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ABSTRACT The convolutional neural network (CNN) has been widely applied in computer vision
applications. Due to the intensive computation, the general central processing unit (CPU) processors are not
efficient to meet the real-time requirement. Various hardware accelerators based on the application specific
integrated circuit (ASIC) and field programmable gate array (FPGA) have been designed to accelerate CNN
models during the inference phase. The data flow architecture has been extensively adopted because of the
high parallelism. However, given the continual development in the computer vision field, CNN models have
become increasingly diverse. Thus, CNN accelerators based on data flow architectures face an emerging
challenge to maintain high throughput while coping with various CNN models. In this paper, we design a
software-defined architecture to solve this. The goal of this study is to make the hardware change as the
application changes to achieve high flexibility and high performance. In our proposed architecture, all the
parts can be software-defined to cope with different CNN models. A flexible software-defined processing
element (PE) array is designed to compute different weight filter sizes. In addition, a software-defined data
reuse technique based on two ideal reuse cases is proposed to ensure that all the parameters need to be loaded
only once during the computing phase. To support this reuse technique, we also propose the software-defined
on-chip buffer so that the weight and image buffers share one dynamic buffer. By using the sparsity property
of the input featuremap, the full-connected (FC) layer is accelerated. About 88%of the FCweight parameters
can be skipped when loading the VGG-16 model. Finally, we implemented this software-defined accelerator
on the FPGA. Compared to the other FPGA based accelerators, our proposed accelerator can preserve high
performance while maintaining flexibility.

INDEX TERMS Software-defined, data flow, accelerator, convolutional neural networks.

I. INTRODUCTION
In recent years, the convolutional neural network (CNN) has
emerged as the prevalent model for the machine learning and
computer vision. Now, deep CNNs are widely used in a broad
range of real-life applications, such as image classification,
object detection and image segmentation [1]–[4]. Due to the
intensive computation and huge external data access for the
CNN algorithm, general central processing unit (CPU) pro-
cessors are unable to meet real-time demands. Thus, special-
ized accelerators should be designed. The CNN algorithm can
be accelerated during both the training and inference phases.
Here, we focus on the inference phase, which is widely used
in embedded vision system.

The associate editor coordinating the review of this manuscript and
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It is well known that the massive multiply and accumulate
operations (MAC) and the enormous numbers of parame-
ters are the two main bottlenecks faced by CNN hardware
acceleration methods. CNN accelerators based on the appli-
cation and specific integrated circuits (ASIC) [5]–[13] and
field-programmable gate array (FPGA) [14]–[21] have been
designed to solve these problems. Basically, two types of
architecture exist: instruction flow and data flow. Recently,
data flow architectures have garnered greater attention due
to their higher parallelism capabilities [6]–[13], [17]–[19].
For instances, Eyeriss [6] is a high energy-efficient data flow
architecture. It proposed the row stationary (RS) data flow,
which can exploit data reuse of the input feature map and
weight filters. This technique can help minimize the energy
consumption caused by the on-chip data movement. Tensor
processing unit (TPU) [7] uses systolic matrix multipliers to
accelerate the convolutional operations. On average, the TPU
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can achieve a speed of approximately 15X-30X compared
to its contemporary GPU or CPU. This provides a broad
prospect for data flow architectures. Work on data flow archi-
tectures is on-going and dominates in the current research
work. In addition to the usual parallelism acceleration, model
compression [22] and low precision quantitation [23] provide
different ideas to accelerate CNN algorithms. Here, we do
not involve these techniques and focus only on the common
parallelism acceleration architecture.

With the continuous development in the compute vision
field, CNN models have become diverse [25]–[28]. Apart
from the two basic bottlenecks mentioned above, the current
accelerators based on data flow also faces the challenge of
how to match the various CNN models while maintaining
high performance. For the TPU, despite its high-performance,
the multiplier utilization is low when the network size is
lower than the systolic matrix size [7]. Many works [10]–[13]
used reconfiguration techniques to enhance the hardware
flexibility. Venieris and Bouganis proposed a synchronous
dataflow architecture based on hardware reconfiguration
techniques [19]. This method can cope with various CNN
layers with the mostly suitable architecture and hardware
resources by reconfiguring the FPGA. This idea is quite
attractive, and it can achieve speedups of up to 2.94× com-
pared with the other FPGA-based architectures. However,
the hardware must be reconfigured for different sub-graphs.
The acceleration performance would be constrained by the
reconfiguration time.

