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ABSTRACT Over 425 million people suffer from diabetes worldwide and this number is expected to
increase over the years. Rigorous and extensive research has led to the development of increasingly advanced
technologies, such as continuous glucose monitoring and glucose flash monitoring. These new technologies
are more promising and efficient with respect to calculating the glycemic index and are more easier to
use than the glucometer technology already established in the market. However, market solutions are often
highly restrictive due to their costs. In an effort to address this challenge, this article describes the Freestyle
Free sensor and the associated advantages of an integrated and low-cost environment that it offers patients.
The proposed environment allows continuously monitoring the blood glucose rate and provides doctors and
caregivers information remotely. Additionally, the data generated will allow the application of data mining
techniques in efforts aimed at understanding the disease better. The integration between the patient and
the integrated environment occurs through the near-field communication sensor over an Internet of Things
card, which sends the data collected for the LibreMonitor mobile application. To evaluate the integrated
environment, we compared the glucose rates measured with an official Freestyle Libre software during
the same period. Based on the positive results, we propose that the integrated environment is a low-cost
alternative for continuous glucose monitoring of patients with diabetes.

INDEX TERMS Diabetes mellitus, data mining, Internet of Things, Internet of Health Things.

I. INTRODUCTION
According to the International Diabetes Federation, over
425 million people were diagnosed with diabetes in 2017.
By 2045, this number will increase to 629 million, with a
projected rise of 130,000 cases each year; over one million of
these cases are expected to be children and adolescents [1].

Genetic factors and lack of control over glucose are the
primary causes of diabetes since these are responsible for
micro and macrovascular complications, thereby resulting
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in an increase in morbidity and mortality and causing over
4 million deaths in 2017 and 612 billion dollars in health care
expenses [2], [3].

Diabetes is life threatening or can incapacitate a person,
imposing an enormous economic expense on governments
and exceeding the resources invested in the health systems.
The health sector is interested in meeting important goals
for diabetic patients such as the improvement of clinical
outcomes and patient care in order to upgrade clinical out-
comes; real-time measurement and disease management are
considered integral factors in the improvement of patients’
life quality [4].
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Although a cure is not available yet, diabetes can be
effectively managed through the regular evaluation of blood
glucose levels and through the continuousmonitoring of daily
shots. Glucose self-monitoring is considered an effective tool
for this purpose, especially for patients with type 1 diabetes
(T1D). Unlike other diabetes patients (for example, gesta-
tional and T2D), T1D patients are insulin dependent and
will depend on glucose control and application of insulin
for life; hence, the disease currently has no cure. Children
and adolescents with T1D depend exclusively on self-testing
to manage and maintain control over the disease. However,
unlike children with other chronic diseases, children with
diabetes T1Dmust accept needles as a part of their daily lives.
Needles, the fear of pain and blood, and the injuries caused
tend to make self-testing less frequent and, consequently,
glycemic control is affected. Self-testing and daily mainte-
nance of blood glucose is highly important for resolving the
risk of hyper- and hypoglycemia, which can lead to future
complications that can subsequently lead to death [5].

In this context, technology has been increasingly used to
monitor and manage patients with diabetes. These include
machine learning models for characterizing glycemic behav-
ior [6], wearable devices for continuously monitoring people
with diabetes [7], a handheld health care device for moni-
toring the diabetic level through the individual’s breath [8],
the use of infrared light for measuring blood glucose optically
[9], the continuous monitoring of glucose levels through
multi-sensors [10], the analysis of reliability of clinical
diagnoses through the joint use of SVM using statistical
modeling Naïve Bayes [11], measuring of glucose concen-
tration in the blood through a microwave sensor [12], self-
management and remote monitoring of diabetes through the
mobile health platform (mHealth) [13], monitoring glucose
through a portable non-invasive device that uses infrared
sensors [14], and the prevention of foot ulcers in diabetics
through intelligent means (smart socks) [15]. Another recent
and highly promising technology related to the Internet of
Things (IoT) when applied to the health area is the Inter-
net of Health Things (IoHT); this is quite promising as it
contributes attention, diagnosis, and faster and more precise
treatments [16]–[19]. The measurable benefits of connected
medical devices include reduced mortality rates, fewer vis-
its to clinics, reduced emergency and hospital admissions,
faster care, and shorter hospital stay [20], [21]. The remote
monitoring of patients promotes a more effective and timely
treatment and enables the better management of health. Addi-
tionally, patients (and their relatives) obtain greater visibil-
ity regarding their health conditions, allowing them to play
an active role in the control and positively influencing the
treatment [22], [23].

