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ABSTRACT With the change from the pre-internet era to online society, user authentication technology is
required, and for that, password-based authentication technology is generally used. However, the technology
has vulnerabilities and security threats that cannot ensure security and reliability, due to the exposure of the
keyboard data that comprises a password input from the keyboard. In order to settle this problem, image-
based authentication technology has emerged; but the password input from the mouse is not secure, due to
the exposure of the mouse data. This problem has led to the emergence of mouse data protection technology.
This technology protects mouse data by generating a large number of random mouse positions at any time,
thereby inducing an attacker to track any mouse position generated by the defender, even if the attacker takes
over themouse data. Therefore, this mouse protection technology almost completely defends against existing
mouse data attack techniques. With mouse data protection technology applied, the challenge of this paper
is to verity the feasibility of mouse data attack. For the experiment, we collected both random mouse data
generated by the defender and real mouse data input from the user, and verified the security of mouse data
using mouse data classification based on machine learning. As a result of the experiment, we have verified
the stealing of mouse data by using the proposed method with high quality, even if existing techniques of
mouse data attack do not steal real mouse data. The best accuracy is 98%. In other words, the proposed
method almost completely classifies the mouse data input from the user. Consequently, this paper derives
and verifies the vulnerability and security threat of image-based authentication technology. Moreover, the
vulnerability and security threat found in this paper not only constitute a new vulnerability and security
threat, but can also be used as a criterion in security analysis and evaluation for image-based authentication
technology.

INDEX TERMS Image-based authentication, user authentication, machine learning, vulnerability analysis.

I. INTRODUCTION
With the change from the pre-internet era to online soci-
ety, online user authentication technology has been required.
In the pre-internet era, user identity is verified face-to-face
based only on documents owned by the user, such as their
Social Security Number (SSN), driver’s license, or passport.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Qin.

However, in online society, there is a need for a technique that
replaces user authentication, because in online society, the
user does not need face-to-face identification. According to
these demands, user authentication techniques for online use
have emerged from the past, and a representative user authen-
tication technique is password-based authentication [1]. Due
to its ease of deployment, this technique has been intro-
duced in a variety of applications, such as operating systems,
web services, and even physical systems. More specifically,
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during the registration process, the user transfers a password
in the form of a character string desired by the user to
the service provider, and the service provider then stores
the password received from the user. In the next step, the
authentication process, the user requests the service provider
to provide his or her desired service, and the service provider
then requests the registered password from the user. The user
transfers the password registered in the registration process
to the service provider, and the service provider authenticates
the user by comparing the password stored in the registra-
tion process with the password received in the authentica-
tion process. In this authentication technique, the important
information related to the authentication is the password,
which is usually passed from the keyboard connected to the
user’s system. Namely, the information that must be protected
in password authentication is keyboard data input from the
keyboard.

Nevertheless, the problem of password authentication
has been revealed by neutralizing keyboard data protection
[2]–[4]. The keyboard is connected via a PS/2 interface and
a USB interface. However, when designed, these interfaces
did not take security into account. As a result, it was impos-
sible to protect keyboard data; and eventually, a vulnerability
was found, in which the data input from the keyboard was
exposed. This means that the user’s password is exposed,
which neutralizes password authentication. To solve the prob-
lem of keyboard data exposure, keyboard security technology
has emerged. The process of transmitting keyboard data is
as follows. When the user input a key, the keyboard col-
lects the user-input data, which is then passed via the PS/2
or USB interface to the host. The host is preparing for an
interrupt to notify the transfer of data from connected input
and output devices such as the keyboard. Hence, the host
provides a separate module for handling interrupts, called
Programmable Interrupt Controller (PIC) and Advanced Pro-
grammable Interrupt Controller (APIC). That is, when data
is transmitted from an input and output device, the PIC and
APIC checks which device the request is from, and generates
a corresponding interrupt to the CPU. For example, when data
is passed from the keyboard, the PIC and APIC checks inter-
rupts from the keyboard device, and generates a keyboard
interrupt to the CPU.When the keyboard interrupt occurs, the
operating system calls the keyboard interrupt service routine,
which obtains and processes the keyboard data. When the
interrupt service routine obtains the keyboard data, the data
is passed to the application program via the device drive
(chain), and then the application program finally receives the
keyboard data input from the user. Therefore, the layers in the
process of transferring the keyboard data from the keyboard
to the application program are classified into a hardware
layer, an operating system (kernel) layer, and an application
program layer.

Most early keyboard security techniques protected key-
board data in the application program layer. However, when
the attacker and a defender compete in the same layer, an
attacker is advantaged. This is because the defender must

protect the keyboard data while retaining the stability of
system. Moreover, in order to overcome the failure of the
attack caused by competing with the defender in the appli-
cation program layer of the same user level, the attacker
attempts to attack at the kernel level, which is lower than
the user level, to steal keyboard data. To cope with such
kernel level attack techniques, the defender has introduced
defense techniques to protect keyboard data at the kernel
level by applying techniques such as interrupt service rou-
tine replacement, and filter drivers. Nevertheless, because
the attacker and the defender are competing at the same
level, the attacker is also advantaged over the defender. In
addition, in order to overcome the failure of attack caused
by competing with the defender at the same kernel level, the
attacker attempts to attack at the hardware level, which is
lower than the kernel level, to steal keyboard data. In order to
prevent such attacks at the hardware level, the defender has
introduced defense techniques to monitor the access of hard-
ware. This is because it is difficult for the defender to protect
keyboard data from attacks at the hardware level. This tech-
nology prevents accessing 0× 60 and 0× 64 keyboard ports
from other processes than the defense process by monitoring
keyboard ports, and this prevents the exposure of keyboard
data even if the attacker attempts a hardware level attack.
Despite these defenders’ efforts, this defense technique has
the same powers as attackers and defenders. For this reason,
the attacker can steal keyboard data by neutralizing keyboard
surveillance technology. In other words, current technologies
for protecting keyboard data have limitations, which mean
that password authentication is neutralized. Consequently, a
user authentication technology that is more secure than the
password authentication is required; and in response, image-
based user authentication technology has emerged [5].

