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ABSTRACT Themeaningful data-based fault diagnosis is beforehand revealing the potential faults to reduce
the costly breakdowns, one challenging ofwhich is extracting theweak features from the complicated signals.
Ensemble noise-reconstructed EMD (ENEMD) is an intelligent method by the nice integration of adaptively
decomposing and naturally denoising. However, ENEMD still suffers from such issues as the false possible
noise-only IMFs and the universal minimax threshold, reducing the precision of the critical noise estimation
for the weak feature extraction. Thus, the dual-mode noise-reconstructed EMDmethod is proposed for weak
feature extraction and fault diagnosis of rotating machinery. First, the possible noise-only IMF selection rule
is redesigned according to the noise characteristic and the correlation evaluation, to eliminate the redundant
slowly oscillating IMFs mistakenly chosen for noise estimation. Second, the adaptive local minimax
threshold is proposed in the noise estimation technique for the low SNR signal, to overcome the drawback
of additionally keeping some critical but weak fault features into the estimation noise. Hereinto, the local
threshold is respectively performed in each sliding window defined by the demodulated rotating-related
feature frequency. Third, the proposed method is addressed with the flowchart. Finally, two engineering
case studies are implemented to demonstrate the feasibility and effectiveness of the method. The analytic
results show that the method could effectively extract the periodic impulses generating by the early local
damage in the gearbox of a hot strip finishing mill. Meanwhile, the method could successfully reveal the
weak rubbing-impact faults along with alleviating the mode mixing phenomenon in the refined results for
fault diagnosis of a heavy oil catalytic cracking unit. Hence, the method could provide a promising tool for
weak feature extraction and fault diagnosis of rotating machinery.

INDEX TERMS Empirical mode decomposition, noise reconstruction, weak fault feature, rotating
machinery.

I. INTRODUCTION
Machinery fault diagnosis and failure mechanism has a rich
history since the 1960s [1], [2]. The fault feature extrac-
tion of rotating machinery is always one of the fundamen-
tal and vital issues for successful fault diagnosis. Several
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efforts have been made to provide a promising tool for the
fault feature extraction, mainly concentrated on the adap-
tive decomposition and denoising methods, such as empir-
ical mode decomposition (EMD) [3], sparse representation
[4], local mean decomposition [5], variational mode decom-
position [6] and wavelets [7]. Hereinto, EMD is a well-
known adaptive decomposition method that decomposes any
nonstationary and nonlinear noisy signal into a series of
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intrinsic mode functions (IMFs) [8]. Evolving from EMD for
addressing such drawbacks as the mode mixing, ensemble
EMD (EEMD) with the derivative methods has become an
emerging approach and shows the possibility of superior
performance in the feature extraction and fault diagnosis of
rotating machinery [9], [10].

Despite the nice performance of these methods, most pre-
vious investigations focus on the distinct signatures enhanced
from the obvious faults or damages. The meaningful and
positive data-based fault diagnosis is beforehand revealing
the potential faults initiating in the operation to reduce and
eliminate the unscheduled downtime and costly breakdowns,
one challenging of which is extracting the weak features
from the complicated and multiple signals contaminated by
the heavy noise and disturbance. Therefore, the weak fea-
ture extraction methods and fault diagnosis practices have
attracted remarkable attention from researchers [11], [12].
As an intelligent method of simultaneous decomposition and
denoising, ensemble noise-reconstructed EMD (ENEMD) is
proposed by Yuan and He et al., the IMFs of which are
obtained by the ensemble mean of several EMD trials on the
noise-reconstructed versions [13]. Different form the tradi-
tional noise suppression methods, ENEMD is reconstructing
and utilizing the inherent noise to alleviate the mode mixing
problem and enhancing the fault features, especially the weak
features. To improve the issues of the artificial parameter
setup and the poor performance for a high signal-to-noise
ratio (SNR) signal, integrated ensemble noise-reconstructed
EMD is proposed with the two noise estimation techniques,
i.e. by the minimax thresholding for a low SNR case and
the local reconfiguration for a high SNR case [14]. Even
with the powerful capability of fault signature enhancement
and detection, these ENEMD methods still suffer from some
issues concerned on the precision of the critical noise estima-
tion for the weak feature extraction. Two major drawbacks
are revealed as follows: (1) In the original possible noise-
only IMF selection, the IMFs satisfying with the noise-only
IMF energies within a certain confidence interval are all
treated to be the possible noise-only IMFs for determining the
noise estimation strategy or the further thresholding for a low
SNR case. However, several slowly oscillating IMFs with the
high index are sometimes mistakenly chosen, resulting in the
deviation of noise estimation. The false possible noise-only
IMFs may markedly influence the weak feature extraction
and fault diagnosis. (2) For a low SNR signal, the universal
minimax threshold is adopted to refine the inherent noise.
Unfortunately, the same level for the same IMF is not suitable
for the weak fault features, due to the excess keep of some
critical but local weak fault features into the estimation noise.

