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ABSTRACT In this paper, a new generalized Nash bargaining framework is proposed for joint channel and
power allocation in device-to-device (D2D) communication underlying cellular networks. In the considered
system, cellular users (CUs) must jointly determine to share radio resources with D2D users (DUs) and
to charge the DUs accordingly. The proposed framework aims to maximize the overall throughput of the
communication system by guaranteeing the minimum rate of each CU and proportional fairness and efficient
power allocation among the CUs and DUs. To make this NP-hard problem more tractable, it is decomposed
into two sub-problems: channel assignment and power allocation. First, an optimal channel assignment
strategy is derived using a max-weighted max-flow algorithm. Then, the optimal power allocation strategy
for both DUs and CUs is analyzed using the Lagrangian multiplier method. Numerical results are presented
to show the throughput performance characteristics of different resource allocation solutions. Comparisons
between the proposed and traditional policies show the significant effect of fairness on the transmission
performance.

INDEX TERMS D2D communication, channel assignment, power allocation, generalized Nash bargaining
solution.

I. INTRODUCTION
The ongoing growth in bandwidth-intensive wireless
applications has been motivating the deployment of novel
wireless cellular technologies [1]–[4]. Device-to-device
(D2D) communication underlying cellular networks, which
emerged in the 3GPP LTE standardization process, is gain-
ing significant research attention as a promising solu-
tion for boosting the capacity of tomorrow’s cellular
systems [5]. D2D communication supports direct communi-
cation between two adjacently located cellular users, known
as D2D user pairs (DUs), while bypassing the base station
(BS). Such DUs must efficiently co-exist with conventional
cellular users (CUs) who are directly served by the BS. D2D
communications can significantly improve network through-
put, spectrum efficiency, and reduce transmission delay [6].
However, in order to benefit from D2D, one must overcome
many technical challenges in terms of resource management,
mode selection, and interference mitigation [7]–[13].

The associate editor coordinating the review of this manuscript and
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In particular, D2D communication suffers from intra-cell
interference due to spectrum sharing between DUs and other
CUs, as shown in Fig. 1. When a pair of DUs communicate
with one another using cellular down-link resources, they
can cause significant interference to nearby CUs.Meanwhile,
a pair of DUs communicating with each other using cellular
up-link resourceswill experience interference from the simul-
taneous up-link transmission between BS and CUs. To over-
come this obstacle, there have been a significant number of
recent works that devise resource allocation algorithms (see
[14], [15] for a detailed survey).

A. RELATED WORKS
In [16], the authors analyze the throughput optimization over
the shared D2D resources while meeting prioritized cellular
service constraints. However, this work is based on a central-
ized approach. In [17], joint resource allocation and power
control in a D2D network are investigated using fractional
programming, and a tractable iterative solution is proposed
which can improve the energy and resource usage efficiency.
The authors in [18] integrate D2D communication with the
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FIGURE 1. D2D communication underlying a down-link cellular network.

mobile edge computing to further enhance the computation
capacity of the cellular system. Reference [19] has recourse
to the deep reinforcement learning and a distributed spectrum
allocation framework is devised, which requires only the
neighbor users’ information. In [20], the authors utilize the
mean-field game theoretic framework and propose a power
control policy based on the Lax-Friedrichs scheme and the
Lagrange relaxation. Reference [21] formulates the data com-
munication problem as a mixed-integer non-linear program.
Considering the difficulty of the original problem, it is relaxed
to a convex one and a heuristic method based on greedy
task assignment is then developed. Aimed at maximizing
the utility of all D2D pairs, [22] models the system as a
combinational optimization problem, which is solved by a
learning framework based on Markov chain.

Resource allocation in D2D networks has also attracted
significant recent attention using game theory [23]–[28].
For instance, in [24], an efficient auction algorithm is pro-
posed to improve the performance of D2D communications,
in which DUs are viewed as players competing for channel
resources. A joint scheduling and resource allocation scheme
is proposed by developing a Stackelberg game model for
D2D communication in [25]. A combinatorial auction-based
resource allocation mechanism is developed to improve sys-
tem performance for D2D communication [26]. A Bayesian
coalitional game framework is developed to analyze the
spectrum sharing problem between multiple D2D links and

a cellular network with multiple operators [27]. In these exist-
ing models [24]–[27], the commonly used fairness criterion
for wireless resource allocation is max-min fairness, in which
the performance of the user with the worst channel condition
is maximized. However, this criterion penalizes the users with
channels of good condition, which can be detrimental to the
overall system performance.

