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ABSTRACT Currently, using hybrid energy storage system composed of battery and supercapacitor to
stabilize DC bus power fluctuation is a hot issue. In low-pass filtering control strategy to suppress the power
fluctuation of DC bus, the filtering time constant is fixed, so there are problems such as poor load power
fluctuation smoothing effect and over-charge and over-discharge of the battery. In this paper, a two-stage
low-pass filter control strategy with variable filter time constant is designed. Firstly, the strategy builds a
multi-objective function with minimum load slow target power and DC bus power difference. Using the
Improved Particle Swarm Optimisation (IPSO) with compensating coefficient of inertia weight factor to
solve the optimal output power by a hybrid energy storage system, and dynamically adjust the first-level
filtering time constant, in order to reduce the load power change causing the fluctuation of the DC bus power;
secondly, according to the charging state of the supercapacitor and the battery, the fuzzy control method is
adapted to dynamically adjust the second-order filtering time constant to optimize the power distribution of
the battery and the supercapacitor. The experimental results show that the control strategy can effectively
reduce the power fluctuation of DC bus by about 15%, and avoid the over limit phenomenon of the battery
state of charge, which has a good prospect of engineering application.

INDEX TERMS Hybrid energy storage, power fluctuation, particle swarm optimization, low pass filter,
filtering time constant.

I. INTRODUCTION
When load changes cause DC bus power fluctuation, a single
energy storage device cannot better meet the requirements
of high power and high energy density at the same time,
which will affect the stable and reliable operation of micro-
grid [1]. However, hybrid energy storage system (HESS)
can give full play to the complementary characteristics of
battery and supercapacitor [2], which is more popular in
smoothing power fluctuations of a microgrid. To improve
the performance of HESS to stabilize load power fluctuation
and prevent the battery from overcharging and discharging,
the control strategy of the HESS in a microgrid to stabilize
power fluctuation should be studied in depth [3].
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The control strategy of the battery-supercapacitor HESS
has been studied in many articles. In ref. [4], adaptive wavelet
packet decomposition was used to obtain the calming power
target of the HESS, and fuzzy control method was used to
optimize the power index distribution of battery and superca-
pacitor, to effectively improve the smoothing effect of wind
power output power fluctuation. Ref. [5] proposed the opti-
mal power control strategy of the first-order low-pass filter
to avoid overcharging and over-discharging of the battery.
Ref. [6] adopts fuzzy control method to optimize the charging
and discharging power of the hybrid energy storage system
according to the bus voltage, the frequency of the microgrid
and the overall charging state of the HESS, to maintain the
charging state of the energy storage equipment in a reasonable
range. Ref. [7] adopts fuzzy control method to optimize the
power distribution of HESS according to the supercapacitor
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state of charge and gives full play to the fast dynamics of the
supercapacitor to stabilize the high-frequency components of
power fluctuation. Ref. [8] proposes a hybrid energy storage
system composed of a high energy density battery and a high
power density super capacitor to mitigate the intermittent
renewable energy power fluctuations in remote areas. The
experimental results show that the hybrid energy storage sys-
tem can not only effectively suppress the power fluctuation
of intermittent renewable energy, but also suppress the power
fluctuation of the load. Ref. [9] a combination of low-pass
filtering and fuzzy control strategy is proposed, which uti-
lizes the high power density of supercapacitors, high current
charge and discharge characteristics, and reduces the dynamic
stress and peak current demand of the battery to prolong
battery life and slow bus power fluctuation. Ref. [10] adjusted
the filter time parameters of the system in real time according
to the charging state of the energy storage system, realizing
the long-term effective operation of the battery and super-
capacitor energy storage system, but could not dynamically
adjust the output power of the mixed energy storage system,
effectively stabilizing the bus power fluctuation. Ref. [11]
proposes a hybrid energy storage system power allocation
strategy based on battery charge and discharge thresholds to
limit battery charge and discharge current. This method can
quickly respond to changes in wind speed and load power,
but the threshold setting is relatively complicated and there
is no clear method. Ref. [12] adopts the adaptive drooping
technique to optimize the load distribution according to the
dynamic drooping coefficient of the distributed power supply
output.