Overall, the diversity of CNN models poses a substantial
challenge to current CNN accelerators based on the data flow.
We expected that the accelerator can achieve high throughput
while keeping certain flexible. In other words, the hardware
can be altered according to the needs of different applica-
tions to provide the mostly suitable hardware architecture
and resources. Similar to the reconfiguration architecture,
we propose a software-defined architecture that can maintain
high throughput when dealing with various CNNmodels. The
software-defined architecture considers both the software and
hardware aspects to design the accelerator. The main contri-
bution of this paper is as follows.

We designed a software-defined architecture for CNN
accelerators. Compared to previous research works, all the
hardware modules in our architecture can be reconfigured
according to the requirement of different CNN models.
A software-defined data reuse technique is used to reduce
the data communication between the on-chip buffer and dou-
ble data rate (DDR). In addition, we develop a full tool
chain to translate CNN models described in Caffe into hard-
ware reconfiguration instructions. Experimental results on
the FPGA show that our proposed accelerator can maintain
high throughput when coping with various CNN models.

The organization of the rest paper is organized as follows:
Section II introduces our proposed software-defined architec-
ture. Section III proposes two optimized techniques using the
sparse property of the CNNmodels. Section IV implemented
this CNN accelerator based on the Zynq platform and give a

FIGURE 1. Software-defined architecture for the CNN accelerator.

comparison with other FPGA based accelerators. Section V
gives a conclusion.

II. SOFTWARE-DEFINED ARCHITECTURE
A. ARCHITECTURE REVIEW
Fig. 1 shows our proposed software-defined architecture
based on data flow. The biggest difference from the other data
flow architecture is that all the parts, even the data computing
modes, can be reconfigured. The global configuration reg-
isters module is designed to reconfigure the other hardware
parts. In our architecture, the image buffer and weight buffer
are directly linked to the processing element (PE) cluster. The
computing results of PE cluster are streamed into the partial
sum buffer.

To reduce the amount of data communication between
the DDR and the on-chip buffer, the batch normalization
(BN), activation and pooling operations are streamed and
conducted in the partial sum buffer. The partial sum buffer
is composed of many static random-access memory (SRAM)
banks, allowing it to receive computed results from the PE
cluster in parallel.

B. SOFTWARE-DEFINED CONVOLUTIONAL PE ARRAY
The processing element (PE) architecture which determines
flexibility and throughput plays a key role in CNN accelera-
tors. Many PE architectures, such as the spatial 2D-PE array
[6] and the systolic matrix [7], have been designed to perform
convolutional operations. The TPU is not highly efficient
when dealing with small layer size, while the spatial 2D-PE
array can perform well when applied to different convolu-
tional sizes with more complex design. In all, the design of
a PE array is a trade-off between complexity, throughput and
flexibility.

From the view of simplicity and flexibility, we designed
the PE structure as shown in Fig. 2. Different from the other
normal PE design that contains only one multiplier [6], [8],
we included nine multipliers in our PE because the 3× 3 and
1 × 1 weight filters dominate is in the current CNN models.
Thus, we gave primary consideration to these two filter sizes.

In addition to the multipliers, this PE contains nine weight
registers and nine image registers. The image registers
are organized as shift register modes as shown in Fig. 2.

VOLUME 7, 2019 177923



Y. Li, Y. Du: Novel Software-Defined CNNs Accelerator

FIGURE 2. Software-defined PE structure containing nine multipliers.

FIGURE 3. Hardware configure for the 5 × 5 and 7 × 7 weight filter,
(a) 5 × 5 weight filter, (b) 7 × 7 weight filter.

The communication between PE is based on these image shift
registers. Each multiplier has an enable signal to determine
whether this multiplier works. For the multiplier that does not
work, its output is set to zero.

