimization accuracy.

III. The organic combination of linear and nonlinear mod-
els has strong linear and nonlinear characteristics. The pro-
posed combined prediction system combines the advantages

of each model, captures the linear and nonlinear charac-
teristics of the data series, and yields stable and accurate
prediction results.

The structure of this paper is as below. Theoretical intro-
duction of VMD and ISMODA algorithm are shown in
Section 2. The information of the data is summarized in
Section 3. In Section 4, we introduce the accuracy evalu-
ation index and validity evaluation index in detail. Several
comparative experiment analyses are displayed in Section 5.
Section 6 draws several discussions to confirm the forecasting
models. Finally, the summary is placed in Section 7. The main
flow of the article is shown in Fig. 2.

Il. METHODS INTRODUCTION

In this section, the methods that are proposed in the paper
are discussed in detail. These are VMD data preprocessing
method and the immune selection multi-objective optimiza-
tion dragonfly algorithm (ISMODA).

A. VARIATIONAL MODE DECOMPOSITION

VMD is an effective technique for preprocessing signals that
outperforms other signal processing approaches. The VMD
method is based on variational constraint theory and can
decompose real-valued signals into modalities with nonre-
cursive screening structures [50]. Each decomposition mode
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is a quasi-orthogonal band-limited subsignal that is sparse
and must be the most compact near its center frequency. The
implementation process of the VMD method is as follows:

Step 1: Determine the number of decomposition modes
urp(Hk = (1,2, ..., k), set the balance parameter «, and then
initialize.

Step 2: The analytical signal that is consistent with the
Hilbert transform is calculated via the following equation.

T (1)

Aup(t) =u(t) + i f dt = (6(t) + i) X ug(t),
T mt

—00

i=+—1 ey

Step 3: The complex exponential term e~ is mixed with
the analytical signal Au(?) to transfer the spectrum of the
mixed signal to a consistent estimated center frequency. Next,
a constraint variation problem is formulated:

; 2
i ar | [8() + — —Hlit 2
i A5 [ (504 L) emo] o]
Z u(r) = x(t) (3)
k

Here, x(¢) is the raw sequence, § represents the Dirac dis-
tribution, and * is used to represent the convolution operator.
Step 4: Define a new constraint problem as follows:

L () () = 3 o [(s0+ £ ) wamen ||

+ <x(¢), x(t)— Y uk(t)> “
k

2

2

+ | x() = Y o)
k

2

and
18 F ()| df
I awH|” dr

A more detailed explanation can be found in Ref. [51].

= )

B. IMMUNE SELECTION MULTI-OBJECTIVE
OPTIMIZATION DRAGONFLY ALGORITHM

The dragonfly algorithm (DA) simulates the behavior of the
dragonfly population and performs global and local searches
[52], [53].

1) DRAGONFLY ALGORITHM
Behavior pattern of group movement of dragonflies:
Spacing: Avoid collisions between two individuals

Si== X -X) ©

Here, S; is the separation of the i — th individual, and X
and Xj represent the positions of two individuals.

Alignment: Keep the movement of oneself in harmony with
the movements of other individuals in the group.

A=Y VN ™
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Algorithm 1 Pseudo Code of the VMD
1: Select the number of the decomposed modes and the
balance parameter . Initialize {#} }, { fkl 1, an <0

: Repeat

Start counting n <— n + 1

: FOR (k=1:k) DO

: /[«xDecomposing real-valued multi-component signals
into modalitiess/

6: Update u; forall f > 0

i) = [f(f) - ST - S+ ATW] /
<< 1>

[1+ 2a(f _fkn)z R

7: Update center frequency f :

2 2
Phoa = I | o ar ) 52 it o) af
8: /xDecomposed mode must be the most compact around

its center frequency*/

9: END FOR

10: Dual ascent for allf > 0 :
MY =) + T (f(f) - qu’i“(f))

k

11: /%Until convergence to the specified convergence toler-

ance criteriax/ )
12 UNTIL convergence: Y, ‘ 2/ |ag H; <e¢

i

where A; is the alignment quantity and Vj represents the speed
of the j — th neighboring individual.

Cohesion: An individual tries to approach a group to which
it believes it belongs.

N
SR

N
Finding prey: Individual dragonflies finding prey.

Ci= X ®)

Fi=X"-X 9)

Here, F; represents the attraction of individuals to prey, and
X denotes the location of the prey.

Avoid enemies: Dragonflies avoid enemies during
predation.

Ei=X +X (10)

where E; is the individual escape distance, and X ~ represents
the location of the enemy.

Update process of step and position vectors of dragon-
flies:

Step vector AX; 1 indicates the direction and step length
of a dragonfly:

AXi1 = (Si+aA; + cCi+fF; + ¢E;)) + wAX, (11)

The position vector X,y of a dragonfly is calculated as
follows:

X1 =X+ AX (12)
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If there is no adjacent solution near the individual, the ran-
dom walk (Le'vy) strategy is used to search in the search
space.

X1 =X, + Levy(d) x X, 13)

Here, d represents the dimension of a single position
vector. The Le'vy function is expressed as follows:

I , _ ry Xo _
¢vy(x) = 0.01 x ———,r1,r2 = rand(0, 1) (14)
2l
%
rd+ in(%
(1 + B) x sin(5%-) T = (- 1))

Py x g x 27
(15)

where $ is a constant.

2) IMMUNE ALGORITHM

The immune algorithm (IA) is based on the principle of bio-
logical immunity. The immune system is a complex adaptive
system, which can protect the body from external pathogens.
It attaches all the cells and molecules of the body to its own
species, and divides external sources into non-self molecular
species. It can optimize the solution by imitating the process
of the biological immune system, which produces an immune
response when it fights against foreign antigens and auto-
matically produces corresponding antibodies for destroying
invading antigens [54], [55].

IA can effectively maintain the population diversity by uti-
lizing the diversity generation and maintenance mechanisms
of the biological immune system, overcome the premature
stagnation in the complex optimization process, and yield the
globally optimal solution. This avoids the problem that DA
method is prone to falling into a local optimum at the end
of the optimization iterations and improves the global search
performance.

3) IMMUNE SELECTION OPERATION FOR THE DRAGONFLY
ALGORITHM

During the algorithm optimization stage, if the optimal-
ity of successive generations of groups is not significantly
improved, then the immune selection operation produces a
new population. The implementation steps of the transformed
immune selection operation are as follows:

Step 1: Calculated the fitness value FA(X;) of dragonfly
X;. The fitness function includes two indicators, one is accu-
racy and the other is stability, and is defined as: FA; =
1/N vazl |&i — vi|, FAy = std(y; — y;), y; is the true value, y;
is the predicted value.