Image-based authentication technology is an authentica-
tion technology that displays a specific image, such as a
keypad, on the screen, and uses the click information on the
image as a password. The information that must be protected
in this technology is the image information displayed to the
output device, and the mouse data information input from
a mouse [6]. Therefore, unlike the password authentication
technology, this technology does not receive authentication
information from the keyboard, but from the mouse. This
means that due to the keyboard data exposure, user authen-
tication is prevented from being neutralized. Nevertheless,
the problem of image-based authentication has been found
by failing to protect the image information displayed to the
output device and the mouse data input from the mouse [7],
[8]. In general, the mouse uses a PS/2 interface, a USB inter-
face, a touchpad, and a touch screen. As with the keyboard,
security is not taken into account when thesemouse interfaces
was designed. This makes it impossible to protect the input
mouse data. Moreover, vulnerabilities have been revealed
due to mouse location information managed by the operating
system. The operating system, especially the graphical oper-
ating system, manages the position of the mouse cursor for
interaction with the user, and this handles commands from
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the user, for example, executing by double-clicking, moving,
and selecting by clicking. In order to provide such features,
the operating system must store and manage the position of
the mouse cursor by itself, and transmit location information
when the application program requests the position. In other
words, the operating system provides APIs that allow the
application to obtain the mouse position. Hence, an attacker
can trace mouse movement input from the user by abusing
APIs associated with the mouse cursor location provided by
the operating system [9]. For example, the attacker, such as
real-time active adversary [10], continuously collects mouse
positions the user is moving to by periodically calling the
GetCursorPos() function. This means tracking the movement
of the cursor that the user commands.

In order to cope with the mouse attack technique, a mouse
data protection technique that uses the SetCursorPos() func-
tion that prevents an attacker from tracking the mouse move-
ment has emerged [11]. The key idea of this defense technique
is not to expose the actual location input from the user, but to
expose the mouse location information. The reason is that,
as demonstrated by keyboard data attack and defense tech-
niques, it is difficult to prevent access to mouse data. In other
words, the defender generates a random mouse position to
forciblymove themouse cursor, and by filtering the generated
mouse positions, protects the mouse position input from the
actual user. The reason is that because the defender knows
the random mouse position, the defender classifies the real
data and the dummy data by recognizing dummy data, not
the mouse data input from the user. On the other hand, by
calling theGetCursorPos() function, the attacker collects both
random and actual mouse positions generated by the defender
at the same. However, the attacker hardly recognizes whether
the collected mouse position is from the user, or from the
defender. This means that the attacker does not succeed in
the attack.

By using the mouse data attack and defense techniques as
described above, mouse data protection techniques, such as
keyboard data attack and defense techniques, have the result
of protecting or exposing mouse data in various ways at var-
ious hierarchical layers. Here, the security of the mouse data
is closely related to the security of the image-based authen-
tication technology. Therefore, in this paper, we have chal-
lenges to derive the vulnerability of mouse data by analyzing
the feasibility of the attacker’s exploitation of mouse data
practically in the situation where the mouse data protection
technique is applied. By doing so, the attacker must classify
any mouse position data generated by the security software
and mouse data input from the user. Once the two types of
data are classified, the attacker can trace mouse movements.
Nevertheless, as mentioned above, calling APIs periodically,
such as the GetCursorPos() function, is not enough to steal
the actual mouse data input from the user.

In this paper, we propose a method for classifying ran-
dom mouse cursor locations and mouse data input from the
user for the security analysis of mouse data. To do this, we
analyze the feasibility of the classification of mouse data by

using machine learning based on the attack technique using
the GetCursorPos() function that uses absolute coordinates.
This is because an attack technique using the WM_INPUT
message has the problem that error occurs between absolute
coordinates and relative coordinates. In order to solve this
problem, the attacker uses the attack technique that uses the
GetCursorPos() function, which uses the same mouse data
as a reference with the defense technique, in order to reduce
the error of the mouse movement. As described above, the
conventional mouse attack technique makes it difficult for
the attacker to steal mouse positions input by the actual
user using the GetCursorPos() function, when the defender
generates random mouse positions using the SetCursorPos()
function. In other words, the attack using the GetCursorPos()
function does not steal mouse data. Nevertheless, we verify
the feasibility of classifying the user’s mouse coordinates by
using machine learning, based on all collected coordinates.

The contribution of this paper is as follows:
• Existing mouse data attack techniques that utilize the
GetCursorPos() function do not neutralize defense tech-
niques that utilize the SetCursorPos() function. For this
reason, in this paper, we propose a method to clas-
sify random mouse data based on machine learning for
attacks using the GetCursorPos() function. We have ver-
ified that the attack using the GetCursorPos() function,
which is not possible to steal the mouse data, classifies
mouse data with high quality based onmachine learning.

• The information that can be collected in an attack tech-
nique using the GetCursorPos() function is the X and
Y coordinates. In this paper, we analyze the method
by which the defender generates random mouse data
as the key point, and determine that it is a form of
calling random mouse data periodically, such as a timer.
Therefore, datasets are constructed by collecting the
X and Y coordinates and the time difference between
the coordinates. As a result, we technically verify that
datasets constructed by the data collection method pro-
posed in this paper effectively classify random mouse
data generated by the defender.