It is well known that efficiency and fairness are two
important yet somewhat contradictory indices in the game
theory. Apparently, while ensuring fairness, the max-min
fairness criterion can cause a decline in efficiency, which
is not desirable. To overcome this drawback, one can adopt
the notion of the Nash bargaining solution (NBS) [29] to
determine the contribution of the user resources and allocate
the service capacity to each user efficiently and fairly. In the
NBS, which can yields an outcome of Pareto efficient and
fair, theminimal requirements for all users have been satisfied
first, then the rest of the resources are allocated propor-
tionally to users according to their channel characteristics
(e.g., fading) and traffic characteristics (e.g., delay require-
ments). Considering the disagreement performance of each
player, the NBS ensures that all participating users will
receive a outcome not worse than his/her standalone per-
formance. Due to these advantages, the NBS has been
used to analyze the spectrum access and sharing problems
[30]–[32], and mobile Internet access problem [33]. For
instance, in [34], the authors utilize NBS to decide the service
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deployment so as to meet the Quality of Service (QoS) of the
fog computation in Internet of Things. In [35], NBS is applied
to the power control in distributed multiple-radar architec-
ture underlying wireless communication system. The authors
propose an algorithm with low computational complexity
and prove its convergence to a Pareto-optimal equilibrium.
Reference [36] studies the D2D communication in 5G net-
work using NBS. The D2D pairs are divided into two groups
based on their pairwise distances. The NBS are introduced to
allocate resource blocks (RBs) to D2D pairs whose pairwise
distances are longer than some threshold to improve the
utilization of cellular up-link spectrum.

Despite the delicate balance NBS can achieve between
efficiency and fairness among many players, there is still
a disadvantage. In the NBS, each player is treated equally,
that is, the same decision on different players will bring
about the same outcome. However, in some actual situations,
the players can have different impacts on the results. Take
the D2D communication in cellular networks as an example,
the CUs, which communicate with the base station, usu-
ally enjoy higher priority in communication than D2D pairs,
which transmit data to each other directly. This means that the
limited resources should be allocated to the CUs first while
meeting the basic constraints of all users. To model this char-
acteristic, Generalized Nash Bargaining Solution (GNBS)
can be introduced, which employs bargaining factors to
distinguish players with different priorities. In the GNBS,
a player having a higher bargaining factor will be a candidate
to obtain an advantage in the final outcome of resource allo-
cation. As a variant of the NBS, the concept of a GNBS can
further improve the fairness and efficiency by assigning dif-
ferent bargaining factors to different players [37]. The work
in [38] uses the GNBS for allocating the bandwidth between
applications with general concave utilities. The authors study
the impact of concavity on the allocation and present com-
putational methods for obtaining fair allocation in a general
topology, based on a dual Lagrangian approach and on semi-
definite programming. The authors in [39] adopt the GNBS
to analyze the multimedia resource management. It is shown
that a significant improvement in the system performance
is achieved by the choice of the bargaining factors, which
allow more importance to be given to some users. In [40],
the authors propose a bargaining game scheme that is used to
achieve an optimal rate control solution for spatial scalable
video coding.

B. OUR CONTRIBUTIONS
Although CUs occupy higher levels of priority in the
spectrum resource than D2D users, little work has been
done to analyze how the GNBS can be utilized to
improve the outcome of resource allocation in D2D com-
munication. We study the channel assignment and power
allocation mechanism in D2D communication underlying
the cellular network using GNBS. To be more specific,
the main contribution of this paper is summarized as
follows:

• We formulate the resource allocation in D2D
communication with the help of GNBS in which the
CUs are the players that must decide on how to share the
resource with the DUs. Such resource sharing is done
in a way to maximize a payoff function that captures
the overall throughput of the entire cellular system by
introducing a bargaining factor.

• We show that the problem can be cast as a mixed
integer optimization problem, which is known to be
NP-hard. To make it more tractable, we divide the
original optimization problem into two sub-problems:
channel assignment and power allocation.The first sub-
problem is posed as a pairing process of CUs and DUs,
which is solved using the max-weighted max-flow algo-
rithm. Based on the assigned channels, a Lagrangian
multiplier method is applied to optimize power alloca-
tion. We prove that the result obtained from the two
sequential algorithms is exactly the optimal solution for
the original problem.