Step 2: Calculate the similarities between dragonfly indi-
viduals:

Djj = |FA(X;) — FA(X))| (16)
1, Dj< min D
dij = {0, D;j > minD a7
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Algorithm 2 Pseudo Code of the ISMODA

Initialize the dragonfly population with random solutions;

Initialize step vectors AX;(i =1,2,--- ,N);

1: Set DS=8; (after every DS iteration, check whether the

optimal individual has improved)
Set replaceP=0.5; (individuals with lower expected
reproduction probability than replaceP will be immune
replaced)
Set minD = le — 10; (the minimum distance between
individuals)

2: Calculate the fitness function for each search agent

3: Find the nondominated PO solution and initialize the

external archive (A) with them.

4: WHILE (¢t < Itermax)

5: Calculate the fitness of all dragonflies; Select the best
solution as the food source; Select the worst solution
as the enemy;

Update s, a, c, f, e and w;

6: FORi=1:N

7: Calculate S;, A;, C;, F;, and E;;
Update the neighboring radius;

8: IF a dragonfly has at least one neighboring
dragonfly

9: Update the velocity vector and position vector:

AXi11 = (sS; +aA; + cCi + fF; + eE;)
FwWAXy, Xpv1 = Xi + AXp
10: ELSE
11: Update the position vector via a random
walk (Le vy flight):
Xiv1 =X + Le'vy(d) x X;
12: END IF
13: Check and correct the new positions based on the
boundaries of the variables;
14: END FOR

15: Identify the optimal individual of the current
iteration Xbest(t),

16: IF t >DS

17: IFmod(t, DS) == 0&&(Xbest(t — DS + 1))

—Xbest < 1le — 20
18: FORi=1:N
19: FORj=1: N
20: Calculate the distance between each
individual and all other individuals and calculate
the similarity between individuals: D;; =

1, Djj <minD
|FA(X;) — FA(X))| dij = { i

0, Dj > minD
21: END FOR
22: Calculate the individual concentration between
each individual and calculate the expected
reproduction probability;

IC; = LYV | d;PR(i) = a 2% __
i N /I_Cl ij ()=« _;V:lFA(Xj)
+(1 -« L
¢ )Zj‘v—llci

23: IF PR(i) < replaceP
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Algorithm 2 (Continued.) Pseudo Code of the ISMODA

24: Randomly generated a new individual to replace the
original individual i;

25: END IF

26: END FOR

27:  ENDIF

28: ENDIF

29: t=1t+1

30: END WHILE Output the best solution that was found.

where minD represents the minimum distance between
individuals.
Step 3: Calculate the individual concentration of ICi.

1 N
ICi= ijl d;j (18)

Step 4: Calculate the expected reproduction probabilities
of individuals.

PR) FAX) |- g
=—— —o)——,

Yo FA(X) Y IG
a € rand (0, 1) 19)

Step 5: Conduct the immune selection operation on indi-
viduals according to their expected reproductive probabil-
ities. If the probability of the current individual is large,
the elite retention strategy will be adopted for the individual;
if the probability is small, the immune replacement operation
will be conducted for the individual.

The expected reproduction probability of an individual is
proportional to its fitness value and inversely proportional to
its individual concentration. This not only ensures the diver-
sity of individuals but also effectively prevents the iteration
from falling into a local optimum and further improves the
convergence performance of the algorithm.

Ill. DATA PREPROCESSING MODULE

The randomness and complexity of wind energy data lead
to inaccurate prediction results. The processing of the raw
wind energy data has become an important step in wind

TABLE 2. Main information characteristics of the raw wind energy data.

speed prediction. To obtain satisfactory prediction values,
data preprocessing is necessary. In this section, we introduce
a data preprocessing module that uses the VMD strategy
to eliminate high-frequency noise signals from the original
wind speed sequence, and the strategy of decomposition and
reconstruction is used to preprocess the original data.

A. INFORMATION ON THE ORIGINAL DATASETS

Wind energy resources are widely distributed in northwest,
east and northeast China. Shandong (north latitude: 37°48’,
east longitude: 120°45’) is a coastal province of China with
natural advantages. There are rich wind energy resources and
developed wind power industries. Therefore, short-term wind
speed datasets of the Shandong Peninsula with a time interval
of 10 minutes were collected for the study (as presented
in Fig. 3 and Table 2). The humidity and air pressure in this
region are 65% and 1012.7 hPa, respectively. The data sites
are in mountainous and hilly areas, the altitude ranges from
100 m to 240 m, and the measurement height is 70 m. The
researchers found that the spatiotemporal variability of wind
resources in China is large. Temporally, the wind resources
over all of China are more abundant in the cold season (spring
and winter with peaks in April) than in the warm season
(summer and autumn with minimal values in August) [56].
To more effectively evaluate the performance of the predic-
tion model, we conducted seasonal data collection. Shandong
peninsula has a typical warm temperate monsoon climate.
According to its climatic characteristics, we choose the repre-
sentative month of each season for constructing the dataset:
April is the representative month of spring, July is the rep-
resentative month of summer, October is the representative
month of autumn, and January is the representative month of
winter. Consider the winter dataset as an example. These data
were sampled from January 1, 2011 to January 20, 2011; this
period spans 20 days and includes 2880 samplings. We divide
each wind speed sequence into two groups: a training sample
and a testing sample. This division is illustrated in Fig. 3. The
data from the initial 16 days, namely, from January 1, 2011 to
January 16,2011, are used as the input for training to establish

Statistical Indicator(m/s)

Dataset Samples Number Data Max Min Mean std.
All samples 2880 2011/04/01-2011/04/20 19.40 0.80 7.6302 3.2133
Spring Training samples 2304 2011/04/01-2011/04/16 14.70 0.80 6.8878 2.6857
Testing samples 576 2011/04/17-2011/04/20 19.40 3.20 10.5998 3.4300
All samples 2880 2011/07/01-2011/07/20 12.50 0.90 4.8620 2.0217
Summer Training samples 2304 2011/07/01-2011/07/16 12.50 0.90 5.1261 2.1017
Testing samples 576 2011/07/17-2011/07/20 8.30 1.00 3.8056 1.1728
All samples 2880 2011/10/01-2011/10/20 13.80 0.80 5.5087 2.3927
Autumn Training samples 2304 2011/10/01-2011/10/16 13.80 0.80 5.6466 2.5130
Testing samples 576 2011/10/17-2011/10/20 10.80 1.70 4.9573 1.7299
All samples 2880 2011/01/01-2011/01/20 18.10 2.30 9.4241 2.8516
Winter Training samples 2304 2011/01/01-2011/01/16 18.10 2.30 9.7592 2.9562
Testing samples 576 2011/01/17-2011/01/20 12.80 2.50 8.0837 1.8609
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FIGURE 3. Information on the original data.

the matrix for the model and the remaining data, namely,
the data from January 17, 2011 to January 20, 2011, are used
for testing. This same rolling prediction mechanism was used
on the training sample and the testing sample.