To overcome the drawbacks, the dual-mode noise-
reconstructed EMD method is enhanced from the recent
integrated ensemble noise-reconstructed EMD for the weak
feature extraction and fault diagnosis of rotating machinery.
The main contributions of the manuscript are focused on:
(1) The false possible noise-only IMFs are eliminated by cal-
culating the correlation between the possible noise-only and

noise-free components designed by these selected noise-only
IMFs. (2) The adaptive local minimax threshold is performed
in the noise estimation of the low SNR case, by the slid-
ing window technique defined by the rotating-related fea-
ture frequency demodulated from each corresponding IMF.
Furthermore, the enhanced method is verified by the fault
diagnosis of a hot strip finishing mill and a heavy oil catalytic
cracking unit.

The remainder of the paper is organized as follows. A brief
introduction of the basic ENEMD is reviewed in Section 2.
Section 3 provides the proposed method. In Section 4,
the engineering validations are performed. Conclusions are
given in Section 5.

II. REVIEW OF ENEMD
ENEMD could offer a physical interpretation for nonstation-
ary and/or nonlinear processes by the integration of adaptive
decomposing and natural denoising. Two core concepts of
ENEMD are: (1) Unlike EEMD additionally adding the white
noise to address the mode mixing problem, the noise inherent
in the measure signal is introduced in ENEMD to funda-
mentally change the local extreme, which helps to project
the decomposing components of different scales into their
corresponding true IMFs. (2) A set of reconstructed noise
versions originated from the measure signal cancels each
other out on the approach of the ensemble means, resulting
in the improvement on SNR of the fault signal.

The summary of EMD theory involved in ENEMD is
referred to Ref. [8]. A measure signal x (t) is generality
constituted by a true noise-free signal s (t) and an inherent
noise n (t). The algorithm of basic ENEMD is reviewed as
follows [13].

(1) Calculate n̂ (t) from x (t) by the noise estimation tech-
niques, where ∧ denotes an estimate.

(2) Reconstruct n̂ (t) by randomly permutation and obtain
ŝ (t) by ŝ (t) = x (t)− n̂ (t).

(3) Generate the observed signal x̂j (t) at the jth version
using x̂j (t) = ŝ (t)+ n̂j (t).

(4) EMD is performed on x̂j (t) to acquire a set of IMFs{
cj,k (t) , k = 1, · · · , n

}
and the residual rj (t), where

k representes the IMF index.
(5) Repeat steps (3) and (4) within r times until the stop-

ping criterion determined by a predetermined error
tolerance ε is arrived.

(6) The ensemble means of these IMFs are output by

c̃k (t) =
∑r

j=1 cj,k (t)
r and r̃ (t) =

∑r
j=1 rj(t)
r .

The idea of the basic ENEMD is simple and interest-
ing, however, the challenging of which is revealed to be
the precision of the critical noise estimation. In the original
ENEMD, the noise estimation by the hard thresholding is
performed. In the integrated ENEMD, the noise estimation
by the minimax thresholding is developed for a low SNR
case and the noise estimation by the local reconfiguration is
introduced for a high SNR case. The specific noise estimation
techniques can be found in Refs.[13] and [14]. Hereinto,
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the noise estimation by the local reconfiguration which would
be adopted in the subsequent method is briefly reviewed by
Ref.[14].
(1) Design the optimum phase space X using the

embedding principle, optimized by the correlation
minimization.