In this paper, a variable filter time constant two-stage
low-pass filter control strategy is designed. The strategy
builds multi-objective function with minimum load slow tar-
get power and DC bus power difference, uses the Improved
Particle Swarm Optimisation (IPSO) algorithm with com-
pensating coefficient of inertia weight factor to obtain the
optimal output power of the HESS, adjusts the first-level
filtering time constant, in order to reduce the load power
change DC bus power fluctuations. Secondly according to
the supercapacitor and battery state of charge (SOC), fuzzy
control method for dynamic adjustment second-level filtering
time constant, optimizing the allocation of power battery and
supercapacitor. The experimental results show that compared
with the traditional control strategy, the control strategy can
reduce the power fluctuation of DC bus by about 15%, and
avoid the phenomenon of over limit of the battery SOC.

II. CONTROL STRATEGY TO STABILIZE
LOAD FLUCTUATION
A. TRADITIONAL STRUCTURE AND STRATEGY OF
STABILIZING LOAD FLUCTUATION
The topology of the traditional HESS to stabilize load power
fluctuations is shown in figure 1. As shown in Figure 1, it is
a DC micro grid, and micro power supply, hybrid energy
storage system and micro grid load are connected through

FIGURE 1. HESS topology diagram.

FIGURE 2. Traditional load stabilization power control strategy.

DC bus, which is connected to the grid through bidirectional
AC/DC converter. PDG is the output power of the PV micro-
power supply,PLINE is the DC bus power of themicrogrid,PE
is the power of the HESS, and PLOAD is the power required
by the load.

The traditional HESS using a two-stage low-pass filter [13]
to control load changes and power distribution strategies,
as shown in figure 2. Pref is the external power smoothing
target, S is the differential operator, T1 is the first filtering
time constant, T2 is the second filtering time constant, PSC
is the power assumed by the supercapacitor in the HESS,
and PBAT is the power assumed by the battery in the HESS.
The high-frequency components of load power fluctuation
are obtained by filtering time constant T1, and the power
distribution between the supercapacitor and the battery is
completed by filtering time constant T2.

As can be seen from figure 2, although the two-stage low-
pass filtering control strategy can stabilize the power fluctu-
ation of load, the first-stage low-pass filtering HESS cannot
dynamically adjust the target power of load stabilization. The
output power of the HESS deviates from the actual output
power, which affects the load power fluctuation stabilization.
The second-level low-pass filter does not take into account
the battery and the supercapacitor SOC, which will cause
overcharge of the battery to in the process of utilization and
affecting the service life of the HESS [14]. Among them,
the battery selects the equivalent model partnership for a
new generation of vehicle (PNGV), as shown in Figure 3.
In Figure 3, RP is the polarization internal resistance of the
battery, RO is the ohmic internal resistance of the battery,
CP is the polarization capacitance of the battery, CB is the
additional capacitance, indicating the change amount of the
open circuit voltage generated by the accumulation of cur-
rent with time change, UOC is the open circuit voltage of
the battery, IL is the current passing through the equivalent
ohmic internal resistance Ro. On the basis of the Thevenin
equivalent model, the capacitance is added to indicate the
change of the open circuit voltage with time and current

175378 VOLUME 7, 2019



T. Wu et al.: Study on Use of HESS Along With Variable Filter Time Constant

FIGURE 3. PNGV equivalent circuit model.

FIGURE 4. Classic RC model.

accumulation, which is more similar to the actual battery
operating characteristics [15]. The super capacitor uses the
classic RC model, as shown in Figure 4. In Figure 4, RESR
is the equivalent resistance of super capacitor, C is the ideal
capacitor, IC is the current of super capacitor, and UOC is
the open circuit voltage. The model not only has a simple
structure, but also has the advantages of less parameters and
small calculation, and can reflect the external characteristics
of the supercapacitor during charging and discharging [16].

B. IMPROVE CONTROL STRATEGY OF HYBRID ENERGY
STORAGE TO STABILIZE LOAD FLUCTUATION
The two-stage low-pass filter control strategy has the
problems of poor load fluctuation suppression effect and
overcharge and over-discharge of the battery. In this paper,
a variable filter time constant two-stage low-pass filter con-
trol strategy is designed. By building the first level low pass
filtering to stabilize the output power and the multi-objective
function with the smallest DC bus power load fluctuation.