• We present extensive numerical results to illustrate
the corresponding characteristics of our proposed joint
channel assignment and power allocation scheme.

The rest of this paper is organized as follows. Section II
introduces the considered D2D system model and formulates
the corresponding optimization problem based on GNBS.
The design and analysis of algorithms for channel assignment
and power allocation are described in Section III. The numer-
ical results are presented in Section IV. Finally, we conclude
this paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
Consider the down-link of a wireless cellular network with a
single BS b located at the center of the cell. In this network,C
CUs and D DUs are uniformly distributed in the cell, and we
have C ≥ D. The sets of the CUs and the DUs are denoted
by C = {1, 2, . . . ,C} and D = {1, 2, . . . ,D} respectively.
We consider a fully loaded cellular network scenario such as
in [28], [41], in which there exists C orthogonal down-link
channels that can be shared by CUs and DUs. In other words,
C active CUs occupy the C orthogonal channels in the cell
and there exists no additional available spectrum. Let pC =
[p1, p2, . . . , pC ] be the vector of downlink power allocation
strategies of all CUs. Let P = [pij] be the C × D power
allocation matrix of DUs, where pij denotes the allocated
transmission power of DU j on the channel that belongs to
CU i. In addition, we assume the BS has the perfect channel
state information (CSI) of all the links, and both CUs andDUs
have their minimum quality-of-service (QoS) requirements in
terms of the signal-to-interference-plus-noise-ratio (SINR).

If two DUs communicate directly by reusing the chan-
nel of an existing CU, which is known as the reuse mode,
spectrum efficiency can be further improved [10]. However,
interference between the D2D pair and its co-channel CUwill
occur. To reduce the interference to the CUs, each DU can
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only occupy at most one existing CU’s channel. Meanwhile,
one CU’s channel can be shared at most by one D2D pair.
To indicate whether a DU occupies a single channel, a binary
indicator cij is defined as follows: If CU i shares its channel
with DU j, cij = 1; otherwise, cij = 0. The channel
assignment strategy is captured by a C ×D matrix C = [cij].
In the reuse mode, the SINR of CU i when it experiences
interference by D2D pair j can be given by:

ξi =
pigbi

σ 2
N + pijg

I
ij

, (1)

where gbi is the channel gain between BS b and CU i, and gIij
denotes the channel gain between the transmitter of D2D pair
j and CU i. σ 2

N is the power of the additive white Gaussian
noise (AWGN). Meanwhile, the SINR of D2D pair j when
reusing the down-link channel of CU i can be given by:

ξij =
pijgj

σ 2
N + cijpig

I
bj

, (2)

where the channel gain between D2D pair j is gj, and gIbj is
the channel gain between BS b and the receiver of D2D pair j.
The transmission rate of CU i, i = 1, 2, · · · ,C , is then given
by:

ri = log2 (1+ ξi) , (3)

while the transmission rate of DU pair j on channel i, is then
given by:

rij = cij log2
(
1+ ξij

)
. (4)

For clarity, we let vector rC = [r1, r2, . . . , rC ] and matrix
R = [rij] be the transmission rate of CUs and DUs, respec-
tively. Based on (4), the total transmission rate of DU j is
given by:

rj =
C∑
i=1

rij. (5)

B. PROBLEM FORMULATION BASED ON GNBS
As has been noted, in the reuse mode, the spectrum
efficiency of the total communication system can be further
improved [5]. To strike a balance between efficiency and fair-
ness, we use the GNBS to formulate the problem of resource
allocation in cellular networks. But first, a mathematical
description of GNBS is necessary.

In the primary settings of GNBS, there are more than
one player competing for limited resources. Each player has
a flexible need and some satisfaction with the acquisition
of resources. Given an allocation strategy, each player will
get certain amount of resources and a corresponding payoff,
measuring its satisfaction. For this problem, the basic need or
constraint of each player must be satisfied, which reflects the
fairness, and the solution should aim to maximize the total
utility - the sum of payoffs of all players, which shows the
efficiency.