(2) Perform singular value decomposition (SVD) on X to
yield the singular values {λi (i = 1, · · · , q)}.

(3) Compute the increment1SEi (i = 1, · · · , q− 1) of the
normalized singular entropy for {λi}.

(4) Determine the critical singular order p by locating
1SEi stability after the first drop.

(5) Generate the refined λ̆ by λ =
{
0, · · · , 0, λp, · · · , λq

}
.

(6) Achieve the expected n̂ (t) using the inverse of SVD.

III. DUAL-MODE NOISE-RECONSTRUCTED EMD
To overcome the aforementioned drawbacks for improving
the precision of the critical noise estimation, the proposed
method is enhanced from the integrated ENEMD for the weak
feature extraction and fault diagnosis. To distinguish from the
integrated ENEMD, the proposedmethod is renamed by dual-
mode noise-reconstructed EMD.

A. POSSIBLE NOISE-ONLY IMF SELECTION RULE
In the method, the possible noise-only IMF selection rule is
first redesigned to remove the false noise-only IMFs. It is well
known that most of the noise always locates in the medium
and high frequency band, namely the IMFs with the low
indexes. Thus, these false IMFs stratifying the noise-only
energy often characterize as the slow oscillation with the high
indexes. Based on the noise characteristic, the selected pos-
sible noise-only IMFs with the first few successive indexes
become a nature part of possible noise-only IMF collection.
Meanwhile, the other IMFs with the discontinuous indexes
are decided by evaluating their noise properties. The possible
noise-only IMF selection rule is described as follow.
(1) Decompose x (t) using EMD into {ck (t) , k=1, · · · , n}

and r (t).
(2) Calculate the energy {Ek , k = 1, · · · , n} of each IMF.
(3) Suppose c1 (t) to be the noise component, the noise

energy Ên1 is E1.
(4) Estimate the noise energies

{
Ênk,95%, k = 2, · · · , n

}
and

{
Ênk,99%, k = 2, · · · , n

}
for {ck (t) , k=2, · · · , n}

with the confidence intervals of 95% and 99% by

Ênk =
Ên1
β
ρ−k (1)

where β = 0.719, ρ = 2.449 for
{
Ênk,95%

}
and ρ =

1.919 for
{
Ênk,99%

}
[15].

(5) Compare log2 {Ek} with log2
{
Ênk,95%

}
and

log2
{
Ênk,99%

}
. If log2 Ênk,95% ≤ log2 Ek ≤

log2 Ênk,99%, or log2 Ênk,95%−log2 Ek ≤ α, or log2 Ek
− log2 Ênk,99% ≤ α(α = 1 in the paper), select the

corresponding ck (t) into the pending noise-only IMF
collection Nnoise; otherwise, ck (t) is chosen to be the
possible noise-free IMF.

(6) In Nnoise, the first few IMFs {ck (t) , k = 1, · · ·m} with
the successive indexes from 1 to m are directly treated
to be the possible noise-only IMFs, due to the noise
characteristic.

(7) Combine {ck (t) , k = 1, · · ·m} to yield the pending
noise np (t) along with the pending noise-free signal
sp (t) by sp (t) = x (t)− np (t).

(8) Compute the correlation coefficient cc between np (t)
and sp (t).

(9) For each ck (t) with the discontinuous index, update
np (t) by adding ck (t) to acquire the reborn np′ (t) and
sp′ (t).

(10) Refresh cc′ by np′ (t) and sp′ (t). If cc′ ≤ cc, ck (t)
is supposed to be the possible noise-only IMF, and
subsequently update np (t), sp (t) and cc; otherwise,
ck (t) is treated as the possible noise-free IMF.

(11) Repeat Steps (9) and (10) for all the IMFs with the
discontinuous indexes in Nnoise.

(12) Construct the collection of all the possible noise-
only IMFs obtaining from the above steps, denoted as
{cl (t) , l = 1, · · ·m, · · ·}.