• Mouse data classification of existing attack techniques
has low accuracy, high false positive rate, and high false
negative rate. However, by constructing a feature of the
time difference from which coordinates are collected to
datasets, the proposed method demonstrates high accu-
racy, low false positive rate, and low false negative rate.

• The results of this paper derive and verify a vulner-
ability and the security threat of image-based authen-
tication technology. The proposed attack technique is
extremely effective and accurate. The best accuracy is
98 %, which means that the random mouse data input
from the user is almost completely classified. Thus, if an
attacker captures the victim’s screen, and then collects
and classified the mouse data, the attacker can trace
the mouse movements of the user. In other words, it
is possible to steal the password input from the user.
This means a new vulnerability and security threat in
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image-based authentication technology. Moreover, this
threat is not only a new threat, but can also be used as a
criterion for security analysis and evaluation for image-
based authentication.

This paper is organized as follows. Section 2 discusses the
mouse data transfer process and the existing mouse data
attack and defense techniques, which are necessary for under-
standing the proposed mouse data attack technique. Section 3
describes the attack system configuration and mouse dataset
and configuration collected from the proposed attack system.
Section 4 presents the experiment results of mouse data attack
based on the proposed technique; and finally, Section 5 con-
cludes the paper.

II. PRIOR KNOWLEDGE
This section describes the mouse data attack and defense
techniques in image-based authentication techniques. We
describe representative techniques that are relatively easy
for attackers to access and collect mouse data. Namely, the
attacker attempting an attack proposed in this paper assumes
that the attacker does not have high-level knowledge for the
attack, and we verify a security threat of the exposure of the
password in image-based authentication by stealing mouse
data input from the user from the aspect of such an attacker.
The mouse data attack technique includes an attack that uses
the GetCursorPos() function, while the defense technique
includes a technique that uses the SetCursorPos() function.

A. MOUSE DATA TRANSFER PROCESS
The mouse device is an input device for interacting with
the user, and supports the selection of items by moving and
clicking the mouse cursor. The mouse cursor is managed
by the operating system, and the operating system receives
and processes mouse data input from the mouse device,
which is hardware. This process determines the mouse posi-
tion on the screen managed by the operating system, and
moves the mouse cursor. Therefore, the mouse data is input
from the mouse device, which is hardware, and transferred to
the application program via the device driver of the operating
system. Fig. 1 shows the mouse data transfer process.

FIGURE 1. The mouse data transfer process.

The detailed mouse data transfer process is as follows.
When the user moves the mouse device, the device gener-
ates data corresponding to the moved position, and transfers
it to the host. The host prepares PIC/APIC, which is the
controller for handling interrupt from devices. APIC distin-
guishes between interrupts from various devices connected to

the host and delivers interrupt messages to the CPU to handle
them correctly in the operating system. In the past, the CPU
handled all input and output by itself. However, in order to
improve performance and efficiency, the CPU has evolved to
call and handle routines by preparing separate tables and han-
dlers for the necessary input and output processing in advance
when interrupt occurs. These tables and handlers, called inter-
rupt descriptor tables (IDTs) and interrupt service routines
(ISRs), determine the final mouse position by processing the
data input from these handlers. The mouse supports a variety
of modes and generally carries the relative coordinates of the
distance moved. The operating system manages the mouse
cursor position for interaction with the user, and moves the
coordinate by the input position from the current position
when relative coordinates are input from the mouse through
the above process. Left and right movements are X coor-
dinates, while up and down movements are Y coordinates.
More specifically, moving to the left applies X coordinates as
minus, and moving to the right applies X coordinates as plus.
Moreover, moving upwards applies Y coordinates as minus,
while moving downwards applies Y coordinates as plus.
Consequently, the numerical value is calculated according
to the distance moved, and the direction and the numeri-
cal value are added to the operating system. Finally, the
mouse coordinates are passed to the requesting application
program.

B. MOUSE DATA ATTACK TECHNIQUE
This section describes an attack technique using the GetCur-
sorPos() function. This technique is a representative mouse
attack technique by which an attacker can easily access and
collect mouse data. Since application programs have their
own UIs, they need to provide commands or features at
specific locations. The operating system provides an API
for passing the mouse position on the current screen to the
application program, such as the GetCursorPos() function.
When the application program obtains the current mouse
position, the program calls this function, which as shown in
Fig. 1, passes the mouse cursor position managed by the oper-
ating system. After that, the application program converts the
received coordinates into coordinates inside the application
program, as needed. However, by exploiting this function, the
attacker can trace themousemovements by the user, as shown
in Fig. 2.

The detailed mouse attack technique is as follows. The
operating system stores and manages the current mouse cur-
sor position. An attack tool calls the GetCursorPos() function
to obtain the current mouse position on the screen, and then
the operating system passes the mouse position requested
from the attack tool. The attack tool obtains the current
mouse cursor position by calling the function once. Hence,
the current mouse position is periodically collected by using
a timer or loop to trace the mouse movement input from the
user. By setting up this process in a very short period of time,
the attacker almost completely traces the mouse movement.
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FIGURE 2. Mouse data attack technique using the GetCursorPos()
function.

FIGURE 3. Example of mouse movement tracing using the GetCursorPos()
function.

Fig. 3 shows the traced result of mouse movement using the
GetCursorPos() function.