Considering the specific problem studied in this paper,
take each CU as a player, so there are C players com-
peting for communication resources altogether. The pay-
off of each player is modeled as its transmission rate
attained by negotiation among players Ui(cij, pi, pij) =∑D

j=1 cij log2

(
1+

pigbi
σ 2
N + pijg

I
ij

)
. Our goal is to maximize

the total utility of the cellular links while satisfying the QoS
constraints by properly matching each D2D link with a CU
and coordinating their power on the associated RB. In the
actual communication system, there is usually a minimal
transmission rate for each CU, denoted by µ0

i . Then, the opti-
mization problem using GNBS is given by

max
C,P

C∑
i=1

αi ln

 D∑
j=1

cij log2

(
1+

pigbi
σ 2
N + pijg

I
ij

)
−µ0

i

 (6)

s.t.
D∑
j=1

cij ≤ 1,
C∑
i=1

cij ≤ 1, ∀i, j, (6a)

D∑
j=1

C∑
i=1

cijpi ≤ PCU , pi > 0, ∀i, j, (6b)

0 ≤ pij ≤ Pmax , ∀i, j, (6c)
pigbi

σ 2
N + pijg

I
ij

≥ εβi, ∀i, j, (6d)

pigij
σ 2
N + cijpijg

I
ij

≥ βi, ∀i, j, (6e)

ci,j ∈ {0, 1}, ∀i, j, (6f)

where bargaining factor αi, i ∈ {1, 2, · · · ,C} is a normalized
weighting factor, i.e., αi ≥ 0,

∑C
i=1 αi = 1. Note that if

αi = 1, i = 1, 2, · · · ,C , then the GNBS is reduced to the
traditional Nash bargaining solution (NBS), which provides
a unique and fair Pareto-optimal operation point under the
Nash axioms [29], [42]. As previously mentioned, bargaining
factors are introduced to assign different players with differ-
ent priorities. The higher the bargaining factor, the higher
the payoff achieved by a game player, which denotes that
it allows the maximization to become more biased towards
the player having a higher bargaining factor. In general,
the priority of CUs’ communication requirement is higher
than the DUs’, which means that the limited communication
resource should preferably be allocated to the CUs to sat-
isfy their communication quality. As for the meaning of the
constraints, (6a) ensures that the resource of an existing CU
can be shared by at most one D2D pair, and meanwhile it
indicates that a D2D pair shares at most one existing CU’s
resource. PCU and Pmax denote the maximum transit power
of D2D pair and CUs respectively. Constraints (6b) and (6c)
guarantee that the transmit powers of D2D pairs and CUs are
within the maximum limit, which are used for reducing the
complicated interference environment brought by the D2D
communications. We assume that the minimal SINR require-
ment of CUs is βi, i = 1, . . . ,C . We set a constant ε as the
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interference margin threshold, which can be decided for spe-
cific situations. Constraints (6d) and (6e) represent the QoS
requirements of CUs and D2D pairs respectively. Constraints
(6f) means cij are binary 0–1 discrete variables. Further, pi
and pij are continuous variables, thus the problem (6) is a
mixed integer optimization problem, which is NP-hard.

Based on [10], the optimization problem (6) consists of
two layers. The inner one is power allocation, denoted by pi
and pij, ∀i ∈ C, j ∈ D, and determines the optimal transmit
powers of CUs and DUs. The outer one is channel assign-
ment, denoted by binary variables cij, ∀i, j, and determines
the optimal channel matching. Fortunately, the two layers can
be decoupled. Therefore, we can decompose the problem into
two sub-problems and then solve them respectively to obtain
the optimal solution.

III. OPTIMIZATION ALGORITHMS OF CHANNEL
AND POWER ALLOCATION
In this section, we solve the two sub-problems derived
from the original problem (6) individually. First, the channel
assignment problem is solved by a max-weighted max-flow
algorithm to decidewhich channel eachDU should share with
the CUs. After that, the Lagrangian multiplier method is used
to find the power allocation of CUs. Finally, we show that the
solution obtained by these two sequential algorithms is the
optimum of the original problem.

A. CHANNEL ASSIGNMENT ALGORITHMS
For the channel assignment sub-problem, we first introduce
two concepts: unit earnings and system earnings. Based on
(1), a unit earning is denoted as ϕij =

gbi
gIij
, which reflects that

a larger ϕij leads to a higher transmission rate for the CUs,
with fixed powers pi and pij. Here, we construct the C × D
unit earnings matrix 8 = [ϕij]. The system earnings are then
given as

D∑
j=1

C∑
i=1

cijϕij, (7)

which is the aggregation of the unit earnings. Unit earn-
ings reflect whether the occupied channel condition is good
for every DU. Therefore, maximizing system earnings (7)
implies optimizing the channel assignment, which is the
objective function of the channel assignment sub-problem
satisfying the constraint (6a).