In the mid-2000s, the continuous glucose monitor (CGM)
appeared in the market with the promise of treating main
diabetes problems. For example, the multiple insulin injec-
tions and glucose measurement rate punctures or the end
of postprandial hyperglycemia and nocturnal hypoglycemia
cases. CGM seeks to improve the quality of life for people

with diabetes. All CGM devices have been approved as com-
plementary and alternative and need to be calibrated two to
four times a day [24].

During the last years, there has been extensive research
in data mining and machine learning applied to
diabetes [25]–[27]. Therefore, the development of solutions
that facilitate data capture in real time is relevant.

In this work, we present the adaptation of hardware to
a portable device based on the IoT architecture and called
LibreMonitor, in order to continuously and remotely monitor
the condition of diabetic patients. This hardware uses an NFC
module together with an IoT card, which captures data from
the glucose measurement of the Freestyle Libre sensor and
transmits it via Bluetooth LE communication to a mobile
application. The application allows the patient to view the
screen; thus, they can see their blood glucose rates in real-
time and also access their records. The data collected and
displayed in the application is transmitted via WiFi/3G/4G
communication to a secure cloud-based platform, where
healthcare professionals will store and analyze it.

The remainder of this paper is organized as follows.
Section II discusses some relevant works in the field.
In Section III, we show our proposed solution. The setting
and environment are presented in Section IV; subsequently,
Section V presents the results and Section 6 presents the
conclusions formed and suggestions for future work.

II. RELATED WORK
Nowadays, many devices are available that workwith specific
methods to monitor diabetic patients [28]. All methods are
efficient or sufficient for detecting glucose rates; however,
these lack some features such as forecasting real-time data
from sensors connected to the patient’s body and providing
alerts regarding hypo- and hyperglycemia [29]. We reviewed
the literature to investigate current prevention and medical
recommendation platforms, structures, systems, and appli-
cations. The areas of research reviewed included e-Health,
health sciences, information technologies, and mobile appli-
cations among others.

There are several high-cost blood glucose monitoring tools
available on the market, such as Medtronic (Minimed 640G)
and Dexcom (Dexcom G4 and G5) continuous monitoring
systems. Relatively low cost such as Abbott’s flash monitor-
ing (Freestyle Libre) are also available, which displays the
glucose rate through a scanner [30].

Proposals for knowledge-based clinical decision support
systems have been made to monitor patients with chronic
diseases and improve their quality of life. These systems
allow patients to record the lifestyle changes they will adopt,
and the system uses these preferences to generate person-
alized recommendations [31]. For example, DialBetics is
a smartphone-based self-management support system for
patients with type 2 diabetes. DialBetics has four mod-
ules: data transmission, evaluation, communication, and food
assessment module. Additionally, the system is a partially
automated, real-time interactive system that interprets patient
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data such as biological information and information related to
exercise and dietary content, thereby helping patients achieve
self-management of diabetes.

The proposed solutions include evolutionary rule decision-
making using similarity-based patients with associative
chronic diseases to normalize clinical conditions, using infor-
mation from each patient and recommending guidelines cor-
responding to the conditions detailed in the decision-support
system’s rule-based inference (CDSS) [32]. The authors
improved the conventional rules-based CDSS algorithm to
report on the unique characteristics of patients with chronic
diseases and preventive strategies and guidelines for complex
diseases. Moreover, the proposed evolutionary rule decision-
making program selectively uses a range of databases in
chronic disease patients. Furthermore, a set of commercially
available mobile apps assess their impact on diabetes self-
management [33].

Overall, our analysis indicated that mobile applications are
viable tools for diabetes self-management and are preferred
over web-based or computer-based systems with usability.
The review also found that diabetes self-management appli-
cations are as useful to patients as providers. In addition,
using mobile apps reportedly improved positive health habits
such as healthy eating, physical activity, and blood glucose
testing.