It using compensation coefficient inertia weight factor of
the IPSO to solve the optimal output power of HESS, dynam-
ically adjust filtering time constant T1, minimize the load
power fluctuations. The second-level low-pass filter adopts
fuzzy control method to dynamically adjust the filtering time
constant T2 according to the supercapacitor and the battery
SOC to optimize the power distribution of the battery and
the supercapacitor, to avoid the over-limit phenomenon of the
battery SOC. Fig.5 shows the control strategy of improving
hybrid energy storage to stabilize load fluctuation.

III. IPSO HYBRID ENERGY STORAGE SYSTEM TO
REALIZE POWER STABILIZATION TARGETS
To overcome the insufficiency of constant filtering time con-
stant and better adjust the power stabilization of HESS, this
paper constructs a multi-objective function to minimize the
fluctuation of load output power and DC bus power. IPSO
algorithm is used to solve the optimal balancing power of the

FIGURE 5. Improved load leveling power fluctuation control strategy.

HESS, and then the first stage low-pass filtering time constant
T1 is dynamically adjusted to stabilize the power fluctuation
of the load effectively.

A. POWER STABILIZATION TARGET AND CONSTRAINT
CONDITIONS OF THE HESS
According to the actual operation of the HESS, an objec-
tive function was established to improve the capability of
the HESS to stabilize DC bus power fluctuation caused by
load changes. To achieve the desired purpose of the control
strategy more ideally, it makes the following provisions: the
period of the control strategy was 1h, and 1h was divided into
60 periods. So, there’s 60min in 1 h. The objective function
is shows in equation (1).F1 = min

60∑
i=1

(PLINEi − PLOADi )
2

F2 = min[max(PLINEj )−min(PLINEk )]
(1)

where PLOADi is the load power in the microgrid. PLINEi is the
power of DC bus in the microgrid. max(PLINEj ) is the period
when the bus power is the maximumwithin a control strategy
period. min(PLINEk ) is the minimum bus power period in a
control strategy period.

After determining the objective function, considering the
optimal performance of battery- supercapacitor and the man-
agement strategy of the energy storage system, the constraint
conditions should be established according to some basic
requirements of a HESS. The proposed constraints are as
follows:

1) Energy conservation constraint. According to the law
of conservation of energy, the output of photovoltaic power
generation at a specific moment, the battery and the super-
capacitor output together shall be equal to the power on the
DC bus plus the grid-connected power [17]. Equation (2) is
the mathematical expression. Figure 6 is the power balance
diagram of microgrid.

Pvi + PSCi + PBATi + PLINEi = PLOADi (2)

where Pvi is the PV micropower supply output in a certain
period. PSCi is the output of the supercapacitor at a certain
period. PBATi is the output of the battery at a certain period.
PLINEi is the power of busload at a certain moment, this power
is provided by the grid. PLOADi is the power of microgrid load
at a certain moment.
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FIGURE 6. The power balance diagram of microgrid.

2) SOC constraint [18], the mathematical expression is
shown in equation (3).{

15% ≤ SOCSCi ≤ 90%
15% ≤ SOCBATi ≤ 85%

(3)

where SOCSCi is the supercapacitor SOC in a certain period.
SOCBATi is the battery SOC within a certain period.
Both battery and supercapacitor overcharge and over-

discharge have severe effects on the life and service effect
of the energy storage system. Therefore, the SOC of bat-
tery and supercapacitor need to be limited [19]. At present,
the commonly used SOC estimation methods mainly include
Ampere-hour integral method, Open circuit voltage method,
Kalman filter method, and BP neural network method
[20], [21]. The ampere-hour integral method is simple and
reliable. The initial value and the sampling current can be
used to estimate the battery SOC. The open circuit voltage
method can be used for a variety of lithium batteries, but
not for the battery SOC estimation in operation. The Kalman
filter method can not only correct the system. The initial
error can also effectively suppress the system noise, but the
method depends on the accuracy of the battery model, and
the calculation amount is large in the estimation process.
The BP neural network method needs to use a large amount
of historical data for training to ensure the accuracy of the
estimation result. Therefore, this paper chooses the ampere-
hour integral method for SOC estimation.