From constraint (6a), we can see that every CU can share
channels with no more than one DU and every DU can
occupy only one channel. Thus, we transform the channel
assignment sub-problem into a user matching problem. CUs
are allocated in the exclusive channel. DUs have a corre-
sponding weight on every channel that reflects the chan-
nel condition, called the unit earnings, and search for the
optimal CU match to maximize the total weight, called the
system earnings. Here, we solve the channel assignment sub-
problem using a max-weighted max-flow algorithm, which is
shown in Algorithm 1. In order to maximize system earnings,

Algorithm 1 Channel Assignment Algorithm

1: Initialization : Let C,D, gbi, gIij, set the matrix C = 0,
8 = [ϕij], where ϕij = gbi/gIij.

2: Construct a weighted bipartite graph 8

3: if no augmenting chain exists then
4: while ∀j ∈ N (i) do
5: Find out the maximal value ϕ′ab in 8 = [ϕij]
6: Set corresponding element cab = 1 in the channel

assignment matrix C = [cij]
7: Update the unit earnings matrix8 = [ϕij] by setting

ϕaj = 0, j = 1, · · · ,K and ϕib = 0, i = 1, · · · ,C
8: end while
9: else
10: Find the one that has the minimum weight;
11: Add it to the initial flow and treat the new flow as a

new initial flow;
12: end if
13: Obtain the optimal channel assignment policy C∗

= [c∗ij]

the algorithm constantly selects the maximal unit earnings
and updates the unit earnings matrix, which results in optimal
channel assignment because it constantly seeks the current
optimal solution.

B. POWER ALLOCATION ALGORITHM
For the power allocation sub-problem, we need to consider
not only the minimal transmission rate requirement, which is
satisfied by the QoSs of CU, but also the channel condition.
Then, the power allocation of all users can be divided into
two parts: DU power allocation and CU power allocation.
For DUs, their power is restricted by the maximum transmit
power. There is no interactional influence among all DUs
because these channels are the orthogonal channels in the
cell. However, DUswill cause interference to CUs sharing the
same channel, which results in the performance degradation
of CUs. Hence, considering the minimal transmission rate of
CUs, we set the interferencemargin threshold for the power of
the DUs, described in (6d) and (6e). For the CUs, their powers
are allocated by the BS. These CUs compete for power, as to
improve the transmission rate on their channels as much as
possible. Based on the allocated channel, the Lagrangianmul-
tiplier method is applied to allocate power for the underlying
CUs.

Based on the optimal assigned channel strategy obtained
from Algorithm 1, the optimal power allocation strategy of
DUs is derived as follows: the optimal power allocation strat-
egy of DUs is P∗

= [p∗ij], where p
∗
ij = min{pmaxij ,Pmax},

and pmaxij =
(ε−1)σ 2N

gIij
, ∀i, j. Then, we can see that DUs

infinitely improve their transmission power if there are no
power constraints. Therefore, considering the minimal trans-
mission rate of CUs, an interference margin threshold ε needs
to be introduced to manage the interference, which could
determine the maximal transmission rate of DUs given the
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FIGURE 2. Transmission rate of CUs sharing the channels with and without DUs, and the
cellular-D2D group.

requirements of the minimal CU transmission rate. Based
on the assigned channel and power allocated to the DUs,
the Lagrangian multiplier method is used to solve the optimal
CU power problem, which is shown in Algorithm 2. In the
following, we define DU j and the corresponding CU as
cellular-D2D group j. The following result is given as:
Theorem 1: The optimal power allocation strategy of the

underlying CUs is Q∗
= [q∗j ], where q

∗
j given by:

q∗j = 3
(
c∗ij, p

∗
ij, αj

)
. (8)

Here, 3 denotes an implicit function given by (13), (14) in
Appendix A with parameters c∗ij, p

∗
ij, αj.