B. NOISE ESTIMATION TECHNIQUE BY THE ADAPTIVE
LOCAL MINIMAX THRESHOLD
Next, we focus on the noise estimation technique for the
low SNR signal, one drawback of which is the universal
minimax threshold disability for the weak feature extraction.
Due to the rotating characteristic, the weak features are repre-
sented as the rotating-related feature frequencies, which are
always modulated to the system nature frequencies. Hence,
the rotating-related feature frequencies demodulated from
IMFs are introduced to design the sliding window and then
segment each corresponding IMF into a series of periodic
sub-signals. The local noise estimation is performed in each
window using the local minimax threshold comprehensively
determined by the energy and length of each window. The
noise estimation technique by the adaptive local minimax
threshold for a low SNR signal is described as follows.

(1) According to the aforementioned possible noise-only
IMF selection rule, {cl (t) , l = 1, · · ·m, · · ·} are cho-
sen to be dealt with.

(2) For each cl (t), the rotating-related frequency fl is
demodulated from cl (t) by locating the maximum
value of the envelope demodulation spectrum.

(3) The adaptive sliding window for cl (t) is restricted by
the width wl = fs

/
fl , where fs denotes the sampling

frequency and wl is rounded.
(4) The sub-signals in the sliding windows of cl (t) is given

by

windowl (i) = {cl (t) , t = 1+ iwl, · · · , (i+ 1)wl} ,

i = 0, · · · , nn/wl − 1 (2)
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FIGURE 1. The flowchart of the proposed method.

where, the length of cl (t) is nn. Note that, if the remain-
der coefficients of cl (t) at the right boundary are not
enough for wl , the last window is replenished by zeros.

(5) Generate the refined noise sample c̆l (t) by the local
minimax thresholding in each windowl (i) by

c̆l (t) =

{
cl (t) |cl (t)| ≤ Tml,i
0 |cl (t)| > Tml,i

(3)

The local minimax threshold Tml,i for windowl (i) is
defined below inspired by the minimax estimation of
wavelet shrinkage [16], where El,i is the energy of each
windowl (i) calculating by the component median [17].

Tml,i =

{√
El,i

(
0.3936+ 0.1829 log2 wl

)
wl > 32

0 wl ≤ 32

(4)

(6) Recombine the refined noise for each cl (t) by the
inverse transformation of Step (4).

(7) Generate the expected n̂ (t) using n̂ (t) =
∑
l
c̆l (t).

C. THE PROPOSED METHOD
Up to now, the possible noise-only IMF selection rule and
the noise estimation technique by the adaptive local minimax
threshold for a low SNR signal have been addressed for the
weak feature extraction and fault diagnosis. Because theweak
feature in a high SNR signal is relatively evident and easy to
detect, the noise estimation technique by the local reconfigu-
ration is directly employed in the proposed method. To sum
up, the algorithm of the dual-mode noise-reconstructed EMD
is condensed as the following steps, whose flowchart is illus-
trated by Fig.1.

(1) Implement the possible noise-only IMF selection rule
to yield {cl (t) , l = 1, · · ·m, · · ·}, according to the
steps in Sec.III(A).

(2) If {cl (t) , l = 1, · · ·m, · · ·} includes IMFs 1-3 or half
of the IMFs, the noise estimation by the adaptive local
minimax threshold for a low SNR signal is conducted
following the steps in Sec.III(B).

(3) For the rest case, the noise estimation by the local
reconfiguration is carried out following the steps in
Sec.II.
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FIGURE 2. The structural sketch of the main drive system of the fifth mill.

FIGURE 3. (a) A collected signal in case 1; (b) The Fourier spectrum.

(4) Perform the steps of basic ENEMD in Sec.II to finally
output the analytic results by {c̃k (t)} and r̃ (t).

IV. ENGINEERING VALIDATIONS
The proposed method is applied to the weak fault diagnosis
of gearbox for a hot strip finishing mill and the early rub-
impact fault diagnosis of a heavy oil catalytic cracking unit.
For comparison, the original ENEMD, EEMD and EMD
are employed to analyze the same faulty data. In ENEMD,
the parameters are chosen to be ε = 0.01 the same as
the proposed method and C = 0.4. In EEMD, we set the
amplitude of the adding noise to be 0.1 times of the standard
deviation of the original data and the ensemble number to
be 50.