3) Maximum power constraint. The output power of bat-
tery and supercapacitor should not exceed their rated power.
Equation (4) is the mathematical expression.{

PBATi < PBAT−max

PSCi < PSC−max
(4)

where PBATi is the output power of the battery for a cer-
tain period. PSCi is the output of the supercapacitor at a
certain period. PBAT−max is the Maximum output power for
the battery. PSC−max is the maximum output power for the
supercapacitor.

B. IMPROVEMENT AND VERIFICATION OF THE PSO
ALGORITHM
PSO algorithm is a global optimization algorithm based on
swarm intelligence heuristic [22]. The core idea of the algo-
rithm is to determine and adjust the direction and size of

the next search by referring to the individuals in the optimal
position in the group and the optimal position reached by the
particle. Its mathematical expression is shown in equation (5).{

xid = xid + vid
vid = wvid + c1r1(pid − xid )+ c2r2(pgd − xid )

(5)

where c1 is the learning factor. c2 is the learning factor. r1 is
the random number between (0,1). r2 is the random number
between (0,1). w is the inertia weighting factor.

Each particle i has a dimensional position vector (xi =
xi1, xi2 . . . . . . xid ) and velocity vector (vi = vi1, vi2 . . .
. . . vid ). In the initial stage of the algorithm, each particle
will distribute randomly into space, and then the fitness
of each particle in the current position will be calculated.
Before each iteration, each particle adjusts and calculates
the velocity vector and position of the particle according to
its inertia, experience and the position experienced by the
optimal value of the population until the best place Pbest
is found.

However, in the process of getting the solution, although
the traditional PSO algorithm has the advantage of fast con-
vergence speed, there is a phenomenon called ‘‘precocity.’’
When a particle is in the optimal local solution, other sur-
rounding particles will quickly approach the particle, mak-
ing the algorithm fall into the local optimal solution [23].
Secondly, the value of the algorithm also has a significant
impact on the results of the algorithm, and the large w is
conducive to the rapid convergence of the algorithm, the small
w is helpful to the algorithm to improve the search accuracy.
Combined with the actual work of the HESS, it adds a self-
adjusting strategy that set the maximum number of local
search iterations.

After the specified number of iterations, if the population
still fails to meet the requirements of system error, the cur-
rent state shall be saved, and the particles near the optimal
local solution shall be initialized and searched again. The
inertia weight factor of the PSO algorithm ismodified accord-
ing to formula (6) to increase the compensation coefficient.
When the particle is far away from the optimal global value,
the improved value can make the search speed faster and
accelerate the convergence of the system. When the particle
is close to the optimal global value, the value decreases and
the search precision is improved.

w =


w′ + k ′

dvid
dt

g′best > 1error

w′ − k ′′
dvid
dt

g′best < 1error
(6)

where w′ is the reference value of w. k ′′ is the compensation
coefficient. k ′ is the compensation coefficient. vid is the
velocity of the current particle. 1error is the allowable error
of the system.

To verify the optimization function of IPSO, it uses four
standard functions as objective functions [24]. After calcu-
lating the corresponding adaptive values, they are compared
with PSO. The four test functions are:
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FIGURE 7. Sphere function.

FIGURE 8. Griewank function.

(1) Sphere function:

f1 (x) =
n∑
i=1

x2i (7)

(2) Griewank function:

f2 (x) =
1

4000

n∑
i=1

x2i −
n∑
i=1

cos
(
xi
√
i

)
+ 1 (8)

(3) Ackley function:

f3 (x) = −20e
−0.2

√
1
n

n∑
i=1

x2i
− e

1
n

n∑
i=1

cos(2πxi)
+ 22.71282 (9)

(4) Rastrigrin function:

f4 (x) =
n∑
i=1

[
x2i − 10 cos (2πxi)+ 10

]
(10)

where xi is the value of the independent variable of the
function.