Proof: The proof is presented in Appendix A.
According to the above analysis, the optimal transmission

rate of CUs and DUs are given by, respectively:

r∗i = log2

(
1+

p∗i gbi

σ 2
N +

∑D
j=1 c

∗
ijp
∗
ijg

I
ij

)
, ∀i; (9)

and

r∗j =
C∑
i=1

c∗ij log2

(
1+

p∗ijgij

σ 2
N + p

∗
i gbj

)
, ∀j. (10)

C. JOINT ANALYSIS OF THE TWO ALGORITHMS
As has been discussed, the origin optimization problem
(6) is NP-hard and thus it is not desirable to solve it
directly. We notice that, its three kinds of optimal variables
– ci,j indicating the channel assignment of DUs, pi deciding
the power allocation for CUs, pi,j representing the power
allocation for DUs – can be decoupled into two groups.

Algorithm 2 Power Allocation Algorithm Based on
Lagrange Multipliers Method
1: Initialization : let C,D, set P = [pij] = 0, and Q =

[qj] = 0, C∗
= [c∗ij] is the optimal channel assignment

matrix based on Algorithm 1, and ε is the interference
margin threshold.

2: if cij = 1 then
3: if Pmax ≤

(ε−1)N0
gIij

then

4: p∗ij = Pmax
5: else
6: p∗ij =

(ε−1)N0
gIij

7: end if
8: end if
9: if cij = 1 then
10: q∗j = 3

(
c∗ij, p

∗
ij, αj

)
by Lagrange multipliers method

with Kuhn-Tucker’s Theorem (KKT conditions).
11: end if
12: Obtain optimal power allocation of DU p∗ij and CU q∗j .

Then, the optimization problem is solved by two algorithms
– channel assignment with variables ci,j and power allocation
with variables pi, pi,j. Although this approach can give a
solution, it is natural to ask whether the result obtained by
these two algorithms is the optimal solution of the origin
problem. We have the following theorem.
Theorem 2: The proposed solution of the joint channel

assignment and power allocation is the optimization solution
of problem (6).

Proof: The proof is presented in Appendix B.
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FIGURE 3. Transmission rate comparison for different weighting factors.

FIGURE 4. Transmission rate of CUs based on GNBS, MR, and random allocation algorithms.

IV. NUMERICAL RESULTS
A. SIMULATION SETTINGS
In this section, we consider a single cell communication
systemwith a coverage radius of 500m. LetD = 10,C = 15,
and the CUs and DUs be randomly distributed in the cell. The
distance between the D2D transmitter and its receiver is less

than 50 m. Let the channel bandwidth be 180 kHz. The total
power of the underlying CUs is 33 dBm. The maximal power
of the D2D links is 23 dBm, and the noise spectral band-
width is -174 dBm/Hz. As different weighting factors can
effectively induce different payoffs for the players, we select
three types of weighting factors for different preferences in
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FIGURE 5. Sum rate comparison of the GNBS, NBS, and random algorithms.

FIGURE 6. The total throughput for the different weighting factors.

the following simulations: i) αj = 1/D, i.e., the traditional
bargaining problem emphasizing fair resource allocation;

ii) αj =
u0j∑D
j=1 u

0
j
, which allocates more resources to the player

who is eager formore transmission bandwidth, thus achieving

more payoff; and iii) αj =

∑C
i=1 cij

gei
gIij∑D

j=1
∑C

i=1 cij
gei
gIij

, which indicates

that game players who own better channel conditions can
obtain a greater payoff.

B. SIMULATION RESULTS
Fig. 2 shows the transmission rate of CUs sharing the chan-
nels with and without DUs, and the transmission rate of
cellular-D2D group. Here, the CUs and DUs sharing the
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FIGURE 7. The total throughput of the CU for the different weighting factors.

FIGURE 8. The total throughput of the DU for the different weighting factors.

channels under the fixed total power of CUs and maximal
power constraints of DUs, i.e., Pmax = 23 dBm and PCU =
33 dBm. In the figure, it is clear that when DUs share the
channels with CUs, the transmission rate of the CUs degrades
because of the interference of DUs (red and blue bars shown
in Fig. 2). However, the results of the cellular-D2D group
imply that D2D communication can improve the transmission
rate significantly; the total sum rate of the communication
system (green bar) is shown in Fig. 2.

The effects of weighting factors in the proposed GNBS
algorithm are shown in Fig. 3; here, µ0

j denotes the minimal
transmission rate requirement of CUs j = 1, 2, · · · , 10.

Fig. 3 shows that traditional NBS returns relatively fair
resource allocation results. These are nearly the same as
the results based on GNBS with minimal transmission rate
constraints. Considering the channel conditions, the GNBS
obtains a better sum rate performance, but with the loss of
fairness.