III. PROPOSED SOLUTION
The poor control of the disease through manual treatments
increases the risk of nocturnal hypoglycemia and/or post-
prandial hyperglycemia [1]. These situations can cause vari-
ous health problems, such as blindness, amputations, kidney,
heart problems and even death. Based on these scenarios,
the predominant motivation for the development of this pro-
totype is the improvement of the quality of life of diabetics
and their families. For this, we use a flash glucose monitoring
sensor (FGM)– Freestyle Free [34]– and integrate it with
mobile hardware and software. Thus, our prototype permits
monitoring the patient’s glycemic rate, acting as a CGM
system and generating alerts and graphics that are stored in
the cloud with adequate security and ensuring the privacy of
patient data.

This proposal presents the adaptation of static to portable
hardware. Integrating different devices thus facilitates the
continuous monitoring of patients with diabetes at a low cost.

We present below the high-level architecture of the pro-
posed approach. In Figure 1, it is possible to visualize
the integration of the different devices/artifacts used in the
proposal.

In Figure 2, we present a scheme of the IoT architecture
used in the proposed system.

According to the 3-layer model of the Internet of Things,
the perception layer is constituted by different devices (sen-
sors, things). The primary task of this layer is to measure,
collect, and process the information (perceive the physical
properties of things) to transmit it through the communication

FIGURE 1. Proposed high-level architecture. The integrated
communication of the devices from the IoT board, passing through the
cloud application, delivers the glucose-related data o the healthcare
professional’s device.

FIGURE 2. 3-Layer IoT proposed architecture.

channels. In this context, we will present the hardware and
software parts of this layer.

A. PERCEPTION LAYER
The hardware used for the development of the real-time
blood glucose monitoring system was the RFD77201 model
board. This hardware uses the microcontroller model
RFD77101 from Simblee [35]. This card features embed-
ded Bluetooth LE (Low Energy) technology and the NFC
BM-019 module from Solutions Cubed [36]. The devel-
opment platform used to program the RFD77201 and
BM-019 was Arduino IDE, using the embedded C ++ lan-
guage to program devices to collect (BM-019), handle and
send (RFD77201) data to the mobile app.

1) SENSOR FREESTYLE LIBRE
The Freestyle Libre sensor uses a model RF430TAL152H
chip manufactured by Texas Instruments. This sensor works
with NFC ISO/IEC 15693 and 14-bit Sigma-Delta ADC
technology and standard respectively. The RF430TAL152H
chip contains 244 blocks of 8 bytes each of non-volatile
Ferroelectric Random Access Memory (FRAM), which can
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TABLE 1. Comparison of IoT boards.

FIGURE 3. RFD77201 board referenced in Table 1.

be read via NFC using a normal block read command, such
as from a cell phone. The FRAM is sorted into sections
comprising of multiple blocks, and each block is protected
by a CRC-16 in the first two bytes.

2) NFC BM-019 MODULE
The NFC module used to read Freestyle Libre sensor data
was the BM-019 from Cubed Solutions. The selection was
only determined by the NFC ISO/IEC 15693 standard, which
is compatible with the Freestyle Libre sensor.

3) IoT BOARD
The RFD77201 board was selected because it possess fea-
tures essential for IoT. Features such as small size, integration
with the leading mobile operating systems in the market (iOS
and Android), and–predominantly– its wireless technology
with embedded Bluetooth LE that aids in communication
with other devices.

Cards with embedded WiFi and Bluetooth are available on
the market. The determining factor for the selection is its size.
A big board would lead to a larger prototype and could affect
ease of use. Table 1 compares the RFD77201 (Figure 3) board
with other boards with embedded wireless technology.

B. NETWORK LAYER
In this Layer, we used the following technologies:

• NFC:
NFC communication technology, ISO/IEC 15693 stan-
dard, was used to collect the data stored in the Freestyle
Libre sensor through the NFC module BM-019.

• Bluetooth:
Bluetooth LE wireless technology communicates the
Simblee RFD77201 card with the mobile device. The
data, once collected by the BM-019 card, is encapsulated
and transmitted to the smartphone.