In equations (7), (8), (9) and (10), f1 (x) is a single-peak
function, and the theoretical minimum is 0; f2 (x) gets the
globalminimum at xi = 0(i = 1, 2, . . . n); to obtain the global
minimum; there are many local extrema points off f4 (x), but
only one global minimum fmin = 0.
In IPSO, the learning factor is C1= 1.5 and C2= 1.5, and

refers to a random number, the inertial weight is modified
according to formula (6), the number of particle swarm:
N = 40, the search dimension: d = 4 and the maximum
amount is 100 iterations. PSO and IPSO run 50 times in each
objective function, and the corresponding function iteration
results are show in figure 7, figure 8, figure 9 and figure 10.

According to the analysis in Fig. 7, Fig. 8, Fig. 9 and
Fig. 10, when the function reaches the optimal value, the iter-
ation number of IPSO is less than PSO, and the adaptive value

FIGURE 9. Ackley function.

FIGURE 10. Rastrigrin function.

of the objective function is less than PSO. For the solutions
with multiple local minima, such as the Rastrigrin function,
PSO algorithm is prone to get caught in the optimal local
solution, while IPSO algorithm shows better performance
regarding searchability, accuracy and convergence speed,
which proves the correctness of IPSO algorithm.

C. SOLVING PROCESS BASED ON IPSO ALGORITHM
There are two objective functions which are needed to be
processed in the system. The traditional method is to intro-
duce the proportional coefficient, consider the impact of each
objective function on particle flight, determine the propor-
tional coefficient. However, this method cannot accurately
search for the optimal global value, and when the number of
objective functions increases further, as this method requires
a large amount of calculation to determine the proportional
coefficient, it will lead to further error expansion.

Therefore, in this paper, the method of integral solution is
used to jointly guide the flight of each particle in the decision
variable space through the multi-objective function. Due to
the existence of multiple objective functions, particles do not
move in the direction of the function, nor the direction of the
function, but in a certain direction between the function and
the function, so that they eventually fall into the non-inferior
optimal solution. The specific process is as follows:

1) Firstly, find the extreme global values of each target
function corresponding to each particle. In this case, Gbest [1]
and Gbest [2] should be observed.
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FIGURE 11. Flowchart of algorithm solution.

2) Then find the individual extreme values of each target
function corresponding to each particle in the processing.
In this case, Pbest [1, i] and Pbest [2, j] should be found.
Pbest [1, i] is the individual extreme value of the i particle
in the first objective function. Pbest [2, j] is the individual
extreme value of the j particle in the second objective func-
tion.

3) When the algorithm starts Gbest [1] and Gbest [2] will be
the ‘‘default’’ value. When the speed of each particle needs
to be updated, it can judge the individual extreme value of
each particle by comparing the individual extreme value of
the particle with the ‘‘default’’ value. Determining whether to
select the updated position or to select a random value from
the individual extreme value.

After several iterations, the global optimal value under
multiple objective functions can be determined.

The solution flowchart of the algorithm is shown
in figure 11.

IV. OPTIMAL POWER DISTRIBUTION STRATEGY BASED
ON THE FUZZY CONTROL METHOD
A. CALCULATION METHOD OF VARIABLE FILTER TIME
CONSTANT BASED ON FUZZY CONTROL
To consider the charge state of each energy storage unit in the
power distribution of the HESS, the fuzzy control strategy
is adopted in this paper to adjust the second-order filtering
time constant to optimize the power distribution of the energy
storage system [25]. The charged state of the battery SOCBAT
and the supercapacitor SOCSC are two important constants
that affect the filtering time constant. After normalization,
variables XBAT−SOC (t) and XSC−SOC (t) can be obtained:

XBAT−SOC (t) =
SOCBAT
SOCBAT0

− 1 (11)

XSC−SOC (t) =
SOCSC
SOCSC0

− 1 (12)

FIGURE 12. Input and output membership functions.

where SOCBAT0 is the median of the charged state of the
battery. SOCSC0 is the median of the charged state of the
supercapacitor.