A. CASE 1: GEARBOX FAULT DIAGNOSIS OF A HOT STRIP
FINISHING MILL
Fault diagnosis of finishing mills plays a critical role in
improving the high quality of steel products and the operation
safety guarantee. Gearboxes are the kernel drive systems for
finishing mills. Due to the complicated and severe operating
condition with heavy loads, the gearbox faults generating
in the mills are always contaminated by a large amount of
background noise and multiple interference sources from the
whole rolling line. Thus, the proposed method is introduced
to extract the weak features for the fault diagnosis of finishing
mills. A hot strip finishing mill line contains seven frames of
rolling mills. The main drive system in the fifth mill contains
a single-stage gearbox with Z30/Z39, whose structural sketch
is shown in Fig.2. In a routine point inspection, the velocity
signals were measured on the outer case of the gearbox close
to the large gear during the finishing rolling by a handheld

FIGURE 4. The refined result in case 1 by the proposed method.

FIGURE 5. The refined results in case 1 by: (a) the original ENEMD;
(b) EEMD; (c) EMD.

FIGURE 6. The heavy oil catalytic cracking unit: (a) the photograph;
(b) the structural sketch.

data acquisition instrument. Due to the variable working
condition of the whole finishing rolling, the signals were
collected in the middle of the nonstationary process sampled
at 2560 Hz. Meanwhile, the actual rotating frequencies of
the gearbox are conveniently computed from the meshing
frequency in engineering practice. A collected signal and its
Fourier spectrum are plotted in Fig.3. The meshing frequency
150 Hz is easy to identify from the spectrum. Thus, the rotat-
ing frequencies of the pinion and large gear are respectively
calculated at 5 Hz and 3.846 Hz. Several impulsive series are
present in the signal, nevertheless the monitoring indexes of
which are within the normal limits.
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FIGURE 7. (a) A taken signal in case 2; (b) The Fourier spectrum.

We apply the proposed method to analyze the sig-
nal in Fig.2(a), following the flowchart of Fig.1. Accord-
ing to the possible noise-only IMF selection rule,
{cl (t) , l = 1, 2, 3, 4, 10} are selected to estimate the noise,
removing the false components {cl (t) , l = 8, 9} from the
original ENEMD. Containing IMFs 1-3, the noise estimation
by the adaptive local minimax threshold for a low SNR sig-
nal is conducted. Hereinto, {fl = 19.38, 3.75, 7.5, 18.75,
0.625 Hz}which are most relative to the rotating frequencies
of the pinion and large gear, are demodulated from {cl (t)}
and then determines {wl}. In the analysis results, a series of
periodic impulses are apparent in IMF3, which we display in
Fig.4. The average period is approximately equal to 0.2582 s,
whose inverse is close to the rotating frequency of the large
gear. The distinct extracted features indicate the localized
fault in the large gear, such as a crack, spalling or wear.

We also use the contrastive methods to analyze the same
signal, whose feature results are plotted in Fig.5. Although the
fault signatures could be captured, they are still disturbed by
the noise (part noise highlighted in the rectangle). Obviously,
the periodic features extracted by the proposed method are
much more distinct without disturbing than those by the
contrastive methods. Furthermore, the kurtosis values of the
feature results in Figs.4-5 are calculated and shown as the k
symbol in these figures. The kurtosis value by the proposed
method is much higher than those by the contrastive meth-
ods. Thus, the analytic result by the proposed method could
provide the undoubted fault symptoms for the fault diagnosis
and easily recognized by the factory operators.

Because of the monitoring indexes within the normal lim-
its, the localized fault was conjectured to be the potential fault
possible in the early fault stage. The gearbox was monitoring
and still operating for a few weeks. In the monthly overhaul-
ing, a wear fault was found on the large gear of the gearbox,
consistent with the diagnostic conclusion by the proposed
method.