In Fig. 4, we compare the transmission rate of the proposed
algorithm with other related allocation mechanisms, such
as maximal rate (MR) and random allocation, based on the
same channel and CU power constraints. The results show
that the proposed GNBS algorithm achieves better fairness
than the MR algorithm, which denotes that the gap between
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FIGURE 9. The throughput of CU1 with the maximal weighting factors.

FIGURE 10. Performance variation percentage of CUs, as shown in the upper image, under the
minimal transmission rate requirement u0

j , as shown in the lower image.

the different cellular-D2D groups in the proposed algorithm
is smaller than that in MR algorithm. Moreover, these two
algorithms have nearly the same sum rate. However, it is
evident that the random allocation algorithm is the worst
in comparison; for this algorithm, the transmission rates of
some CUs approach zero because the minimal transmission
rate requirement (such as for groups 3, 8, and 10) has not
been considered. The CUs in group 2 obtains a considerably
high transmission rate.

Fig. 5 shows the sum rate comparison among GNBS, NBS,
and random allocation algorithms. The results show that the
GNBS algorithm has a better sum rate than traditional NBS
and random allocation algorithms, which verifies that the
GNBS algorithm can maintain fairness while also improving
the sum rate.

Figs. 6-8 compare the throughput resulting from the
proposed approach, under different weighting factors.
Here, the weighting factors of NBS, GNBS1, GNBS2,
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and GNBS3 are 1
D ,

∑C
i=1 cij

gei
gIij∑D

j=1
∑C

i=1 cij
gei
gIij

,

∑C
i=1 cij

gei
gIij∑D

j=1
∑C

i=1 cij
gei
gIij

, and

∑C
i=1 cij

gei
gIij∑D

j=1
∑C

i=1 cij
gei
gIij

, respectively. Although the different weight-

ing factors have all better sum rate than traditional NBS,
the improvement is not very high. This verifies that the GNBS
algorithm can only maintain the fairness of all users, with no
emphasis on improving the overall throughput. This result
also has been further verified in the following figures.

To highlight the role of the weighting factors, we consid-
ered a scenario in which only one user’s weighting factor
is increased while the other users’ weighting factors are all
equal. For example, suppose that the number of the CU equals
to 20, the weighting factors of user 1 are 0.05, 0.24, 0.43,
0.62, 0.81. The weighing factors corresponding to the other
users are 0.05, 0.04, 0.03, 0.02, 0.01. The result is shown in
Fig. IV-B. From this figure, we can see that the through-
put of the user increases as the weighting factor increases.
Different from the NBS algorithm, the GNBS algorithm not
only improves the overall throughput, but also maintains the
fairness of all of the users by the weighting factors.

Fig. 10 shows the direct effect of the minimal transmission
rate requirement u0j on the CU transmission rate. The positive
percentage of the upper image in Fig. 10 corresponds to the
higher minimal transmission rate of CUs, while the negative
percentage corresponds to the lower minimal transmission
rate of the CUs, according to the minimal transmission rate
requirement shown in the lower image in Fig. 10. Further-
more, a higher absolute percentage value reflects a more
adjustable effect, as cellular-D2D group 10 shows.

V. CONCLUSION
In this paper, we propose a joint channel assignment and
power allocation algorithm between the CUs andDUs inD2D
communication underlying cellular networks. The coopera-
tion between the CUs and DUs is modeled as a GNBS such
that each DU is expected to benefit from cooperating with
the CUs that have a minimal transmission rate, which is
a NP-hard problem. To make the problem more tractable,
we decompose it into two sub-problems: channel assignment
and power allocation. Furthermore, we propose a matching
framework to assign channels. In addition, the optimal power
allocation scheme is developed using the Lagrangian multi-
plier method. Our numerical results show that the proposed
scheme achieves good performance on the sum of the system
rate. For future work, we will evaluate the performance of
the proposed scheme in a more generalized scenario with
multiple cells.