In this paper, XBAT−SOC (t) and XSC−SOC (t) is taken as
the input of fuzzy control and filter time constant correction
is considered as the output to construct a two-dimensional
fuzzy controller with two inputs and one output. The input
membership function and outputmembership degree function
are shown in figure 12. As shown in Figure 12, the fuzzy set
of XBAT−SOC (t) is {NB (negative big), NS (negative small),
Z (zero), PS (positive small), PB (positive small)}; the fuzzy
set ofXSC−SOC (t) is {NB (negative big), NS (negative small),
Z (zero), PS (positive small), PB (positive small)}; and the
fuzzy set of1S (t) is {NB (negative big), NM (negative mid-
dle), NS (negative small), Z (zero), PS (positive small), PM
(positive middle), PB (positive small)}. Through the fuzzy
set, the precise deviation of variables can be transformed
into the fuzzy language that can be recognized by the fuzzy
control.

The choice of membership function is often based on expe-
rience and the nature of variables themselves. For example,
for variable XBAT−SOC (t), it is obvious that when SOC of
lithium-ion battery is in (0.4, 0.6), we think it is in Z (median)
region of SOC, so the membership function is horizontal
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TABLE 1. Fuzzy control rules under charging state.

TABLE 2. Fuzzy control rules under discharging state.

straight line (− 0.2, 0.2), and when SOC is in (0.6, 0.675),
the probability of belonging to Z decreases gradually, while
the probability of belonging to PS increases gradually, so it
presents inclined straight line. The membership functions of
XSC−SOC (t) and 1S (t) can be determined from this.

According to the corresponding fuzzy subset of input
XBAT−SOC (t) and XSC−SOC (t) the corresponding fuzzy con-
trol, rules are established. When the mixed energy storage
output power is PE >0 (charging state), the fuzzy control
rules under charging state are shown in table 1. When the out-
put power of mixed energy storage PE <0 (discharge state),
the fuzzy control rules under discharge state are shown in
table 2. The charging state could illustrate: if the battery and
the supercapacitor SOC are the intermediate values, the preset
time constant remains unchanged; If the battery SOC is close
to the lower limit and the supercapacitor SOC is close to the
upper limit, the time constant T is appropriately increased to
increase the charging power of the battery. If the battery SOC
is close to the upper limit and the supercapacitor SOC is close
to the lower limit, the time constant T is appropriately reduced
to increase the charging power of the supercapacitor. If both
the battery and the supercapacitor SOC are in the lower limit,
increase the time constant T appropriately and give priority
to improving the charging power of the battery to ensure the
regular discharge of the battery at the next moment.

The center of gravity method was used to solve the fuzzy
set of output [26], and the correction coefficient 1S (t) of
filtering time constant at time t was calculated:

1S (t) =

∑
i

∑
j
µ1i (SOCBAT ) µ2j (SOCSC )1Sij∑

i

∑
j
µ1i (SOCBAT ) µ2j (SOCSC )

(13)

whereµ1i (SOCBAT ) is the i-th membership value of the input
quantity XBAT−SOC (t). µ2j (SOCSC ) is the j-th membership
value of the input quantity. 1Sij is the input corresponding
output quantity of XBAT−SOC (t) and XSC−SOC (t).

The modified filtering time constant is T ′=T (1+1S (t)).

B. OPTIMAL POWER DISTRIBUTION CONTROL STRATEGY
According to the SOC of the battery and the supercapacitor,
the second-level low-pass filter is used to optimize the power
distribution of the HESS, and the output power of the battery
and the supercapacitor is obtained [27]. The necessary steps
are as follows:

(1) Set the second-level low-pass filtering time constant
T2 and sampling period, and use equation (14) to obtain the
initial power instruction of the battery at the current moment;

PBAT−0 (t) =
T2

T2 +1t
Pt−1tBAT +

1t
T2 +1t

PE (14)

(2) According to battery SOC and supercapacitor SOC,
the current variable filter time constant T ′2 = T2 (1+1S (t))
is calculated by the fuzzy control method.

(3) By using the variable filter time constant, the power
instruction of the modified battery PBAT (t) is calculated
again.

(4) The power instruction of the supercapacitor is obtained
from formula (15) to realize the optimal power distribution.