This PE contains two kinds of outputs. One is the sum of
the 9 multiple results, the other is the 9 separate multiple
results. In this way, the PE can conduct one 3 × 3 convo-
lutional operation or nine 1×1 convolutional operation. And
based on the inner connection of the image shift registers,
this PE can also do one row convolutional operation for
a 7× 7 weight filter.

Based on our proposed PE structure, both 5 × 5 and
7 × 7 weight filters can be calculated. Fig. 3 shows a model
where eight PEs are adopted. This PE array can deal with two
5 × 5 convolutional operations and one 7 × 7 convolutional
operation. When 16 PEs are used, one 11× 11 convolutional
operation could be calculated.

In Eyeriss, the rows of the input feature map are reused
across PEs to reduce the on-chip data movement [6]. This
method greatly reduces the on-chip energy cost. The stride
and padding are two important parameters when computing
the convolution operations. The stride is the number of pixels
with which the weight filter slides, horizontally or vertically.
Zero Padding occurs when we add a border of pixels all with
value zero around the edges of the input images. we can also
specify whether or not to use padding according to the input
feature map size and the weight filter size.

For our design, we adopted a similar row-reuse idea. Fig. 4
illustrates one instance. The example assumes a weight filter
size of 3 × 3 and a stride of 1. The feature map data are
stored on the on-chip buffer in a two-dimensional mode.
Fig. 4 shows the input for each PE in the array. It can be

FIGURE 4. Row data reused example.

TABLE 1. Parallelism parameter for one PE array to process one
convolutional layer.

got that the row data are extensively reused. Row1 is reused
twice, and Row2 and Row3 are reused three times. In addition
to reusing the image rows, the row-reuse technique greatly
reduces the number of SRAM bank, which can mitigate the
design complexity. As shown in Fig. 4, only 6 banks are
needed when using four PEs.

Our accelerator uses two types of parallelism: the inter -
output parallelism and inter-kernel parallelism [29] as defined
below:

(a) Inter-output Parallelism: Different output feature maps
are totally independent of each other, and theoretically can all
be computed in parallel. In reality, the parallelism is limited
due to the limited resources.

(b) Inter-kernel Parallelism: Each image pixel in each out-
put feature map is the result of a set of convolutions. It is
possible to compute all of them concurrently and then sum
them to get the final results.

These PEs are organized in 2D-array mode in the PE array.
The PE array can be configured flexibly. Table 1 presents
the parallelism parameter for one PE array. The theoretical
parallelism degree (Tpd) for one PE array to accelerate one
convolutional layer can be expressed in forum (1).

Tpd = N∗pN
∗
rNc (1)

As the image data is arranged in two-dimensional row
mode. The number of on-chip buffer banks has a close rela-
tionship with the parameters shown in Table 1.

The PE cluster contains several PE arrays. Additionally, a
PE cluster can be configured to address either inter-output
parallelism or inter-kernel parallelism.
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TABLE 2. Peak multiplier utilization for different weight sizes in the pe
array.

Table 2 presents the peak multiplier utilization for different
weight sizes in the PE array. Expect for the 3 × 3 and 1 × 1
weight filter sizes, a certain level of multiplier waste exists.
However, because the 5×5, 7×7 and 11×11weight filters are
less frequently used, we thought that this waste was tolerable.
For instance, the ResNet [24] model adopts 7×7 weight filter
size only in the first layer and all the other layers use filter
sizes of 1× 1 and 3× 3.

In addition to the convolutional layer, there also exists the
full-connected (FC) layer. The FC layer can be treated as
a special convolutional layer in which the size of the input
feature map is 1 × 1, the size of weight filter is 1 × 1,
the padding is 0 and the stride is 1. In our architecture,
the FC layer would be computed as the convolutional layer
is when the weight parameter size of the FC layer is not
dominant. When the weight parameter size in the FC layer
is dominant, using this approach would result in an extended
communication time. We would use a special technique to
cope with this problem described below.

C. SOFTWARE-DEFINED DATA REUSE TECHNIQUES
Due to the limited on-chip memory resources, the image
and weight parameters cannot be all loaded on-chip. Usually,
the data reuse techniques should be adopted to solve this
problem.