APPENDIX A
PROOF OF THEOREM 1
Based on the optimal channel assignmentC∗C×K = [c∗ij], there
is an optimal channel i∗ for any DU j. With the allocated
channel and power of DUs, the CU power allocation problem

is given by:

V
(
qj
)
=

K∑
j=1

αj ln

(
log2

(
1+

qjgbi∗

σ 2
N + p

∗
i∗jg

I
i∗j

)
− µ0

j

)
,

s.t.
K∑
j=1

qj ≤ PCU ; pi ≥ 0, ∀i, j, (11)

The Lagrangian function of problem (11) is then given by:

L
(
qj, ν

)
=

K∑
j=1

αj ln

(
log2

(
1+

qjgbi∗

σ 2
N + p

∗
i∗jg

I
i∗j

)
− µ0

j

)

− ν

 K∑
j=1

qj − PCU

 , (12)

where ν ≥ 0 is a Lagrange multiplier. Based on the
Lemma 1 in ref. [33], and using KKT conditions, for the
identified c∗ij and p

∗
ij, we have

δL
δqj
= αj ·

gbi∗

ln 2×
[
log2

(
1+ qjgbi∗

σ 2N+p
∗

i∗jg
I
i∗j

)
− u0j

]
·

1

σ 2
N + p

∗
i∗jg

I
i∗j + qjgbi∗

− ν = 0. (13)

Meanwhile,

δL
δν
→

K∑
j=1

qj = PCU . (14)

Based on (13) and (14), we can obtain q∗j , ν
∗. Thus,

we finally obtain the optimal power allocation strategyQ∗K =
[q∗j ].
This completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2
Let cij∗ be the optimal channel assignment solution for CU
i. Namely, DU j∗ is the optimal match for CU i while maxi-
mizing the payoff of game players, which is satisfied with the
following formulation:

V (pi)=
K∑
j=1

αj ln

(
C∑
i=1

cij log2

(
1+

pigbi
σ 2
N+pijg

I
ij

)
−µ0

j

)
(15)

Further, ϕij =
gbi
gIij

is the maximal unit earnings of CU i.

Based on the optimal channel and power allocation strategy,
the payoff of game player i isUj∗ . An apagoge is used to prove
the conclusion, as follows.

Let us suppose that there is an global optimal solution cij′
that is different from cij∗ , where j∗ 6= j′. Furthermore, global
optimal power solution p′i is derived from the utility function
in formula (15) relative to global optimal channel solution cij′ .
Therefore,Uj∗ < Uj′ . Because the power allocation of DUs is
independent in manner, the optimal DU transmission power
is p∗ij = min{pmaxij ,Pmax}. We next discuss the optimal CU
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solution in two different cases, p∗ij = pmaxij =
(ε−1)σ 2N

gIij
and

p∗ij = Pmax .
When p∗ij = Pmax , to the optimal solution cij′ and p′i,

the payoff of player i is given

by Uj′ = log2

(
1+

p′igei
σ 2N+Pmaxg

I
ij′

)
. In addition to optimal

solution cij∗ and p∗i , the payoff of game player i is given

by Uj∗ = log2

(
1+

p∗i gei
σ 2N+Pmaxg

I
ij∗

)
. Furthermore, for optimal

solution cij∗ and p′i, the payoff of game player i is given by

U ′j∗ = log2

(
1+

p′igei
σ 2N+Pmaxg

I
ij∗

)
.

Based on the joint channel and power allocation algorithm,
for CU i, there is maximal unit earnings ϕij∗ =

gbi
gIij∗

,

and gIij∗ > gIij′ . Hence, U
′
j∗ > Uj′ . It is obvious that Uj∗ ≥

U ′j∗ . We then have Uj∗ ≥ U ′j∗ > Uj′ , which contradicts
Uj∗ < Uj′ . Therefore, there is no other optimal solution
except for the one derived from the joint channel and power
allocation algorithm used to achieve greater payoff of the
game player, where p∗ij = Pmax .

For the global optimal solution cij′ and p′i, cij∗ and p
∗
i , and

cij∗ and p′i, when p
∗
ij =

(ε−1)σ 2N
gIij

, the payoff of player i is given

by Uj′ = log2

(
1+

p′igei
εσ 2N

)
, Uj∗ = log2

(
1+

p∗i gei
εσ 2N

)
, and

U ′j∗ = log2

(
1+

p′igei
εσ 2N

)
, respectively. Hence, Uj∗ ≥ U ′j∗ =

Uj′ , which contradicts Uj∗ < Uj′ .
Therefore, there is no other optimal solution except for the

solution derived from the proposed algorithm to achieve a

greater payoff for a game player when p∗ij =
(ε−1)σ 2N

gIij
.

This completes the proof of Theorem 2.
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