Specifically, the top-left shows the result of collected
mouse coordinates, including X and Y coordinates, and the
number of coordinates collected. The bottom shows the result
of stealing the password input from the user in the real-world
website with image-based authentication technology based
on the collected mouse data. The top-left figure consists of
three columns, each representing the collected mouse data
sequence number, X coordinate, and Y coordinate. When an
attacker starts this attack, the attacker captures the image on
the screen. After that, the mouse coordinates are collected in
the process as shown in Fig. 2, and the collected coordinates
are displayed to the captured image in real time. As a result,
as shown in the figure below, the user’s mouse movement
can be tracked, and the input password can be stolen. We
experimented by applying the image-based authentication
technique to e-commerce web sites in South Korea, and this
attack technique verified that the password was exposed, even
for international web sites.

C. MOUSE DATA DEFENSE TECHNIQUE
This section describes a defense technique using SetCur-
sorPos() function, a representative mouse defense technique
corresponding to the mouse data attack technique described
in Section 2.2. Due to the attack using the GetCursorPos()
function, it does not prevent the tracking of the user’s mouse
movement. Moreover, the GetCursorPos() function is a legal

FIGURE 4. Mouse data defense technique using the SetCursorPos()
function.

API provided by the operating system, so it is difficult to
determine that a program is amalicious code or attack only by
detecting the calling of this function. In terms of attack detec-
tion, defending a user level attack at the user level is difficult
to prevent effectively, because an attacker and a defender are
in competition with each other. In addition, the defender has a
limitation to applying relatively strong or illegal techniques to
the attacker, because the defender must defend by supporting
successful operations, to avoid errors and bugs. In order to
overcome this limitation, a defense technique using SetCur-
sorPos() function, which is a technique to prevent tracking
the mouse position input from the user even when the mouse
cursor position is stolen, has appeared, rather than detecting
or preventing calling the GetCursorPos() function.

This defense technique is a trick technique that induces
an attacker to obtain the incorrect mouse positions generated
by a defender who generates random cursor positions at any
time, even if the attacker steals the over-all mouse positions.
Since the attacker does not distinguish random coordinates,
it is almost impossible to track the mouse position input
from the user. On the other hand, if the defender filters the
generated coordinates from the collected mouse coordinates,
the defender can correctly obtain the mouse coordinates input
from the user, because the defender knows the random coor-
dinates. That is, in image-based authentication, it is possible
to authenticate by clicking a location corresponding to a
password by the user moving the mouse successfully. Fig. 4
shows the defense technique process using the SetCursor-
Pos() function.

The defense tool generates random coordinates to induce
the attacker, and then manipulates the mouse cursor position
with the random coordinates by calling the SetCursorPos()
function. The attack tool calls the GetCursorPos() function
to obtain the current mouse position, and the operating sys-
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FIGURE 5. Example of mouse data protection result using the
SetCursorPos() function.

tem passes the mouse position requested by the attacker. At
this time, the attack tool can successfully obtain the mouse
position, but the position is the random coordinate generated
by the defense tool, in order to trick the attacker. After that,
when the user moves the mouse, the mouse transmits the
coordinates corresponding to the movement to the operating
system, and the operating system updates the current mouse
position by applying the coordinates transmitted from the
mouse.

After the mouse input is completely by the user,
the attacker also calls the GetCursorPos() function to steal
the current mouse position. At this point in this process,
the attacker cannot distinguish between the coordinates gen-
erated by the defense tool, and the coordinates input from
the mouse. On the other hand, if the collected coordinate
is the same as the generated coordinate, the defense tool
filters the coordinate, because the tool knows the coordinate
it generated. The other coordinates are displayed as mouse
movements to the screen to interact with the user to show
inputting the password. Fig. 5 shows the result of mouse data
protection using the SetCursorPos() function.

In detail, the left side of the above figure shows an
attack scenario in which an attacker attempts to steal mouse
data using the GetCursorPos() function, while protecting the
mouse data using the SetCursorPos() function. The top-right
shows the result of the stolen mouse data by the attacker
based on this attack scenario. The results collect not only
mouse data input from the user, but also random mouse data
generated by the defender. Therefore, the attacker does not
filter themouse data input from the user, whichmeans that the
attacker does not steal the password of the user in the image-
based authentication technique.

On the other hand, the defender correctly filters and classi-
fies the mouse data input from the user; this allows the user to
input a password in image-based authentication, as shown at
bottom-right. When the user moves the mouse position over
the keypad displayed on the screen, the defense tool filters
out any mouse data generated by the tool, and displays only
the mouse data input from the user. Accordingly, the user
inputs the password bymoving to the character corresponding

to the password registered by the user, and by sequentially
clicking the password. In the figure, the red square is the
position where the user clicks. Consequently, the mouse data
protection technique using the SetCursorPos() function effec-
tively prevents the mouse data attack technique using the
GetCursorPos() function.

As described above, a defender protects the mouse data
by applying the mouse data defense technique. In this paper,
we attempt to verify the feasibility of mouse data stealing
by an attacker under this defense. If the attacker attempts a
high level of attack techniques, such as a hardware access-
based attack and a kernel-based attack, mouse data can be
stolen. However, it takes a lot of effort and time to attempt
these attack techniques, and these attacks have the risk of
being detected due to abnormal approaches. Therefore, in
this paper, we derive a vulnerability and a security threat of
the mouse data, and verity the security by applying machine
learning to the attack technique using the existing GetCur-
sorPos() function, not the attack requiring a high level of
attack technique. By doing so, this paper constructs an attack
system of mouse data, and collects mouse data from the
system to construct datasets. Moreover, we configure features
to classify only dummy data between collected dummy data
and actual mouse data, and verify the feasibility of classifying
mouse data by applying various machine learning models.