As known, moving data from external memory to the
on-chip buffer consumes large amounts of energy. Related
studies have revealed that the energy consumed for one data
movement operation from the DDR is orders of magnitude
larger than the that for a multiply operation [6]. Image divi-
sion and channel division reuse modes are widely used in
CNN accelerators [8]. Shin et al. proposed a mixed divi-
sion reuse technique to further reduce off-chip access [8].
Although the mixed division is efficient, it might result in the
parameters being reloaded from the external memory to the
on-chip buffer several times.

For a CNN accelerator, the data reusemode plays an impor-
tant role because it determines the control and data computing
flows. For a given convolutional layer, we find that two ideal
data reuse modes exist, as shown in Fig. 5. One ideal reuse
mode is that the input feature map data are stored on-chip,
the other is that the weight parameters for one layer are all
stored on-chip. We termed the reuse modes in Fig. 5 (a) and
Fig. 5(b) as the ideal reuse mode 1 and ideal reuse mode 2,
respectively.

FIGURE 5. Two optimized data reuse techniques, (a) all image data in one
layer is stored on-chip, (b) all weight data in one layer is stored on-chip.

The data computing flows for these two ideal data reuse
techniques are different. For the ideal reuse mode 1, only the
weight parameters for one channel need to be loaded to com-
pute the corresponding output feature map. This process can
continue until all the channel weight parameters are loaded.
In contrast, for the ideal reuse mode 2, only one tile of the
input map needs to be loaded to compute the corresponding
tile of the output feature map. After all the tiles of the input
feature map have been computed, the entire output feature
map can be obtained.

Because all the weight parameter and input image feature
map data need be loaded only once, these two ideal reuse
modes are quite attractive. Thus, the question is: can these two
ideal data reuse modes be implemented? When the on-chip
buffer is sufficiently large, bothmodes are possible. However,
in most real-world cases, the on-chip buffer is limited. In our
work, we found that the sizes of the input feature map and
weight parameter vary among different convolutional layers,
as presented in Fig. 6. Usually, the feature map size is larger
in the shallow layers. As the convolutional layer becomes
deeper, the weight parameter size becomes dominant.

Based on this property, we proposed the reconfiguration
reuse techniques by using ideal reuse mode 2 for the shal-
lower layer and applying the ideal reuse mode 1 for the deep
layers. This approach greatly reduces the amount of the off-
chip access.

In real environments, when neither the input feature map
nor the weight parameter can be loaded, these two ideal reuse
models cannot be used. In this case, we use a split approach.
For instance, when adopting ideal reuse mode 2, the input
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FIGURE 6. Weight parameter and feature map data size in different
convolutional layers, (a) AlexNet model, (b) VGG-16 model.

FIGURE 7. Origination of on-chip buffer.

featuremap is split into several tiles to be loaded on-chip. This
causes the weight parameters to be reloaded several times.

D. SOFTWARE-DEFINED ON-CHIP BUFFER
To support the software-defined PE array and the data reuse
techniques, we designed the software-defined on-chip buffer.
In contrast to traditional accelerator that include only the
weight and image buffers, we propose the dynamic buffer
presented in Fig. 7. Depending on the reuse mode demand,
the dynamic buffer can be allocated to either the image or
the weight buffer. For instance, for the ideal reuse mode 1,

FIGURE 8. Image Data arrangement on the on-chip buffer.

the input feature map would be loaded on-chip as much as
possible. The dynamic buffer would be allocated to the image
buffer. This approach allows us to exploit the on-chip buffer
resources.

In addition to the dynamic buffer, we implemented a one-
plane operation inside the on-chip buffer. The one-plane
operation includes the Eltwise [24], Pooling (2 × 2 size,
3× 3 size), Avg Pooling [25], [26] and other operations.
By doing so, we can provide a complete end-to-end, flexible
CNN acceleration that is not limited solely to the convolu-
tional acceleration.

In our design, the input image data is stored on the on-chip
buffer using the two-dimensional mode. The data arrange-
ment on the on-chip buffer can also be software-defined.
Fig. 8 present two cases. In other words, in our on-chip
buffer, the number of banks used to store one feature map
is reconfigurable.