B. WIND SPEED SEQUENCE AFTER PROCESSING

In the prediction process, the processing of the original
data sequence is necessary. By analyzing the characteristics
of the original sequence, the prediction accuracy can be
effectively improved. Via the data preprocessing strategy,
the original signal is decomposed, and the high-frequency
noise signals that affect the prediction are removed and
reintegrated into a stable sequence. Based on the integra-
tion strategy, the adverse impact of high-frequency noise
is eliminated. By this approach, the initial wind speed
sequences are reconstructed. Moreover, each reconstructed
wind speed sequence extracts the main characteristics of
the initial sequence; the instability and randomness of the
wind speed sequence are significantly reduced. The predic-
tion performance could be enhanced effectively. The data
characteristics of the denoised sequence are listed in Table 3.
In addition, the reconstructed sequence will be used for future
predictions.
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TABLE 3. Main information characteristics of the wind energy data after
processing.

Statistical Indicator(m/s)

Dataset Samples Number

Max  Min Mean Std.
All samples 2880 1831  1.01 7.6302  3.1622
Spring Training samples 2304 14.33  1.01 6.8881 2.6346
Testing samples 576 1831  3.83  10.5984 3.3515
All samples 2880 12.07 1.07  4.8620 1.9643
Summer Training samples 2304  12.07  1.07 5.1258  2.0413
Testing samples 576 7.76 1.18 3.8070 1.1121
All samples 2880 1296 1.00  5.5087 2.3522
Autumn Training samples 2304  12.96  1.00 5.6466  2.4707
Testing samples 576 10.37  1.88 4.9573  1.6952
All samples 2880 17.75  2.61 9.4241  2.8067
Winter Training samples 2304 17.75  2.61 9.7588  2.9107
Testing samples 576 12.17  2.62 8.0851 1.8064

IV. ACCURACY EVALUATION INDEX AND VALIDITY
EVALUATION INDEX

To evaluate the prediction performance of the proposed
model, we designed several evaluation indices for testing
the accuracy of prediction. On this basis, a discussion mod-
ule was added to examine the prediction performance of
the model in terms of several special evaluation indices.
A detailed explanation of these indicators is as follows.
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A. ACCURACY EVALUATION INDEX

Predictive accuracy evaluation is an indispensable part
of this research, and multiple performance indicators are
used to test the predictive performance of the predictive
model. However, there are no systematic regulations regard-
ing evaluation indicators of prediction models. This study
uses several commonly used evaluation criteria, namely,
MAPE, MAE, RMSE, and SSE, to evaluate the forecasting
performance [57].

The MAE and RMSE can be used to represent the aver-
age error of the predicted result with respect to the ground-
truth result. The total prediction error is represented by SSE.
Among the several evaluation indices, the most commonly
used index in the application is MAPE, which can be used
to evaluate the prediction accuracy of the forecasting model.
The criteria are described in detail in Table 4 [58].

TABLE 4. Four evaluation criteria.

Metric Definition Equation

N A0\ 2
SSE=Z(Y,—Y,)
i=1
1 N A2
— Y -7,
tx3(1-1)

i=1

SSE sum of error squares

RMSE square root of average of error squares RMSE =

A

N
Lsly -1,

MAE:WZ

i=1

MAE mean absolute error

14 .
MAPE average of N absolute percentage error MAPE=— 21{ *4 / 1x100%
F=)

B. TESTING METHODS

The predictive performance of the proposed model is
evaluated statistically via the detection of several special
indicators.

1) FORECASTING EFFECTIVENESS

The effectiveness of prediction is measured by the sum of

the squares of the prediction errors, which is an effective

method. In contrast, in this section, we introduce a new sci-

entific validity measure: the mean variance of the prediction

accuracy. The index is defined by the following formula [59]:
Ay, is the prediction accuracy:

Ap = 1— &) (20)
-1, On = In)/yn <1

en =100 =)/, —1=On—=In)/yn <1 (21
L, On = In)/yn > 1

The k-order forecasting validity is expressed by the follow-
ing formula:

N N

mg =Y 0,A8 > 0, =1 (22)
n=1 n=1

The probability distribution is discrete, and its prior infor-

mation cannot be obtained. We assume it is 1; hence,

Qn is expressed here as I/N. H represents a continuous
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function of a kth-order prediction effectiveness element.
H (m',m?, .- mF)is the k-order prediction effectivenesses.

The frist-order and second-order forecasting effective-
nesses are expressed as follows:

H <m1> —m! (23)
H (ml, mz) —m (1 —Jm? (m1)2> (24)

2) DIEBOLD-MARIANO TEST
The DM test is a hypothesis testing method that determines
whether the statistical hypothesis of an inference is estab-
lished by examining the magnitude of the statistic, thereby
determining whether the hypothesis is true. This paper uses
this method to prove the significant difference among the
forecasting results of the combined forecasting system and
other models, and more effectively proves the predictive
performance of the predictive model [60]. The DM test is
introduced as follows [61]:

The error of the predicted results with respect to the
ground-truth results is defined by the following formulas:

e n = Yutn = Shin (25)
&= Yuth — Von (26)

Here, y,4n and 3,4 are the ground-truth value and the
forecasting result, and n and % represent the number of pre-
diction series and the forecast step size, respectively.

The loss function F (eil )i = 1, 2is defined for calculating
the prediction accuracy. The general method of determining
the loss function is as follows:

F(el,,;) = (ehyp)’ 27)
Fleyy) = eiz+h‘ (28)

The DM statistic is defined by Eq. (21) as follows:

T
T X Flepy) = Fler,,)
DM = —"=! (29)
V/S2/T

Here, S2denotes the variance estimate of F (e}l ) —F (eizl )
Two prior assumptions are specified: the original
hypothesis Hy and the alternative hypothesis Hj. The original
hypothesis is Hy : F (e,ll +h) = F (ei +h), and the alterna-

tive hypothesis is H; : F(erll+h) * F(e,%+h).

3) GREY RELATIONAL ANALYSIS
By using the grey relational analysis (GRA) index, we can
calculate the degree of fit between the predicted values
and the ground-truth values, and we can judge whether the
predicted sequence is similar to the original sequence. The
method is introduced as follows:

The original sequence and forecasting sequence are
denoted as

Xo = (Xo(1), Xo(2), - - - , Xo(n))
Xi = (Xi(1), Xi(2), - - -, Xi(m)) (30)
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The series are standardized by
Xi0) = 5 21 Xi0)
Vi T 0 — £ X0 Xio)

The correlation between the two sequences is calculated as
follows:

xi(1) = €1y}

min min |xo(k) —x;(k)|+p max max |xo(k) —xi(k)|
1 1

§i(k)=

Ixo(k)—xi(k)|+p max max Ixo(k)—xi(k)|
0 € (0, 00) (32)

The gray correlation degree of the two sequences is calcu-

lated as follows:
1 n
= &)

The value of r; corresponds to the degree of similarity
between the i-th prediction curve and the ground-truth curve.

(33)

4) DIRECTION OF FORECASTING
To determine whether the data trends of the prediction
sequence and the original sequence are consistent, we pro-
pose an effective statistic, namely the directivity (Daccuracy),
for evaluating the degree of consistency between the predic-
tion curve and the original curve:

N
1
Daccuracy = N Zai x 100%

{

i=1

ai =1, Git1 —¥)@iy1 —y) =0
a; =0, Gig1 —¥)Piy1 —¥i) <0

(34)

(35)

Here, N denotes the length of the forecasting curve, j is a
data point of the prediction sequence, and y is the correspond-
ing data point of the original sequence. Dgccuracy T€Presents

TABLE 5. Results of experiment 1.

the degree of directional consistency of the two sequences,
which is obtained via calculation.