B. CASE 2: RUB-IMPACT FAULT DIAGNOSIS OF A HEAVY
OIL CATALYTIC CARCKING UNIT
A heavy oil catalytic cracking unit is one of the significance
equipment in an oil refinery. One heavy oil catalytic cracking

FIGURE 8. The refined results in case 2 by the proposed method:
(a) IMF1; (b) IMF2.

unit is constituted by a motor, a gearbox, a fan, a flue gas
turbine, couplings and bearing bushes, whose photograph and
structural sketch are illustrated in Fig.6. Five eddy current
sensors were mounted on the outer case of the bearings to
monitoring the operating health of the unit, digitized at a sam-
pling frequency of 2000 Hz. One day, the vibration at the sec-
ond measuring point was abnormal shown in the monitoring
system. A signal was taken from the system to analyze the
exception reason, shown in Fig.7. The rotating frequencies of
the high and low speed shafts are respectively 96.67 Hz and
23.63 Hz, which are dominant in the spectrum. We see from
Fig.7(a) that the waveform in the time domain characterized
as the fluctuant and asymmetrical sinusoidal signal mainly
constrained by the rotating frequency of the high frequency.
Moreover, the second harmonic frequency of the high shaft is
also evident in the spectrum, indicating the unbalanced or/and
misalignment faults in the unit. Owing to the dynamic balance
processing before operation, the misalignment is diagnosed
from the signal.

Using the proposed method, we analyze the signal to fur-
ther detect the exception reason. Only c1(t) is chosen for
the noise estimation, eliminating the redundant false com-
ponent c5(t) from the original ENEMD. Due to the single
IMF, the noise estimation by the local reconfiguration is
performed. Fig.8 displays the refined results of IMF1 and
IMF2 by the method. We see from Fig.8(a) that evenly
spaced impulses exist in IMF1, highlighted by the downward-
pointing arrows, the average interval time of which is about
0.031s. The feature frequency of the impulses is just consis-
tent with the 1/3 fractional harmonic component of the high-
speed rotating frequency. It is revealed that such fractional
harmonic components are the symptoms of rub-impact faults
for rotating machinery, especially in the early potential fault
stage [18]. Meanwhile, the signal in Fig.8(b) is a typical
sinusoidal signal, representing the vibration of the high speed
shaft. Considering the prominent fractional harmonic fault
features, it is conjectured that the rubbing-impacts existed in
the unit close to the second measuring point.

After analyzing the structure of the unit, we found that
the flue gas turbine and the fun were joined by a diaphragm
coupling. To compensating the misalignment fault of the
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FIGURE 9. The refined results in case 2 by the original ENEMD: (a) IMF1;
(b) IMF2.

FIGURE 10. The refined results in case 2 by EEMD: (a) IMF1; (b) IMF2.

unit, the relative rubbing happened between the diaphragms.
Furthermore, the misalignment fault also induced the local
rubbing-impact faults between the shaft and the bearing bush.

The same signal is also processed using the original
ENEMD, EEMD and EMD, shown in Figs.9-11. In the
refined results by the original ENEMD in Fig.9, some weak
impulses denoted in the dotted rectangles are unfortunately
lost. Meanwhile, there exists mode mixing problem in the
results. From Fig.10 by EEMD, we could not find any fault
features supporting the diagnostic conclusion, although the
mode mixing is well eliminated. The refined results by EMD
in Fig.11 are similar to those in Fig.9, which are also lack
of the sufficient evidence for the fault diagnosis. Apparently,
the proposed method outperforms the contrastive methods,
regardless of extracting the weak features or alleviating the
mode mixing phenomenon.

V. CONCLUSION
ENEMD is an intelligent method by the nice integration of
adaptively decomposing and naturally denoising. To improve
the capability of extracting the weak fault features in rotat-
ing machinery, the dual-mode noise-reconstructed EMD is
enhanced from the integrated ENEMD. The possible noise-
only IMF selection rule is first redesigned according to the
noise characteristic and the correlation evaluation, to address
the issue of noise estimation deviation caused by the redun-
dant false components. The adaptive local minimax threshold
is then proposed in the noise estimation technique for a low

FIGURE 11. The refined results in case 2 by EMD: (a) IMF1; (b) IMF2.

SNR signal, to overcome the drawback of additionally keep-
ing some critical but weak fault features into the estimation
noise. Hereinto, every local threshold is respectively per-
formed in each sliding window defined by the demodulated
rotating-related feature frequency. Finally, the algorithm of
dual-mode noise-reconstructed EMD is proposed with the
flowchart.