III. ATTACK SYSTEM AND DATASET CONFIGURATION
This section describes the composition of the proposed attack
system. The configured system applies a method for col-
lecting all the mouse movements that are input in the situ-
ation where the mouse data defense technique is executed. In
addition, we describe the dataset configuration required for
the experiment based on the mouse data collected from the
configured system.

A. ATTACK SYSTEM CONFIGURATION
Fig. 6 shows the proposed mouse data attack system. The
attack system must collect mouse data input from the mouse
device, that is, A1, A2, . . . , An, by calling the GetCursorPos()
function. In this process, the defense tool generates random
coordinates, namely, B1, B2, . . . , Bn, periodically, to trick the
attacker. As a result, the attack tool obtains coordinates input
from the user and coordinates generated from the defense
tool, that is, (A1, B1, B2, A2, B3, B4, B5, . . . , An, Bn). Thus,
the attacker collects the X and Y coordinates on the screen by
calling the GetCursorPos() function, and the time when the
coordinates change. If the X and Y coordinates on the screen
are the same as the previous and current coordinates, it is
determined that there is nomouse input, and these coordinates
are not collected. In other words, the coordinates are collected
only when the previous coordinate and the current coordinate
are different. The time when the coordinate is changed is
stored as an elapsed time in nano seconds from the previous
coordinate to the current coordinate, when the current coordi-
nate is different from the previous coordinate. Table 1 shows
an example of the collected coordinate.
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FIGURE 6. The proposed mouse data attack system configuration.

TABLE 1. Example of collected coordinates.

The goal of this paper is to classify the actual mouse data
input from the mouse device, (A1, A2, . . . , An), from all the
coordinates collected by the attack tool, namely, (A1, B1, B2,
A2, B3, B4, B5, . . . , An, Bn). To achieve this goal, we utilize
machine learning models of KNN, Logistic Regression, Lin-
ear SVC, Decision Tree, Random Forest, Gradient Boosting
Regression Tree, SVM, and MLP. Moreover, we generated
eight datasets for the experiment, and verified the feasibility
of real mouse data exposure.

B. DATASET CONFIGURATION
To classify the actual mouse data coming from the mouse
device, we collected mouse data in two ways. The first
method collects both random data generated by the defense
tool, and the actual mouse data input from the user. The sec-
ond method collects only random mouse data. Each method
in this paper collects data by setting four periods: of (50, 100,

TABLE 2. Whole collected mouse data.

TABLE 3. Configured dataset for the experiment.

250, and 500) ms. Table 2 shows the total collected mouse
data.

Datasets for the experiment ware constructed based on
the collected mouse data. The coordinates collected by the
second method are all coordinates generated by the defense
tool, which are not organized into datasets for classification,
but integrated with datasets (1-1 to 1-4) to improve the exper-
iment results. In other words, datasets (1-1 to 1-4) are used
for the experiment, and datasets (2-1 to 2-4) are integrated
with datasets (1-1 to 1-4) for the experiment. Table 3 shows
the dataset configuration for the experiment.

We constructed eight datasets for experiments, (1-1 to
1-4) and (2-1 to 2-4). Datasets (1-1 and 1-2) collected more
than 25,000 coordinates, while (1-3 and 1-4) collected more
than 15,000 coordinates. Benign coordinates in datasets rep-
resent actual coordinates input from the mouse device, while
malignant coordinates represent random coordinates gener-
ated by a defense tool. The number of benign coordinates
in each dataset is (16,623, 11,364, 7,947, 10,074, 16,628,
11,365, 7,952, and 10,147), while the number of malignant
coordinates is (8,481, 13,697, 7,062, 5,651, 18,510, 23,706,
17,061, and 15,423), respectively. The percentages of benign
coordinates are (66.21, 45.34, 52.94, 64.06, 47.32, 32.40,
31.79, and 39.68)%,while the percentages ofmalignant coor-
dinates are (33.78, 54.65, 47.05, 35.93, 52.68, 67.59, 68.20,
and 60.31) %. Therefore, in this paper, experiment datasets
contain the appropriate number of benign and malignant
coordinates, which reduce the problem caused by overfitting
and underfitting.
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For the experiment, features were organized in two ways.
The first feature is the collected X and Y coordinates, while
the second feature is the collected X and Y coordinate and the
elapsed time. Therefore, the datasets used for the experiment
were a total of 16 datasets using 8 datasets in two ways.

C. MACHINE LEARNING MODELS
This section describes the machine learning models used in
this paper to classify mouse data, and these models are KNN,
linear model, decision tree, decision tree ensemble, kernel
trick, and neural network.

KNN is designated a class which has many neighbors as
a label, and classified data based on decision boundaries
[12]. Linear models use linear functions for classification.
The linear classification models used in this paper are Logis-
tic Regression and Linear Support Vector Machine (Lin-
earSVC), which classify classes based on lines, planes, and
hyperplanes [13], [14]. Decision Tree splits the data based
on yes/no questions, and learns by repeating questions until
a decision is reached [15]. Ensemble model is a model that
creates an effective model based on several machine learn-
ing models [16], and includes Random Forest model and
Gradient Boosting Regression model. Kernel trick includes
Kernel Support Vector Machine (SVM), which determines
decision boundaries based on points in each training data, and
classifies by measuring the distance to the data point located
at the boundary. Finally, deep learning model utilized multi-
layer perceptron (MLP) in this paper. MLP is a model that
calculates the sum of weights by constructing hidden units
in a linear regression model, and supports deep learning due
to the hidden layer [18]. This model computes the sum of
the weights of the hidden units to be more powerful than
the linear model, and applies the nonlinear functions such as
ReLU (refied linear unit) or hyperbolic tangent to the results.
Moreover, this model is called deep learning because of the
neural network composed of many hidden layers. This model
has advantages that extracting the information contained in a
large amount of data and generating a complex model due to
the hidden layer. These advantages are also superior to other
machine learning models. Nevertheless, this model takes a
long time to learn and has a disadvantage of requiring data
preprocessing.