V. EXPERIMENTAL DESIGN AND RESULTS

Four comparative experiments are designed in this part. The
forecasting accuracy of the proposed model is evaluated
via these experiments. The experiments were run on the
MATLAB 2018 platform.

A. EXPERIMENT 1: COMBINE MODEL VS. SINGLE
MODELS

In this section, the prediction accuracies of the combined
model and four single models are compared. The four single
models are VMD-ARIMA, VMD-BPNN, VMD-ENN, and
VMD-ELM, which are the components that are used to build
the combined model. Table 5 presents the experimental result
data, and a more vivid comparison is presented in Fig. 4.
Then, we interpret the comparison results.

During the wind speed prediction process in the spring,
the proposed model realizes the highest forecasting accu-
racy, regardless of whether it uses single-step prediction
or multi-step prediction. The minimum MAPE values are
2.81%, 3.29%, and 3.58%. In the data concentration in the
summer, due to the low values of the raw wind speed sequence
in the climatic characteristics of wind power sites, the accu-
racy index was larger than that predicted value in spring. The
values of the proposed combined model are 5.02%, 6.08%,
and 5.85%. Because the fluctuation of wind speed series in
summer is not as strong as that in spring, the SSE index is
much smaller than that in spring. The wind speed sequence
in autumn is similar to that in summer, and the prediction
results of the model are very similar to those in summer. The
index values of SSE is 6.5172, 8.8690, and 10.3548, and the

MAPE (%) MAE RMSE SSE

Dataset Model
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step  2-step 3-step
VMD-ARIMA 451 417 430 04256 0.3943 0.4151 0.5564 0.5215 0.5460 44.5737 39.1630 42.9318
VMD-BP 320 3.66 599 0.3207 0.3498 0.5834 0.4305 0.4769 0.7743 26.6879 32.7570 86.3287
Spring VMD-ELM 3.16 3.68 620 03176 0.3507 0.6199 0.4247 0.4766 0.8123 259781 32.7053 95.0123
VMD-ENN 377 6.86 9.14 03631 0.6608 0.9153 0.4778 0.8737 1.1637 32.8728 109.9160 195.0132
Combined model 2.81 3.29 3.58 0.2814 0.3144 0.3568 0.3935 0.4373 0.4913 22.2917 27.5359 34.7631
VMD-ARIMA 8.84 8.57 847 0.2828 0.2734 0.2726 0.3495 0.3392 0.3384 17.5899 16.5713 16.4884
VMD-BP 559 7.14 12.20 0.1822 0.2295 0.3895 0.2353 0.2878 0.4876 7.9743 11.9259 34.2435
Summer VMD-ELM 5.61 7.36 12.26 0.1827 0.2358 0.3905 0.2364 0.2968 0.4878 8.0472 12.6855 34.2583
VMD-ENN 597 1136 17.46 0.1928 0.3630 0.5445 0.2498 0.4479 0.6530 8.9831 28.8856 61.4102
Combined model 5.02 6.08 5.85 0.1632 0.2002 0.1992 0.2181 0.2532 0.2668 6.8523 9.2344  10.2473
VMD-ARIMA 7.63 744 732 0.2386 0.2338 0.2296 0.3080 0.2957 0.2927 13.6596 12.5945 12.3340
VMD-BP 5.65 6.58 9.59 0.1789 0.2074 0.3017 0.2254 0.2659 0.3930 7.3134 10.1785 22.2441
Autumn VMD-ELM 569 6.59 9.43 0.1794 0.2080 0.2961 0.2258 0.2652 0.3854 7.3402 10.1294 21.3935
VMD-ENN 7.06 9.60 11.12 0.2241 0.3012 0.3406 0.2915 0.3902 0.4436 12.2336 21.9205 28.3360
Combined model 5.05 6.15 6.74 0.1632 0.1945 0.2153 0.2127 0.2482 0.2682 6.5172  8.8690  10.3548
VMD-ARIMA 356 343 393 02139 0.2074 0.2329 0.2955 0.2797 0.3095 12.5775 11.2665 13.7977
VMD-BP 290 3.81 6.50 0.1769 0.2249 0.3695 0.2324 0.2827 0.4747 7.7761 11.5097 32.4456
Winter VMD-ELM 3.14 401 635 0.1851 0.2348 0.3639 0.2393 0.2943 0.4707 8.2434 12.4726 31.9025
VMD-ENN 383 7.29 10.82 0.2114 0.3978 0.5573 0.2658 0.4905 0.7034 10.1773 34.6431 71.2407
Combined model 2.46 2.60 3.40 0.1497 0.1599 0.2087 0.1944 0.2094 0.2668 5.4428  6.3131  10.2535
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FIGURE 4. Results of experiment 1.

VOLUME 7, 2019



IEEE Access

H. Bo et al.: Wind Speed Forecasting System Based on VMD and Immune Selection Multi-Objective Dragonfly Optimization Algorithm

TABLE 6. Results of experiment 2.

MAPE (%) MAE RMSE SSE
Dataset Model
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step  1-step 2-step 3-step
ARIMA 6.67 6.73 6.82 0.6428 0.6482 0.6596 0.8387 0.8458 0.8535 101.2966 103.0051 104.8865
BP 6.65 9.28 10.83 0.6582 0.9029 1.0954 0.8640 1.1384 1.4119 107.4992 186.6228 287.0458
Spring ELM 6.52 9.00 10.47 0.6362 0.8666 1.0460 0.8316 1.1240 1.3621 99.5899 181.9250 267.1734
ENN 6.41 9.15 11.18 0.6306 0.8795 1.1433 0.8170 1.1219 1.4351 96.1251 181.2386 296.5688
Combined model  2.81 3.29 3.58 0.2814 0.3144 0.3568 0.3935 0.4373 0.4913 22.2917 27.5359 34.7631
ARIMA 12.04 11.57 11.34 0.3966 0.3812 0.3759 0.5127 0.4920 0.4901 37.8451 34.8579 34.5917
BP 11.43 17.62 21.79 0.3751 0.5623 0.6741 0.4869 0.6804 0.8056 34.1437 66.6697 93.4627
Summer ELM 11.30 17.52 21.49 0.3689 0.5599 0.6717 0.4793 0.6778 0.7997 33.0768 66.1612  92.0901
ENN 11.15 17.62 21.54 03671 0.5631 0.6715 0.4827 0.6799 0.7992 33.5491 66.5659 91.9842
Combined model  5.02 6.08 5.85 0.1632 0.2002 0.1992 0.2181 0.2532 0.2668 6.8523  9.2344  10.2473
ARIMA 11.66 10.62 10.64 0.3664 0.3342 0.3351 0.4782 0.4351 0.4388 32.9324 27.2663 27.7233
BP 10.56 14.34 14.39 0.3292 0.4391 0.4401 0.4321 0.5793 0.5765 26.8884 48.3207 47.8517
Autumn ELM 10.63 14.09 14.33 0.3309 0.4340 0.4365 0.4362 0.5662 0.5727 27.4031 46.1663 47.2266
ENN 10.57 14.06 14.48 0.3284 0.4353 0.4416 0.4347 0.5653 0.5794 27.2126 46.0109 48.3344
Combined model  5.05 6.15 6.74 0.1632 0.1945 0.2153 0.2127 0.2482 0.2682 6.5172  8.8690  10.3548
ARIMA 7.10 555 554 0.4270 03361 0.3374 0.5548 0.4375 0.4375 443158 27.5623 27.5604
BP 6.26 8.06 10.11 0.3608 0.4527 0.5584 0.4485 0.5925 0.7235 28.9689 50.5464 75.3872
Winter ELM 5.60 8.73 10.34 0.3358 0.4794 0.5708 0.4278 0.6192 0.7327 26.3503 552108 77.3167
ENN 6.40 8.60 11.15 0.3655 0.4838 0.5990 0.4571 0.6173 0.7626 30.0888 54.8643 83.7531
Combined model  2.46 2.60 3.40 0.1497 0.1599 0.2087 0.1944 0.2094 0.2668 5.4428  6.3131  10.2535