Overall, the data arrangement for the on-chip buffer should
be set according to the PE array requirements.

III. OPTIMIZATION TECHNIQUE USING
THE SPARSE PROSPERITY
The above discussion provided a detailed explanation of our
proposed software-defined CNN accelerator. In this section,
we would introduce an optimization technique that utilizes
the sparseness prosperity of the input feature map.

In CNNmodels, due to the introduction of the ReLU active
function [24]–[27], the input feature maps for each layer are
actually quite sparse. Fig. 9 presents the sparseness of each
layer during the CNN inference phase. We can see that the
sparseness is particularly prominent in the deeper layers.

Here, we capitalize on the sparseness property of the input
feature map to optimize our accelerator. Both convolutional
and the FC layers are considered.

For the convolutional layer, we followed the same
approach used in [6], [8] that the multiplication operation is
skipped when the input image data in the PE is ‘‘0’’. Using
this approach, the number of themultiplication operations can
be greatly reduced, which reduces the on-chip energy cost.

For the FC layers, the weight parameters in the FC layer are
distributed as shown in Fig. 10. For the VGG-16 layer, the
weight parameter proportion occupies 89.9%, which results
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FIGURE 9. Proportion of ‘‘0’’ values in the input feature map of each
layer, (a) AlexNet model, (b) VGG-16 model.

FIGURE 10. Weight parameter proportion of each layer, (a) AlexNet
model, (b) VGG-16 model.

in long data load time. Usually, the FC layers are pruned
to compress the size of the weight parameters [16]. Current
CNN models such as the ResNet and MobileNet adopted

average pooling to reduce the number of weight parameters
in the FC layer.

For these CNN models where the weight size of the FC
layer is dominant, treating the FC layer the same as a convo-
lutional layer would involve a large data load time. To solve
this problem, we exploited the sparseness property of the FC
layer.

As shown in Fig. 9, the number of ‘‘0’’ value in the input
of FC layer is also large. We capitalize on this property to
optimize the FC layer. The typical formula for the FC layer
is shown in Equation (2).

[I0, I1, · · · · · · , In−1]

×


W0,0 W0,1 · · · · · · W0,m−1
W1,0 W1,1 · · · · · · W1,m−1
W2,0 W2,1 · · · · · · W2,m−1
...

Wn−1,0 Wn−1,1 · · · · · · Wn−1,m−1


= [R0,R1, · · · · · · ,Rm−1] (2)

Two kinds of computing approaches exist, as shown in
Equations (3) and (4).

Ri = [I0, I1, · · · · · · , In−1]


W0,i
W1,i
...

Wn−1,i

 (3)

[R0, . . . ,Rm−1] = I0∗[W0,0 · · ·W0,m−1]

+ · · · + In−1∗[Wn−1,0 · · ·Wn−1,m−1] (4)

For Equation (3), one column of the weight is loaded to
compute the Ri. For Equation (4), one row of the weight is
loaded to be multiplied by Ii.
As shown in Fig. 9, the number of ‘‘0’’ values in the

matrix [I0 I1 I2 . . . . In−1] is large. Based to this property,
we adopted Equation (4) to compute the FC layer. When
the value of Ii is ‘‘0’’, the corresponding row in the weight
[Wi,0 Wi,1Wi,2 . . . . Ii,n−1] does not need to be loaded. Thus,
only a small proportion of the weight parameter in the FC
layer needs to be loaded. This approach can largely mitigate
the volume of data movements from the external memory to
the on-chip buffer.

IV. EVALUATION
A. EXPERIMENTAL SETUP AND IMPLEMENTATION
To verify our proposed software-definedCNNaccelerator, we
implemented the proposed architecture on the Xilinx Zynq
ZC706 platform. The Zynq architecture includes two major
parts: the programming logic (PL) and the processing system
(PS). The CNN accelerator is mainly implemented in the PL
part; the PS part is used to control the accelerator. Fig. 11
shows our experimental platform. A notebook is connected
to the ZC706 development board.