Engineering case studies on the fault diagnosis for a hot
strip finishing mill and a heavy oil catalytic cracking unit
are used to demonstrate the effectiveness of the proposed
method. The analytic results show that the method could
effectively extract the periodic impulses and detect the poten-
tial local damage on the large gear at the early fault stage,
despite the condition indexes within the normal limits from
the monitoring system. Meanwhile, the method could suc-
cessfully reveal the weak rubbing-impact faults along with
alleviating the mode mixing phenomenon in the refined
results for fault diagnosis of the heavy oil catalytic crack-
ing unit. Hence, the method could provide a promising tool
for weak feature extraction and fault diagnosis of rotating
machinery.

ACKNOWLEDGMENT
The co-first author J. Yuan would like to gratefully thank her
advisor Prof. Zhengjia He for his instruction and edification,
which she benefits from in the whole life. (Jing Yuan and
Huiming Jiang are co-first authors.)

REFERENCES
[1] D. Wang, K.-L. Tsui, and Q. Miao, ‘‘Prognostics and health management:

A review of vibration based bearing and gear health indicators,’’ IEEE
Access, vol. 6, pp. 665–676, 2018.

[2] J. Ye, C. Chu, H. Cai, X. Hou, B. Shi, S. Tian, X. Chen, and J. Ye, ‘‘Amulti-
scale model for studying failure mechanisms of composite wind turbine
blades,’’ Compos. Struct., vol. 212, pp. 220–229, Mar. 2019.

[3] Y. Lei, J. Lin, Z. He, and M. J. Zuo, ‘‘A review on empirical mode decom-
position in fault diagnosis of rotating machinery,’’ Mech. Syst. Signal
Process., vol. 35, nos. 1–2, pp. 108–126, Feb. 2013.

[4] S. Wang, I. W. Selesnick, G. Cai, B. Ding, and X. Chen, ‘‘Synthesis versus
analysis priors via generalized minimax-concave penalty for sparsity-
assisted machinery fault diagnosis,’’Mech. Syst. Signal Process., vol. 127,
pp. 202–233, Jul. 2019.

[5] L. Wang, Z. Liu, Q. Miao, and X. Zhang, ‘‘Complete ensemble local mean
decomposition with adaptive noise and its application to fault diagnosis
for rolling bearings,’’ Mech. Syst. Signal Process., vol. 106, pp. 24–39,
Jun. 2018.

VOLUME 7, 2019 173547



J. Yuan et al.: Dual-Mode Noise-Reconstructed EMD for Weak Feature Extraction and Fault Diagnosis of Rotating Machinery

[6] Y. Wang, Z. Wei, and J. Yang, ‘‘Feature trend extraction and adaptive
density peaks search for intelligent fault diagnosis of machines,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 1, pp. 105–115, Jan. 2019.

[7] Z. Huo, Y. Zhang, P. Francq, L. Shu, and J. Huang, ‘‘Incipient fault
diagnosis of roller bearing using optimized wavelet transform based multi-
speed vibration signatures,’’ IEEE Access, vol. 5, pp. 19442–19456, 2017.

[8] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.-C. Yen, C. C. Tung, and H. H. Liu, ‘‘The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis,’’ Proc. Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 454,
no. 1971, pp. 903–995, Mar. 1998.

[9] Z. Wu and N. E. Huang, ‘‘Ensemble empirical mode decomposition:
A noise-assisted data analysis method,’’ Adv. Adapt. Data Anal., vol. 1,
no. 1, pp. 1–41, 2008.

[10] F. Xu, X. Song, K.-L. Tsui, F. Yang, and Z. Huang, ‘‘Bearing per-
formance degradation assessment based on ensemble empirical mode
decomposition and affinity propagation clustering,’’ IEEE Access, vol. 7,
pp. 54623–54637, 2019.

[11] L. Wang, G. Cai, J. Wang, X. Jiang, and Z. Zhu, ‘‘Dual-enhanced sparse
decomposition for wind turbine gearbox fault diagnosis,’’ IEEE Trans.
Instrum. Meas., vol. 68, no. 2, pp. 450–461, Feb. 2019.