accuracy of this prediction performance is very similar that
in summer. Winter differs from the other three seasons. The
wind energy resources in winter are equally abundant as in
spring, but the fluctuation of the wind speed series is not as
strong as in spring, which leads to very good performance in
terms of both the MAPE index and the SSE index.

Remark 1: By analyzing the prediction results that are pre-
sented above, we conclude that our combined model, namely,
VMD-ISMODA, has higher prediction accuracy than the sin-
gle models that are based on VMD method (VMD-ARIMA,
VMD-BP, VMD-ELM, and VMD-ENN). According to the
four predictive index values, our proposed combined model
yields satisfactory prediction results in multi-step prediction.

B. EXPERIMENT 2: COMBINED MODEL VS. TRADITIONAL
MODELS

In this section, the prediction accuracies of the VMD-
ISMODA model and the traditional models are com-
pared experimentally. The four single traditional models are
ARIMA, BP, ENN, and ELM, which are the components that
are used to build the combined model. Table 6 shows the
experimental result data. Then, we interpret the comparison
results.

The seasonal performance is similar to that in experi-
ment 1. The prediction accuracies for spring and winter are
relatively high, namely, the MAPE index has low values,
and the prediction accuracies for summer and autumn are
relatively low. In the prediction results of the spring wind
speed series, the BP model performs the worst among the four
traditional models. There is a large difference between the
one-step prediction and multi-step prediction performances
of the ARIMA model: The one-step prediction performance
is worse than those of the other traditional models in terms
of accuracy, while the multi-step prediction performance is

178074

better. During the prediction of the summer wind speed
dataset, when forecasting in one step, the prediction perfor-
mances of the four traditional methods from good to bad are
ENN, ELM, BP, and ARIMA, with MAPE values of 11.15%,
11.30%, 11.43% and 12.04%, respectively. The wind speed
sequence in autumn is similar to that in summer, and the
prediction results of the model are very similar to those
in summer. For the winter dataset prediction, the proposed
combined model realizes the optimal prediction accuracy.

Remark 2: Through the above analysis and the experi-
mental results in Table 6, we conclude that the combined
VMD-ISMODA model realizes higher prediction accuracy
than the traditional models and can realize superior prediction
performance.

C. EXPERIMENT 3: VARIATIONAL MODE
DECOMPOSITION VS. OTHER

PROCESSING STRATEGIES

This experimental study aims at evaluating the performance
of the variational mode decomposition strategy (VMD), in
comparison with other widely used decomposition strategies.
Table 7 and Fig. 5 show the prediction results; the best
decomposition methods for various prediction models are
identified. From Table 7 and Fig. 5, the following conclu-
sions are drawn:

Data processing strategies that are combined with the
same optimization algorithms differ in terms of forecasting
accuracy; hence, the data preprocessing method that is used
in a combined forecasting system substantially influences the
prediction accuracy. According to the results of the four pre-
dictive indicators, which are presented in Table 7, the perfor-
mances of the two processing strategies (EMD and EEMD)
in the dataset for each season are highly similar; however,
compared with the CEEMD strategy, a large gap is observed.
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TABLE 7. Results of experiment 3.

MAPE (%) MAE RMSE SSE
Dataset Model
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step  1-step 2-step 3-step
EMD-Combined  3.74 4.05 4.76 0.3518 0.3762 0.4577 0.4349 0.4895 0.6094 27.2338 34.5038 53.4785
Sprin EEMD-Combined 3.69 4.06 4.45 0.3484 0.3721 0.4229 0.4441 0.4873 0.5512 28.4044 34.1936 43.7440
PriN  CEEMD-Combined 3.32 3.78 430 03342 03700 0.4494 04464 04754 0.6045 28.6992 32.5418 52.6119
Combined model 2.81 3.29 3.58 0.2814 0.3144 0.3568 0.3935 0.4373 0.4913 22.2917 27.5359 34.7631
EMD-Combined  7.23 8.30 8.75 0.2480 0.2873 0.3001 0.3043 0.3491 0.3656 13.3372 17.5523 19.2467
S EEMD-Combined 7.50 8.14 8.63 0.2540 0.2807 0.2962 0.3064 0.3360 0.3602 13.5153 16.2562 18.6794
UMMEr CEEMD-Combined  6.26 6.80 640 0.1978 02117 0.2158 0.2520 02673 02905 9.1433  10.2913 12.1497
Combined model 5.02 6.08 5.85 0.1632 0.2002 0.1992 0.2181 0.2532 0.2668 6.8523 9.2344 10.2473
EMD-Combined 6.64 691 7.19 0.2134 0.2275 0.2332 0.2597 0.2865 0.3021 9.7094 11.8182 13.1390
Aut EEMD-Combined 6.89 7.03 7.30 0.2202 0.2212 0.2388 0.2708 0.2742 0.3022 10.5567 10.8300 13.1494
ufumn CEEMD-Combined 6.10 6.85 7.06 0.1901 0.2128 0.2243 0.2404 0.2711 0.2805 8.3241 10.5843  11.3338
Combined model 5.05 6.15 6.74 0.1632 0.1945 0.2153 0.2127 0.2482 0.2682 6.5172 8.8690 10.3548
EMD-Combined 3.14 3.64 3.87 0.1962 0.2209 0.2340 0.2504 0.2720 0.2995 9.0315 10.6552 12.9154
Winter EEMD-Combined 3.04 3.65 3.90 0.1840 0.2194 0.2311 0.2419 0.2785 0.3002 8.4247 11.1718 12.9799
¢ CEEMD-Combined 2.83 3.45 3.82 0.1675 0.2069 0.2298 0.2110 0.2696 0.2908 6.4084 10.4680 12.1753
Combined model 2.46 2.60 3.40 0.1497 0.1599 0.2087 0.1944 0.2094 0.2668 5.4428 6.3131 10.2535
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FIGURE 5. Results of experiment 3.