PSC (t) = PE − PBAT (15)

According to the battery SOC and supercapacitor SOC,
the fuzzy control method is utilized to dynamically adjust-
ment filtering time constant, which can make the HESS fully
consider the battery SOC and supercapacitor SOC during
power distribution, rectifying initial HESS power allocation
instruction and keeping the battery SOC within a reasonable
range, avoiding battery overcharge and over-discharge occur-
rence [28]. In the actual operation process, the low-pass filter
time constant can be adjusted by adjusting the capacitance
value of the low-pass filter.

V. CASE ANALYSIS
To verify the correctness of the IPSO algorithm’s HESS
smoothing power target and the fuzzy control method’s power
optimal allocation strategy, experiments were carried out.
The power demand fluctuation on the microgrid DC bus
is sampled. The capacity allocation of the hybrid energy
storage system used in this experiment is obtained by the
method proposed in reference [29]. As shown in Figure 13,
the experimental platform is built. In the figure, DC load is
directly connected to DC bus, lithium-ion battery and super
capacitor are included into DC bus through DC / DC, and
outdoor photovoltaic modules and power grid are connected
to DC bus through DC / DC and AC / DC respectively. The
parameters are set as follows (Table 3):

The battery pack consists of a 48 V, 40 Ah lithium iron
phosphate battery module 6 string 2, and the supercapacitor
group consists of a 54 V, 17.5 F single supercapacitor 7
string 2, and the battery pack and the supercapacitor group
pass the DC/DC module respectively. The microgrid DC
bus is connected. Low pass filtering initial time constant
T2 = 50 s. The power smoothing object is the microgrid
power plant of 100 kW. The typical DC bus power demand
curve is shown in Figure 14, in the sampling period of
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FIGURE 13. Experimental platform.

TABLE 3. Experimental platform construction design index.

FIGURE 14. Power demand fluctuation diagram on DC bus.

FIGURE 15. Comparison of the output power of a HESS.

45 minutes, the maximum power requirement is 105 kW,
the minimum power requirement is 73 kW.

By applying PSO and IPSO to the microgrid system for
comparison experiment, the output power comparison of the
HESS is shown in figure 15. As can be seen from figure 15,
the overall output power fluctuation of the HESS is smaller
than that of IPSO. This is because PSO is prone to fall into the
local optimal solution when solving the optimal output power
of the HESS, failing to accurately obtain the optimal power
output of the HESS and controls the load power fluctuation.

After getting the optimal output power HESS, whether
the variable filter time constant of the low-pass filter control
strategies have energy storage unit charging state need to

FIGURE 16. SOC change of battery.

FIGURE 17. Power fluctuation of DC bus after using this control strategy.

be determined. Then filtering time constant is dynamically
adjusted, power allocation of the HESS is optimized, thus
achieving the control of load power fluctuations and keeping
the battery SOC values within a reasonable range and avoid-
ing overcharge and over discharge.

As shown in figure 16, before the proposed control strategy
is add to the HESS, the SOC of the battery changed signifi-
cantly and times of exceeding the limit appeared. After using
the variable filter time constant control strategy, the SOC
change range of the battery is significantly reduced, and the
SOC value is within the limit range, thus avoiding the over-
charging and over-discharging of the battery in the working
process.

Figure 17 shows the power fluctuation on the DC bus
using the proposed control strategy. Compared with the fluc-
tuation of DC bus power demand, not only the fluctuation
of the power curve is stabilized, but also the fluctuation
rate of DC bus power is significantly reduced. Comparing
Figures 10 and 13, the fluctuation of power on DC bus is
reduced from 15 kW to less than 10 kW, which reduces the
fluctuation rate of DC bus by about 15%.

VI. CONCLUSION
In this paper, a two-stage low-pass filter control strategy
with variable filter time constant is used. Firstly, a multi-
objective function is constructed to suppress the minimum
difference between the target power and the DC bus power,
and IPSO is used to solve the optimal output power of the
HESS. Then, the first filter time constant is dynamically
adjusted to reduce the DC bus power fluctuation caused by
the change of load power. The fuzzy control method is used
to dynamically improve the second filter time constant and
optimize the power distribution of the supercapacitor and
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the battery. The experimental results show that comparedwith
the traditional control strategy, the control strategy reduces
the fluctuation rate of DC bus power by about 15%, and
effectively suppresses the over-limit phenomenon of battery
charging state.
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