Table 3 shows the details of the parameters for our pro-
posed CNN accelerator. According to the resources available
on the Zynq Z-7045, we implemented 4 PE arrays and set
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FIGURE 11. Experimental platform.

TABLE 3. Implementation Details of our CNN Accelerator on the Xinlix
Zynq Z-7045.

TABLE 4. Computing parameter details for one PE array.

to inter-kernel parallelism. Each PE array contains 16 PE
arranged in the 4× 4 mode. To simplify the design, the input
image row data can bemoved only in the horizontal PEs based
on the image shift registers described in Section II. There is
no connection in the vertical direction. The PEs configuration
to cope with the 5× 5 and 7× 7 weight filter size is the same
as that shown in Figure 4.

There are 18 on-chip image buffer banks for each PE array
is 18 and each bank is set to a width of 64 bits. There are
16 partial sum buffer banks that is a partial sum buffer can
concurrently receive 16 data values from the PE cluster.

The parameters detailed for one PE array are shown in
Table 4. The parallel processing parameters for a PE array are
closely related to the on-chip buffer banks. From the table, we
can see that the maximum number of required banks is 18.

Fig. 12 shows an overview of the implemented system.
Data exchange between the PL and the PS is based on an
AXI bus. The PS part sends the address of the configuration
instruction in theDDR to the accelerator and then sends a start

FIGURE 12. System implementation overview.

TABLE 5. FPGA resource utilization.

signal. After the CNN accelerator receives the start signal, it
reads the configuration instructions from the DDR using the
DMA engine. Then, the CNN accelerator operates according
to the instructions.

Because the input feature map data in the DDR are stored
in the one-dimensional model, one temporary buffer is used
to change the one-dimensional data into the two-dimensional
on-chip data. To overlap the data transfer time with the com-
puting time, the on-chip weight buffer, the on-chip image
buffer, and the partial sum buffer are all equipped with
double-buffers that operate in ping-pong mode.

Regarding data precision, we use 16-bit fixed point pre-
cision as have most previous research works [16]–[19].
The decimal points can be dynamically adjusted based on the
ranges of pixel values in different layers. Table 5 shows the
FPGA resource utilization for our implementation.

We design a series of configure registers, including config-
urations for the PE array, controller, data sender, data loader,
global buffer configuration and so on, for our software-
defined CNN accelerator. By configuring these registers,
the hardware behavior can change to accommodate var-
ious CNN layers. A configuration instruction is 32 bits.
Each instruction contains sufficient information to configure
one or more registers. To configure one CNN layer only
approximately one hundred configuration instructions. Com-
pared to the computing time, the configuration time can be
ignored.

We implement a full tool chain to translate the CNN mod-
els described in Caffe into hardware configuration instruc-
tions as shown in Fig. 13. During the translation process,
the CNN compiler intelligently judges which hardware re-
configuration is most suitable for each CNN layer. The gen-
erated hardware configuration instructions, the pre-processed
weight parameters and the image data are stored in the DDR.
After the PS send the start signal, the accelerator in the PL
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FIGURE 13. Full tool chain for our proposed CNN accelerator.

reads the instruction from the DDR and proceeds as indicated
by the instruction.When PL acceleration is complete, it sends
a finished signal to the PS. Then, the PS reads the CNN results
from a specific DDR address.

B. COMPARISONS WITH PREVIOUS WORKS
Because we use only the FPGA to implement the software-
defined CNN accelerators, we compare our work only with
existing FPGA-based accelerators. Many FPGA-based accel-
erators have been designed for different FPGA platforms. It is
hard to give an absolutely fair comparison between different
research works. Because our research goal is to provide a uni-
fied software-defined architecture that can copewith different
CNN models rather than to optimize a CNN accelerator for
one target FPGA platform, we adopt the performance den-
sity metric, which yields a relatively fair comparison across
different FPGA platforms.

As is known, the number of multipliers and the clock
frequency are directly related to the throughput. The value
of performance density (PD) is expressed as shown in
Equation (5).

PD = Throughput/(Clock ∗Multiplier Number) (5)

The multiplier number in Equation (5) usually equals the
number of used DSP. In some special cases, one DSP can be
treated as two multipliers.