The CEEMD strategy outperforms the EMD and EMD strate-
gies in terms of accuracy and stability. In addition, the VMD
strategy that is used in our combined model realizes higher
precision. Among the selected data preprocessing strate-
gies, the VMD strategy yields the most accurate prediction
values.

Remark 3: According the above experimental analysis and
the values of the prediction indicators in Table 7, the proposed

VOLUME 7, 2019

W00 40 60 80 100 120 140 0 40 60 80

forecasting system, which is based on VMD data processing
strategy, can yield excellent forecasting results.

D. EXPERIMENT 4: IMMUNE SELECTION MULTI-
OBJECTIVE DRAGONFLY VS. OTHER OPTIMIZATION
ALGORITHMS

To evaluate the performance of the ISMODA method,
three additional weight determination methods, namely,
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TABLE 8. Results of experiment 4.

MAPE (%) MAE RMSE SSE
Dataset Model
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step  2-step  3-step
CS-Combined 3.07 3.73 442 03017 0.3704 0.4547 0.4141 0.5026 0.5819 24.6872 36.3776 48.7648
Spring FA-Combined 3.10 3.65 4.40 0.3274 0.3589 0.4306 0.4908 0.4926 0.5659 34.6913 34.9473 46.1084

MODA-Combined 296 348 394 0.2925 0.3433 0.3962 0.3891 0.4463 0.5227 21.8045 28.6855 39.3497

ISMODA-Combined  2.81 3.29 3.58 0.2814 0.3144 0.3568 0.3935 0.4373 0.4913 22.2917 27.5359 34.7631

CS-Combined 557 679 695 0.1829 02253 02433 02366 02816 03146 8.0609 114150 14.2555
FA-Combined 561 687 694 0.1863 02278 02329 02378 02813 03010 8.1419 11.3922 13.0437

Summer o DA-Combined 546 646 626 0.1793 02040 02153 02308 02590 02875 7.6674 9.6574 11.9045
ISMODA-Combined 502 6.08 5.85 0.1632 0.2002 0.1992 0.2181 0.2532 0.2668 6.8523 9.2344 10.2473
CS-Combined 559 645 721 0.1754 02073 02325 02227 02591 02852 7.1420 9.6635 11.7155

Autumn FA-Combined 560 644 721 0.1791 02023 02374 02268 02583 03000 7.4103 9.6053 12.9633
MODA-Combined 552 637 7.06 0.1754 02013 0.2294 02227 02532 02903 7.1402 9.2299 12.1368
ISMODA-Combined 505 615 6.74 0.1632 0.1945 02153 0.2127 0.2482 0.2682 65172 8.8690 10.3548
CS-Combined 274 3.3 392 0.1694 0.1898 02306 02238 02348 02861 72105 7.9414 11.7843

Winter FA-Combined 276 334 388 0.1674 0.1984 0.2286 02167 02584 02953 6.7640 9.6123 12.5608

MODA-Combined 272 296 373 0.1615 0.1778 0.2206 0.1998 0.2247 0.2796 5.7509 7.2714 11.2596
ISMODA-Combined  2.46  2.60  3.40 0.1497 0.1599 0.2087 0.1944 0.2094 0.2668 5.4428 6.3131 10.2535

TABLE 9. Results of hypothesis testing.

Spring Summer

Autumn Winter

Model
ode 1-step 2-step 3-step 1-step 2-step

3-step 1-step 2-step 3-step 1-step 2-step 3-step

VMD-ARIMA 443" 286" 203" 541° 595
VMD-BP 1.70°  1.91° 4.92* 1.68° 2.85°
VMD-ELM 1.71°  1.83° 532 1.82° 3.40°
VMD-ENN 3.14"  6.02°  6.70°  2.00° 7.27°

477 435 299"  2.00° 377" 289" 223
6.54" 1.71° 272 4.62"° 236 432" 482"
6.61° 1.71° 263 444" 282" 4.82" 462"
8.82" 447" 538" 4.68" 5.00°  6.52"  6.63"

ARIMA 6.52"  6.81" 582" 7.10° 6.96
BP 6.69° 735" 636" 699" 927
ELM 6.68"  6.86" 6.66"° 695" 9.28°

EMD 6.21° 736" 749" 6.76" 9.37°

6.38"  6.71" 628" 540° 699" 6.65" 5.60"
8.95" 638 628" 550" 8.01" 566" 6.11°
8.90°  6.52" 623" 5.60° 699" 592" 627"
8.96" 636" 6.51" 563" 7.7 595"  6.70°

1494 1.58%  239° 440 548"
1.88° 155 143 507° 558
1.75°  1.54" 3.8 1.83" 1.65°

488 327° 1.88 1.52¢ 278 3.16° 147
482° 380" 173 1.64° 235> 338  1.65°
2.15° 293" 284* 1.83° 232" 3.11° 1.92°

CS 1.91° 255>  341° 094 3.79°
FA 1.66°  227° 257 119" 3.93°
MODA 1.34°  129° 128 133" 104

3.72 0 130° 1.41° 213 2.13°  3.22*  1.76°
3470 2150 1.72° 249°  291°  296°  1.62¢
220 1.85* 1.14 221 1260 272* 251°

*is the 1% significance level Zyg,= 2.58; b is the 5% significance level Z5,=1.96; © is the 10% significance level Zy ;p,=1.64;,
4is the 15% significance level Z ;5,=1.44, © is the 20% significance level Z,=1.28; fis the 25% significance level Z,5,=1.15.

the cuckoo search algorithm (CS), the firefly algorithm (FA),
and the multi-objective dragonfly algorithm (MODA), are
used in combination with the VMD data preprocessing strat-
egy for comparison. In addition, The results of the forecast
indicators are presented in Table 8, and the value for the
ISMODA algorithm result is marked in bold.

The weight determination method structures with the
VMD data preprocessing strategy differ in terms of predic-
tion performance; hence, the weight determination method
in the combined model plays a vital role in improving the
performance in wind power forecasting. According to the
experimental prediction results that are presented in Table 8,
the performances of the two single-objective algorithms
(CS and FA) in each season are very similar; however, com-
pared with the multi-objective optimization methods (MODA
and ISMODA), a large gap is observed. Multi-objective meth-
ods are superior to single-objective methods in terms of accu-
racy and stability. Moreover, our developed multi-objective
method (ISMODA) outperforms the original multi-objective
algorithm (MODA) in forecasting.
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Remark 4: From the above experimental analysis and the
prediction results that are presented in Table 8, we conclude
that the proposed multi-objective optimization algorithm
(ISMODA) has made outstanding contributions to wind
speed prediction and has yielded satisfactory prediction
results.