IV. EXPERIMENT RESULT
This section describes the results of experiment and per-
formance evaluations applied to machine learning models
using datasets collected from the mouse data attack system
described in Section 3. The machine learning models used
in this paper are KNN, Logistic Regression, Linear SVC,
Decision Tree, Random Forest, Gradient Boosting Regres-
sion Tree, SVM, and MLP.

A. EXPERIMENT RESULTS USING DATASETS CONSISTING
OF FEATURE 1 (X AND Y COORDINATE ONLY)
For the experiment, the training set, the verification set, and
the test set were classified into random numbers, and Table 4

TABLE 4. Training set, validation set, and test set scores in dataset 1-1
with optimal parameters.

shows the results of each set and the cross-validation results
based on the dataset 1-1.

As an experiment result, random forest model has the
highest score of 0.98 in the training set, while the rest of
the models have a similar score of 0.66. The validation set
has the lowest score at random forest with 0.57, while the
other models have a similar score with 0.67. The test set has
the lowest score at random forest with 0.54, while the other
models have a similar score with 0.65. The cross-validation
has the lowest score at random forest with 0.559, while the
other models have a similar score with 0.66.

In order to evaluate the performance of the classification
of the actual mouse data input from the mouse, the results of
each set of cross-validation, accuracy, precision, recall, F1-
score, and AUC were derived from datasets (1-1 to 1-4), as
shown in Fig. 7. Cross-validation is a method of dividing
the data over and over, and training multiple models. This
cross-validation can improve the problem of performance
increase or decrease by biasing the data. Accuracy is the
exact predicted number (True Positive and True Negative,
TP and TN) divided by the total number of samples, and
precisely measures how many of the positively predicted (TP
+ False Positive, TP + FP) samples are truly positive (TP).
Recall is measured by howmany of the total positive samples
(TP + False Negative, TP + FN) are classified as positive
classes (TP). The F1-score is the harmonic mean of precision
and recall, and is summarized in one. Area Under the Curve
(AUC) summarizes the ROC curve with the area under the
ROC curve, and the AUC result always has a value between
the worst zero and the best one. The Receiver Operating
Characteristics (ROC) curve considers all the thresholds of
the classifier, and represents the False Positive Rate (FPR)
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FIGURE 7. Performance evaluation results of datasets (1-1 to 1-4)
(cross-validation, accuracy, precision, recall, F1-score, AUC).

against the True Positive Rate (TPR). The true positive rate is
the recall rate, while the false positive rate is misclassified as
false positive.

As a result of each dataset, dataset 1-1 shows high perfor-
mance except for random forest, while dataset 1-2 shows high
performance with KNN, decision tree, random forest, and
gradient boosting regression tree. However, models that can-
not measure recall are logistic regression, linear SVC, SVM,
and MLP. Datasets 1-3 and 1-4 show high performance with
KNN, decision tree, random forest, and gradient boosting
regression tree, while logistic regression, linear SVC, SVM,
andMLP have slightly lower performance. As a result of each
model, all models have high performance in datasets (1-1
and 1-4). On the other hand, several models do not evaluate
the performance in dataset 1-2, and these models are logistic
regression, linear SVC, SVM, and MLP.

In order to evaluate the performance of the classification
of the actual mouse data input from the mouse, the results
of each set of cross-validation, accuracy, precision, recall,
F1-score, and AUC were derived from datasets (2-1 to 2-4),
as shown in Fig. 8:

As a result of each dataset, dataset 2-1 has the highest
performance in the decision tree, while KNN, random for-
est, and gradient boosting regression tree have the highest
performance. Dataset 2-2 has the highest performance with
KNN and random forest, while dataset 2-3 has the highest
performancewith KNN, random forest, and gradient boosting
regression tree. Dataset 2-4 has the highest performance with
KNN, decision tree, random forest, and gradient boosting
regression tree. As a result of eachmodel, KNN, decision tree,
random forest, and gradient boosting regression tree have the
highest performance in dataset 2-4, while logistic regression,
linear SVC, SVM, and MLP have the highest performance
in datasets 2-2 and 2-3. A distinctive characteristic of these
datasets is that models occur where precision, recall, and
F1-score are not evaluated in all datasets.

FIGURE 8. Performance evaluation results of datasets (2-1 to 2-4)
(cross-validation, accuracy, precision, recall, F1-score, AUC).

TABLE 5. Training set, validation set, and test set scores in dataset 1-1
including elapsed time with optimal parameters.

B. EXPERIMENT RESULTS USING DATASETS CONSISTING
OF FEATURE 2 (X AND Y COORDINATE, AND
ELAPSED TIME)
For the experiment, the training set, verification set, and test
set were classified into random numbers, and Table 5 shows
the results of each set and the cross-validation results based
on dataset 1-1.