The CNN compiler is used to translate the CNN models
descripted in Caffe into the hardware configure instructions.
By executing these configure instructions, the CNN accel-
erator can run an image. The throughout is obtained by
Equation (6). The run time is just referred to the infer time
for an image.

Throughput = Total Operation Number/Run time (6)

Tables 6 and 7 respectively shows performance com-
parisons for VGG-16 and ResNet models using different

TABLE 6. Performance comparison of different accelerators wit VGG-16.

TABLE 7. Performance comparison of different accelerators with ResNet.

FPGA-based accelerators. In [17], a DSP can be used as two
16×16multipliers. For ResNet, only the convolutional layers
are considered.

Flexibility in this work is measured based on whether an
accelerator can work with different CNN models without re-
designing the code and re-downloading the bit stream.

The works in [16] and [19] have the lowest flexibility
because their accelerators are suitable for only limited CNN
models. Thus, when the models change, the code must be
re-designed.

Due to the way our accelerator capitalizes on ‘‘0’’ value
utilization in the FC layer, it achieves the best performance
density for the VGG-16 model. When considering only con-
volutional layers, the performance density of our architecture
is only slightly lower than that of the research work in [16].

Meloni et al. proposed an end-to-end reconfiguration
architecture that can deal with different CNN models [18].
This is the same as our work does. However, compared
to their approach, our accelerator is better, especially for
ResNet-18.

Venieris and Bouganis proposed a synchronous dataflow
method to accelerate CNN models [19], in which the CNN
model is divided into several sub-graphs. They designed a
specific architecture for different sub-graphs and generated
a corresponding bit stream file. This approach provides the
most suitable architecture and hardware resources by re-
downloading the bit stream. Now, this approach achieves the
best performance. As this approach uses the dynamic partial
reconfiguration in the FPGA, now it can be only applied to
the FPGA architecture. In addition, the bit stream file re-
download time might become a bottleneck when dealing with
different sub-graphs.
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For the ResNet-152 model, the throughput density of our
accelerator is well below that of the accelerator in [19]. This
gap occurs mainly because our accelerator and the work in
[17] do not consider the BN and Eltwise operations when
computing the throughput. However, those operations were
considered in [19]. After unifying the total operations, the
throughput of work [19] (not including the BN and Eltwise
operation) is 1.29 × 10−3. As shown in Table 4, the per-
formance of our designed accelerator is better than the one
proposed in [19].

Zeng et al. proposed an FFT-based acceleration tech-
nique and achieved high throughput [20]. However, we think
this framework is not truly end-to-end because the pool-
ing layer, FC layer and convolutional operations for the
11x11 filter are executed on execute on the CPU. Addition-
ally, this FFT-based approach cannot effectively accelerate
the 1x1 weight filter.

Overall, our proposed software-defined accelerator main-
tains high performance while preserving flexibility. The time
needed to reconfigure each layer requires only approximately
100 clock cycle. This has a great advantage over the partial
dynamic configuration time used in [19].

V. CONLUSION
In this paper, we designed a CNN accelerator based on the
software-defined architecture. All the parts of our architec-
ture can be software-defined, allowing it to provide the most
suitable hardware structure to cope with various CNN mod-
els. To mitigate the amount of off-chip data access, we pro-
posed the software-defined data reuse techniques. In addition,
the software-defined on-chip buffer is designed to support
these data reuse techniques. The experimental results indi-
cate that the intermediate results and weight parameters can
mostly be loaded only once. By using the sparseness property
of the input feature map, we propose a computation technique
for FC layers. About 88% of the FC weight parameters can
be skipped during loading for the VGG-16 model. Finally, we
implemented this software-defined accelerator on the FPGA
platform. Compared to the other FPGA-based accelerators,
our proposed accelerator maintains high performance while
preserving flexibility.

Software-defined hardware approach is becoming increas-
ingly popular. The idea is quite suitable to accelerate the
continuously varied CNN models. In the future, we plan to
demonstrate our proposed software-defined architecture on
an ASIC. In addition, we are involved in efforts to give our
complier support for more CNN frameworks, such as the
TensorFlow, PyTorch.
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