VI. DISCUSSIONS

In this section, several necessary tests have been conducted to
further evaluate the forecasting performance of the proposed
VMD-ISMODA prediction system.

A. RESULTS OF HYPOTHESIS TESTING

The predictive performance of the developed model is tested
with the DM test, and the validity of the proposed model,
which is based on statistical concepts, is further evaluated.
We evaluated other models and the proposed combined
model; the results of the DM test are presented in Table 9
and are briefly described below.
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and directionality results.

TABLE 11. Grey relational analys

TABLE 10. Forecasting effectiveness results.
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proposed model and those of the above two models differ
significantly. Comparing the other combined models that
are based on various denoising strategies, we can find that
the proposed VMD-ISMODA combination model performs
the best. The minimum DM test value exceeds the thresh-
old value of the 15% level by 1.47. In comparison with
the combined model with various optimization methods,
the DM test results fluctuate substantially due to the ran-
domness of the algorithm. However, most of the DM values
are greater than the critical value of the 10% level. Hence,
the proposed VMD-ISMODA model has high predictive
performance.

B. DISCUSSION OF THE FORECASTING EFFECTIVENESS
In this section, to further evaluate the performance of the
proposed VMD-ISMODA model, this study applies the indi-
cator of the effectiveness of the prediction. The larger the
indicator value, the better the predictive performance of the
model. In the first- and second-order predictions, the VMD-
ISMODA model has higher forecasting efficiency than the
other methods. Table 10 presents the detailed result values.
Consider the spring dataset as an example. The results of
the proposed model in the first-order prediction process are
97.19%. 96.71%, and 96.42% from one-step forecasting to
three-step forecasting and the values of the proposed model
in the second-order forecasting process are 94.49%, 93.61%,
and 93.22%. The values that are obtained by the comparison
models are smaller than those of this model. Similarly, in the
datasets for the other three seasons, the obtained results are
similar to those of the spring dataset. These results provide
sufficient evidence that the developed forecasting system
outperforms the other models in prediction.

C. GREY RELATIONAL ANALYSIS AND FORECASTING
DIRECTION RESULTS

To more fully evaluate the predictive performance of the
model, we introduce two new evaluation indices for in this

TABLE 12. Forecasting stability results.

section: the grey relational analysis index and the direction
of forecasting index (GRA and Dgccyracy)- The GRA index
describes the degree of correlation between the forecasting
values and the ground-truth values. The larger the value
of the GRA index is, the higher the degree of correlation
between the two sequences will be, and the better the model
prediction results will be. The directivity index describes
the directivity of the latter data point, which corresponds
to the directivity of the trend of the original curve and the
prediction curve. The larger the value is, the more consistent
the directivity of the prediction sequence, and the more accu-
rately of the prediction performance. The values for GRA
and Dccyracy are presented in Table 11, and the values of the
developed combined model are identified by bold font in the
table. Compared with other prediction models, our proposed
VMD-ISMODA combination prediction system has realized
excellent prediction performance; hence, the model that is
proposed in this study shows a strong advantage compared
with other prediction methods.

D. FORECASTING STABILITY

The accuracy and stability of prediction are highly important
indices. The evaluation of forecasting performance cannot
rely only on the accuracy, as the stability is indispensable.
The innovative combined prediction system that is introduced
in this paper was developed based on an improved weight
determination method, namely, ISMODA, which aims at
increasing the accuracy and stability of model prediction.
To more effectively evaluate the prediction performance of
the model, we further evaluate the stability of the forecasting
values. The stability of the forecasting results is necessary for
measuring the prediction performance. In many studies, the
variance of the predicted results can often be used to measure
the stability of the prediction. Nevertheless, it is unscientific
to use the variance of the predicted results to measure the
magnitude of the stability because it inadequately reflects the
stability of the predicted sequence. Hence, in this section,

Model Spring Summer Autumn Winter
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step
Combined 0.3911 0.4356 0.4889 0.2315 0.2536 0.2536 0.2536 0.2488 0.2691 0.2691 0.2098 0.2674
VMD-ARIMA 0.5582 0.5219 0.5430 0.3507 0.3403 0.3403 0.3403 0.2966 0.2933 0.2933 0.2785 0.3056
VMD-BP 0.4261 0.4728 0.7566 0.2361 0.2883 0.2883 0.2883 0.2659 0.3874 0.3874 0.2781 0.4567
VMD-ELM 0.4218 0.4727 0.7893 0.2372 0.2970 0.2970 0.2970 0.2656 0.3818 0.3818 0.2893 0.4515
VMD-ENN 0.4779 0.8527 1.1162 0.2506 0.4490 0.4490 0.4490 0.3907 0.4371 0.4371 0.4580 0.6300
ARIMA 0.8348 0.8418 0.8506 0.5137 0.4930 0.4930 0.4930 0.4363 0.4400 0.4400 0.4342 0.4357
BP 0.8614 1.1214 1.3482 0.4868 0.6793 0.6793 0.6793 0.5617 0.5662 0.5662 0.5621 0.6696
ELM 0.8199 1.0893 1.2985 0.4794 0.6766 0.6766 0.6766 0.5596 0.5622 0.5622 0.5695 0.6676
ENN 0.8070 1.0893 1.4018 0.4833 0.6770 0.6770 0.6770 0.5626 0.5697 0.5697 0.5661 0.6856
0.4363 0.4906 0.6030 0.3054 0.3496 0.3496 0.3496 0.2807 0.3010 0.3010 0.2730 0.2936
0.4409 0.4862 0.5523 0.3074 0.3369 0.3369 0.3369 0.2751 0.2928 0.2928 0.2788 0.3002
0.4336  0.4534 0.5630 0.2325 0.2548 0.2548 0.2548 0.2606 0.2802 0.2802 0.2684 0.2726
CS-Combined 0.4763 0.4809 0.5599 0.2372 0.2776 0.2776 0.2776 0.2576 0.2845 0.2845 0.2342 0.2840
FA-Combined 0.4117 0.4780 0.5535 0.2372 0.2794 0.2794 0.2794 0.2589 0.2943 0.2943 0.2574 0.2963
MODA-Combined  0.3979 0.3967 0.5215 0.2315 0.2560 0.2560 0.2560 0.2538 0.2912 0.2912 0.2215 0.2726
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TABLE 13. Results of the sensitivity analysis.