As an experiment result, the training set has the highest
score at random forest with 0.99, while the other models have
a similar score to 0.75.When compared to the dataset without
elapsed time, random forest increased 0.01 from (0.98 to
0.99), while the other models increased 0.09 from (0.66 to
0.75). The validation set has the lowest score at random forest
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FIGURE 9. Performance evaluation results of datasets (1-1 to 1-4) with
elapsed time (cross-validation, accuracy, precision, recall, f1-score, AUC).

with 0.73, while the other models have a similar score with
0.76. When compared to the dataset without elapsed time,
random forest increased 0.16 from (0.57 to 0.73), while the
other models increased 0.06 from (0.67 to 0.73). The test set
has the lowest score at random forest with 0.73, while the
other models have a similar score to 0.75. When compared
to the dataset without elapsed time, random forest increased
0.19 from (0.54 to 0.73), while the other models increased 0.1
from (0.65 to 0.75). Cross-validation also has the lowest score
at random forest with 0.729, while the other models have a
similar score to 0.750. When compared to the dataset without
elapsed time, random forest increased 0.170 from (0.559 to
0.729), while the other models increased 0.09 from (0.66 to
0.75). Thus, when compared to datasets that do not include
elapsed time, the scores of all training sets, validation sets,
test sets, and cross-validation scores are higher than those
of the datasets that do not include elapsed time. This means
including elapsed time results in high performance. In other
words, if the dataset including elapsed time is used, the actual
mouse data input from the mouse is classified more effec-
tively. In order to analyze the performance evaluation results
more precisely, the results of each set of cross-validation,
accuracy, precision, recall, F1-score, and AUC were derived
from datasets 1-1 to 1-4 as shown in Fig. 9.

As a result of each dataset, datasets 1-1 and 1-3 have
the highest performance with decision tree, random forest,
and gradient boosting regression tree, while dataset 1-3 has
almost similar performance to all models, except random
forest. Dataset 1-4 has the highest performance with decision
tree and random forest. Most of all, all datasets, including
elapsed time, have no model that does not evaluate perfor-
mance in all models, when compared to datasets containing
only X and Y coordinates. Namely, this means that the feature
for distinguishing benign frommalignant is properly defined.
As a result of each model, all models have the highest perfor-
mance in dataset 1-4.

FIGURE 10. Performance evaluation results of datasets (2-1 to 2-4) with
elapsed time (cross-validation, accuracy, precision, recall, f1-score, AUC).

In order to evaluate the classification performance of the
actual mouse data input from the mouse, the results of each
set of cross-validation, accuracy, precision, recall, F1-score,
and AUC were derived from datasets (2-1 to 2-4) including
elapsed time as shown in Fig. 10.

As a result of each dataset, dataset 2-1 has the highest
performance with decision tree and gradient boosting regres-
sion tree, while dataset 2-2 has almost similar performance
with all models, except linear SVC. Datasets 2-3 and 2-4
have almost similar performance with all models. As a result
of each model, all models have the highest performance in
dataset 2-4.

C. PERFORMANCE COMPARISON RESULTS ACCORDING
TO FEATURES
As described above, in this paper, we evaluated the perfor-
mance of datasets with feature 1, containing only X and Y
coordinates, and datasets with feature 2, containing X and Y
coordinates and elapsed time. As a result, we verified that the
performance of the dataset including elapsed time is higher
than that of the dataset containing only X and Y coordinates.
Therefore, the results of the performance evaluation vary
according to the feature, and the meaning of the feature
is analyzed by comparing the performance evaluation. For
this purpose, the results of the training set, verification set,
test set, and cross-validation are compared, and the results
of the actual performance of accuracy, precision, recall,
F1-score, and AUC are compared. Fig. 11 shows the compar-
ison results of the training set, verification set, test set, and
cross-validation.

Based on the dotted line, the results of the datasets without
elapsed time as shown on the left, while the results of the
datasets with elapsed time as shown on the right. The per-
formance tends to increase as the dataset goes from (1 to 3),
and all datasets with elapsed time have higher performance
than all datasets without elapsed time. Moreover, all scores
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FIGURE 11. Performance evaluation comparison of the training set,
validation set, test set, and cross-validation by features.

FIGURE 12. Performance evaluation comparison of accuracy, precision,
recall, F1-score, and AUC by features.

of (1-4 and 2-4) have a performance close to the perfect score
of 1, which results in a performance gain by constructing the
feature into a dataset containing elapsed time.

By analyzing the changes in training set, validation set,
test set, and cross-validation, the results of all models in the
datasets that do not include elapsed time change significantly.
In particular, decision tree, random forest, logistic regression,
and gradient boosting regression tree show significant dif-
ferences. On the other hand, the results of all models of the
datasets containing elapsed time are relatively small. In these
datasets, random forest shows noticeable difference.

As described above, the results of training set, validation
set, test set, and cross-validation are clearly different accord-
ing to the features, and the datasets including elapsed time
show high performance. Formore practical performance eval-
uation, Fig. 12 compares the results of accuracy, precision,
recall, F1-score, and AUC.

Based on the dotted line, the results of the datasets without
elapsed time are shown on the left, while the results of the
datasets with elapsed time are shown on the right. As the
datasets go from (1 to 4), the performance tends to improve,
and datasets with elapsed time have relatively higher per-
formance than datasets without elapsed time. Moreover, the
accuracy of datasets (1-3, 1-4, 2-3, and 2-4) show a per-
formance close to the perfect score of 1, which means that
constructing the datasets with the feature of elapsed time

TABLE 6. Change rate according to the features in dataset 1-1.

results in higher performance. Therefore, the accuracy of
nearly 1 extracts most of the actual mouse data input from the
user by effectively classifying random coordinates generated
by the defense tool in image-based authentication.

By analyzing the changes in accuracy, precision, recall,
F1-score, and AUC, the results of all models in datasets with-
out elapsed time change significantly. In particular, logistic
regression, linear SVC, decision tree, random forest, and gra-
dient boosting regression tree show significant differences.
On the other hand, the results of all modes in datasets with
elapsed time are relatively small. In these datasets, random
forest and logistic regression show noticeable differences.

Finally, in order to analyze the increase and decrease of
the change rate according to features, accuracy, precision,
recall, F1-score, and AUC performance, the difference of
datasets having the lowest performance and datasets having
the highest performance are analyzed. Tables 6-9 show the
results.