[12] C. Wang, H. Li, G. Huang, and J. Ou, ‘‘Early fault diagnosis for planetary
gearbox based on adaptive parameter optimized VMD and singular kurto-
sis difference spectrum,’’ IEEE Access, vol. 7, pp. 31501–31516, 2019.

[13] J. Yuan, Z. He, J. Ni, A. J. Brzezinski, and Y. Zi, ‘‘Ensemble noise-
reconstructed empirical mode decomposition for mechanical fault detec-
tion,’’ J. Vib. Acoust., vol. 135, no. 2, 2013, Art. no. 02101.

[14] J. Yuan, F. Ji, Y. Gao, J. Zhu, C. Wei, and Y. Zhou, ‘‘Integrated ensemble
noise-reconstructed empirical mode decomposition for mechanical fault
detection,’’Mech. Syst. Signal Process., vol. 104, pp. 323–346, May 2018.

[15] P. Flandrin, P. Goncalves, and G. Rilling, ‘‘EMD equivalent filter banks,
from interpretation to applications,’’ in Hilbert-Huang Transform and Its
Applications, N. E. Huang and S. S. P. Shen, Eds. Singapore: World
Scientific, 2005, pp. 67–87.

[16] D. L. Donoho and I. M. Johnstone, ‘‘Minimax estimation via wavelet
shrinkage,’’ Ann. Statist., vol. 26, no. 3, pp. 879–921, 1998.

[17] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. New York, NY,
USA: Academic, 1999.

[18] Z. K. Peng, F. L. Chu, and P. W. Tse, ‘‘Detection of the rubbing-caused
impacts for rotor–stator fault diagnosis using reassigned scalogram,’’
Mech. Syst. Signal Process., vol. 19, no. 2, pp. 391–409, 2005.

JING YUAN received the Ph.D. degree in mechan-
ical engineering from Xi’an Jiaotong Univer-
sity, in 2011. From 2011 to 2018, she was a
Senior Engineer with the Shanghai Academy
of Spaceflight Technology. Since 2018, she has
been an Associate Professor with the School of
Mechanical Engineering, University of Shanghai
for Science and Technology. Her current research
interests include mechanical condition monitor-
ing, fault diagnosis, signal processing, and feature
extraction.

HUIMING JIANG received the B.S. degree
in mechanical engineering from Xi’an Jiaotong
University, in 2011, and the Ph.D. degree in
mechanical engineering from Shanghai Jiao Tong
University, in 2017. She is currently a Lecturer
with the School of Mechanical Engineering,
University of Shanghai for Science and Tech-
nology. Her current research interests include
machinery condition monitoring and fault diagno-
sis, intelligent fault diagnostics, and performance
degradation assessment.

QIAN ZHAO received the Ph.D. degree in
mechanical engineering from Northeastern Uni-
versity, in 2016. She is currently a Lecturer with
the School of Mechanical Engineering, University
of Shanghai for Science and Technology. Her cur-
rent research interests include rotating machinery
dynamics and vibration control.

CHONG XU received the B.E. degree from the
School of Mechanical Engineering, Hubei Uni-
versity of Arts and Science, Xiangyang, China,
in 2018. He is currently pursuing the M.E. degree
with the School of Mechanical Engineering, Uni-
versity of Shanghai for Science and Technology.
His current research interests include mechanical
signal processing and feature extraction.

HAIJIANG LIU received the Ph.D. degree in
mechanical engineering from Chongqing Univer-
sity, in 1995. He is currently a Professor with
the School of Mechanical and Power Engineering,
Tongji University. His current research interests
include precision measurement and control, and
digital manufacturing technology and application.

YONGXIANG TIAN received the Ph.D. degree in
vehicle engineering from Tongji University. He
has been working with the Shanghai Fire Research
Institute of MEM and the China National Fire-
Fighting Equipment Quality Supervision Testing
Center, since 2007. He is mainly engaged in the
technical research and development and testing of
fire fighting vehicles and other equipment.

173548 VOLUME 7, 2019