Dataset  NO. MAPE (%) MAE RMSE SSE
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step  3-step
10 3.03 356 374 03040 0.3464 0.3647 0.4318 0.4521 0.4774 26.8536 29.4316 32.8137
Spring 20 293 337 370 0.2999 0.3251 0.3687 0.4131 0.4363 0.4927 24.5781 27.4053 34.9514
30 2.81 329 358 0.2814 0.3144 0.3568 0.3935 0.4373 0.4913 22.2917 27.5359 34.7631
40 297 341 3.64 0.3054 0.3330 0.3673 0.4265 0.4430 0.5008 26.1942 28.2549 36.1145
10 563 669 621 0.1807 02091 02091 0.2348 0.2650 0.2761 7.9399 10.1132 10.9795
Summer 20 551 645 6.13 0.1778 0.2095 02073 0.2315 0.2624 0.2739 7.7159 9.9135 10.7996
30 502 6.08 585 0.1632 0.2002 0.1992 0.2181 0.2532 0.2668 6.8523 9.2344 10.2473
40 552 6.69 6.05 0.1811 0.2091 0.2082 0.2316 0.2650 0.2788 7.7225 10.1132 11.1962
10 546  6.63 694 0.1725 02072 02204 0.2192 0.2633 0.2761 6.9175 9.9833 10.9794
Autumn 20 525 622 6.78 0.1687 0.1947 02148 0.2151 0.2510 0.2697 6.6639 9.0748 10.4713
30 505 6.15 6.74 0.1632 0.1945 0.2153 0.2127 0.2482 0.2682 6.5172 8.869 10.3548
40 529 634 694 0.1697 0.2023 0.2204 0.2162 0.2524 0.2761 6.7280 9.1711 10.9794
10 291 295 392 0.1745 0.1766 0.2378 0.2260 0.2236 0.3046 7.3540 7.2007 13.3611
Winter 20 281 2.87 3.66 0.1636 0.1719 0.2184 0.2030 0.2216 0.2771 59367 7.0745 11.0588
30 246 2.6 34 0.1497 0.1599 0.2087 0.1944 0.2094 0.2668 5.4428 6.3131 10.2535
40 2.68 2.87 3.75 0.1569 0.1731 0.2246 0.1994 0.2227 0.2816 5.7249 7.1404 11.4183

the standard deviation of the prediction error is used to
evaluate the magnitude of the stability index. The improved
stability index combines the sequence characteristics of both
the predicted curve and the ground-truth curve to more effec-
tively demonstrate the predictive performance. The obtained
indicator values are presented in Table 12. In the comparison
with the other considered models, the proposed combined
model realizes the highest stability; hence, it realizes satis-
factory prediction performance.

E. SENSITIVITY ANALYSIS

In the proposed combined prediction system, the optimization
module plays a key role, and the VMD-ISMODA optimiza-
tion algorithm has a substantial influence on improving the
prediction accuracy. Therefore, the parameter setting prob-
lem in the optimization algorithm merits discussion. During
the optimization of the algorithm, a key parameter, namely,
the number of search agents, affects the performance of
the algorithm and affects the prediction performance of the
prediction model. In this section, we conduct a sensitivity
analysis on the number of search agents. We design a variety
of agent number running models, and the prediction results
are presented in Table 13. According to the prediction results,
the forecasting accuracy changes with the number of agents.
Too many agents can lead to inaccurate predictions and can
increase the complexity of the algorithm, whereas if the num-
ber of agents is too small, the optimal weighting factor cannot
be obtained, thereby leading to inaccurate predictions. The
total number of agents is determined via an optimization pro-
cess for the algorithm. According to the results in Table 13,

there is a turning point in the number of agents, which can
be used as the optimal parameter of the algorithm. Based
on the above discussion, we set the number of search agents
to 30, which is the result of several trials that optimized the
performance of the model.
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VII. CONCLUSION

The role of wind energy in the field of low-carbon energy can-
not be ignored. Reliable and accurate forecasting has impor-
tant economic and security implications for the operation
of wind farms. Nevertheless, forecasting remains a difficult
problem that must be solved urgently due to the complexity
and nonlinear characteristics of wind speed datasets. In this
study, a combined wind energy forecasting system is pro-
posed, which is based on variational mode decomposition
technology and the immune selection multi-objective dragon-
fly optimization algorithm, and stable and accurate forecast-
ing results are obtained. The wind speed data of four seasons
in China’s wind farms are used to evaluate the results, which
prove the predictive accuracy and performance of the com-
bined forecasting system that is proposed in this study. As one
of the countries with the largest installed wind power capacity
in the world, the wind speed data of China is representative
and experimental. The experimental results demonstrate that
the combined forecasting system that is proposed in this paper
has the following advantages: (a) after adopting the improved
multi-objective optimization algorithm, it not only improves
the accuracy of prediction but also ensures the stability of
the prediction results; and (b) the experimental module and
evaluation module show that the model realizes satisfactory
predictive performance. In the end, the above analysis shows
that the proposed combined model forecasting system has
extremely high predictive power and, hence, can be used as
an effective tool for wind energy forecasting. The combined
wind speed forecasting system proposed in this paper can
effectively realize the utilization of wind energy resources
and play a significant role in the power dispatching and man-
agement of wind farms. The proposed forecasting system can
be used for wind speed forecasting in other regions, but none
of the models is perfect. When considering data in different
regions, we need to consider appropriate adjustments to the
forecasting system.
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APPENDIX
See Tables 14 and 15.

TABLE 14. The general settings for model parameters.

Parameter setting of VMD algorithm
Parameters to describe

Parameter Specifications

moderate bandwidth constraint alpha 2000
noise-tolerance (no strict fidelity enforcement) tau 0
the number of modes to be recovered K 10
no DC part imposed DC 0
initialize omegas uniformly init 1
tolerance of convergence criterion tol 1.00e-07
Parameter setting of BP, ENN, ELM
Parameters to describe BP ENN ELM
Number layers 3 3 3
Neurons (layer 1) — inputs 5 5 5
Neurons (layer 2) — hidden 10 25 20
Neurons (layer 3) — output 1-3 1-3 1-3
Activation function Tansig Sigmoid sigmod
epoch 1000 1000 -
Parameter setting of IS-MODA
Parameters to describe Parameter  Specifications
Iteration Number - 500
Archive Size - 100
Dragonfly Number - 30
Number of optimization parameters - 4
Decision parameters of IS DS 8
Probability of immune replace replaceP 0.5
Smallest distance between individuals minD le—10
TABLE 15. The running time of the models (s).
Model Spring Summer Autumn Winter Mean
Mean of 1 to 3 steps
Combined 86.8154 83.8690 89.5728 86.1775 86.6087
VMD-ARIMA  23.5444 21.2459 22.4596 21.2126 22.1156
VMD-BP 15.2484 15.5050 15.0898 14.6723 15.1289
VMD-ELM 13.8742 13.1413 13.6758 13.6647 13.5890
VMD-ENN 15.8212  16.1207 15.5709 154841 15.7492
ARIMA 10.9200 9.3529 10.0274 10.8568 10.2893
BP 3.6240 3.6119 3.6056 3.2965  3.5345
ELM 22498 2.2482 2.2436 22889  2.2576
ENN 4.1968 4.2276  4.1387  4.1083  4.1679
48.2430 46.1811 52.5044 51.2255 49.5385
152.8754 156.6531 160.3336 161.1123 157.7436
71.8522 64.9471 70.8268 72.4367 70.0157
CS-Combined  78.9939 76.6378 77.2895 75.7697 77.1727
FA-Combined | 76.7824 74.2524 75.0016 73.4173 74.8634
MODA-Combined 79.3569 83.7172 77.2649 83.0329 80.8430
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