The results in dataset 1-1 show that the model with
the highest increase of accuracy was random forest, which
increased by 135.3 %; while the model with the lowest
increase of accuracy was logistic regression, which increased
by 114.8 %. The model with the highest increase of precision
was random forest, which increased by 121.2 %; while the
models with the lowest increase of precision were KNN
and decision tree, which increased by 112.7 %. The model
with the highest increase of recall was random forest, which
increased by 115.7 %; while recall showed that gradient
boosting regression tree had a lower evaluation of datasets
including elapsed time, and decreased to 96 %. The model
with the highest increase of F1-score was random forest,
which increased by 119.2 %; while the model with the lowest
increase of F1-score was logistic regression, which increased
by 105.5 %. The model with the highest increase of AUC
was random forest, which increased by 178.4 %; while the
model with the lowest increase of AUC was SVM, which
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TABLE 7. Change rate according to the features in dataset 1-3.

TABLE 8. Change rate according to the features in dataset 2-2.

TABLE 9. Change rate according to the features in dataset 2-4.

increased by 118.2 %. In dataset 1-1, all evaluation results
were increased, except for gradient boosting regression tree
in recall, with the highest growth rate of 178.4 %.

The results in dataset 1-3 show that the models with the
highest increase of accuracy were logistic regression, linear
SVC, SVM, and MLP, which increased by 178.7 %; while
the model with the lowest increase of accuracy was ran-
dom forest, which increased by 148.5 %. The models with
highest increase of precision were linear SVC and MLP,
which increased by 172.7 %; while the model with the lowest
increase of precision was random forest, which increased
by 141.8 %. The model with the highest increase of recall

was decision tree, which increased by 151.3 %; while recall
showed that linear SVC and MLP had a lower evaluation of
datasets including elapsed time, and decreased to 99.7%. The
model with the highest increase of F1-score was decision tree,
which increased by 146 %; while the models with the lowest
increase of f1-score were logistic regression, linear SVC,
SVM, andMLP, which increased by 137.7%. Themodel with
the highest increase of AUC was SVM, which increased by
195.1 %; while the model with the lowest increase of AUC
was random forest, which increased by 139.9 %. In dataset
1-3, all evaluation results were increased except for lin-
ear SVC and MLP in recall, with the highest growth rate
of 195.1 %.

The results in dataset 2-2 show that the model with the
highest increase of accuracy was MLP, which increased by
136.3%;while themodel with the lowest increase of accuracy
was random forest, which increased by 131 %. The model
with the highest increase of precision was gradient boosting,
which increased by 155 %; while the model with the lowest
increase of precision was decision tree, which increased by
104.3 %. The model with the highest increase of recall was
decision tree, which increased by 6,935.7 %; while the model
with the lowest increase of recall was random forest, which
increased by 210.7 %. The model with the highest increase
of f1-score was decision tree, which increased by 3,178.5 %;
while the model with the lowest increase of f1-score was
random forest, which increased by 179.3 %. The model with
the highest increase of AUCwas linear SVC, which increased
by 191.9 %; while the model with the lowest increase of AUC
was KNN, which increased by 136.2 %. Dataset 2-2 showed
an increase in the evaluation results of all models, which the
highest increase rate of 6,935.7%.

The results in dataset 2-4 show that the models with the
highest increase of accuracy were logistic regression, linear
SVC, SVM, and MLP, which increased by 165 %; while
the model with the lowest increase of accuracy was ran-
dom forest, which increased by 143.5 %. The model with
the highest increase of precision was decision tree, which
increased by 165.1 %; while the model with the lowest
increase of precision was gradient boosting regression tree,
which increased by 153.4 %. The model with the high-
est increase of recall was gradient boosting regression tree,
which increased by 214.5 %; while the model with the lowest
increase of recall was random forest, which increased by
191.1 %. The model with the highest increase of f1-score
was KNN which increased by 186 %; while the model with
the lowest increase of f1-score was random forest, which
increased by 171.9 %. The model with the highest increase
of AUC was logistic regression, which increased by 198.2 %;
while themodel with the lowest increase of AUCwas gradient
boosting regression tree, which increased by 137.7%.Dataset
2-4 showed an increase in the evaluation results of all models,
with the highest increase rate of 214.5 %.

In conclusion, using datasets that includes elapsed time,
we extracted the actual mouse data input from the user by
effectively classifying random coordinates with up to 98 %
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accuracy. Therefore, the attack method proposed in this paper
has found a new vulnerability and security threat to effec-
tively steal the user password in image-based authentication.

V. CONCLUSION
This paper analyzed the security of mouse data in the situ-
ation where defense technique is applied based on machine
learning in image-based authentication. The existing attack
technique is limited in its ability to distinguish the mouse
data generated by the defense tool from the actual mouse data
input from the user. In order to overcome this limitation, in
this paper, we constructed datasets with features to effectively
classify mouse data. As a result of experiments based on
the configured datasets, the datasets collected in this paper
classified the actual mouse data input from the user at a much
higher level than did the existing attack technique. Thismeans
that the proposed system steals mouse data effectively. In
particular, performance indicators, such as accuracy, preci-
sion, recall, F1-score, and AUC, were evaluated as higher
than the existing attack in all datasets, and showed very low
false positive and false negative rates. Moreover, the best
accuracy is 98 %, which means that the attacker almost com-
pletely steals themouse data. Therefore, the proposedmethod
found a new vulnerability and security threat for image-based
authentication technology. Finally, the results of this paper
will be used as criteria for security analysis and evaluation in
image-based authentication technology.
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