• Wi-Fi:
Wi-Fi communication technology, IEEE 802.11× stan-
dard, is used to transmit the data to the Internet;

C. APPLICATION LAYER
1) LibreMonitor
LibreMonitor is an open-source application developed and
maintained by Uwe Petersen1 for the sake of research and has
no relationship to Abbott. The programming language used to
develop the application was Swift 3.0, which is open-source
and produced by Apple for the development of its products
such as iOS.

LibreMonitor works by checking the Freestyle Libre
sensor frequently–for example, every two minutes–and trans-
ferring all the 32 history values, glucose rate measure-
ments, glucose rate measurements from the last eight hours,
the 16 current time trend values, and the values from the
previous 15 minutes. After gathering all the data, it displays
the rates in graphical and tabular formats on the smartphone.

2) NIGHTSCOUT
The Nightscout app is a cloud-based, open-source project
that allows access and works with CGM data. Nightscout
aims to provide users access to real-time glucose data by
storing that data in the cloud. Apart from web-based data
visualization, Nightscout can also receive data from a smart-
phone or smartwatch to monitor CGM data of individuals
with type 1 diabetes remotely.

The app supports the most common glucose moni-
toring devices such as Dexcom G5/G4/Share, Medtronic
530g/Veo/Minimed Connect/640g and Freestyle Libre.

Nightscout allows to configure the data securely stored
in the cloud. This configuration is undertaken through the
administration tools, where the admin can register several
type of users (patient, parents, doctors, etc.). Moreover,
it allows generating pre-established accessmodels (read-only,
administrator, etc.). Additionally, the data provided permits
applied machine learning and the application of data-mining
techniques.

IV. SETTING ENVIRONMENT
For this study, we will use an FGM sensor, an NFC module,
and an IoT board [37], [38]. Below are the steps for develop-
ing the FGM sensor glucose rate meter and the mobile app:

• Wewill define the FGM sensor as Freestyle Libre, which
applies to the patient’s body and records the blood glu-
cose rate every 15 minutes. Freestyle Libre does not
display this information unless manually scanned;

• The NFCmodule will read the FGM sensor information.
The first 43 blocks contain the last 15 minutes and the
last 8 hours of glucose measurements.

• The IoT card will encapsulate the data collected by
the NFC module and transmit it to the mobile applica-
tion. The patient will define the collection period. The
encapsulated data packet will contain the information
collected by the NFC module, its serial identifier, and
the board temperature;

1https://github.com/UPetersen/LibreMonitor

VOLUME 7, 2019 175119



J. J. R. Barata et al.: Internet of Things Based on Electronic and Mobile Health Systems

• The sensors can be powered by 3.3v lithium bat-
tery or via USB;

• The mobile application will be LibreMonitor, developed
and provided for this work by Uwe Petersen [35]. The
application was written for the iOS platform. The appli-
cation receives the data via bluetooth from the IoT card.
LibreMonitor shows the patient the current glucose rate
and the data for the last 15 minutes and the last 8 hours.
Also, a graph shows the evolution and glucose trend.
Finally, the app also allows calibration. Thus, the infor-
mation presented is closer to that registered by the FGM
sensor.

• The cloud app will be the Nightscout [39]. Nightscout
can be accessed through a browser or mobile app (iOS
and Android). The app provides the following features:
storage of data transmitted by LibreMonitor, secure
access to information, dashboard with glucose rates
including current rate, reports for patient status moni-
toring and decision making by doctors and caregivers.

With the device ready and integrated into the cloud and
mobile app, we will follow system evaluation with a healthy
adult patient using a Freestyle Libre sensor.

Optionally, the sensors (NFC module, IoT board, and LiPo
battery) can be integrated into a printed circuit board and
mounted in a 3D printed case.

V. RESULTS
A. LibreMonitor EVALUATION
For LibreMonitor evaluation, we considered two measures
of Freestyle in a volunteer. These measures were in the
morning, afternoon, and evening. Furthermore, compensation
calibration was performed, thereby avoiding value disparities
between LibreMonitor and Freestyle Libre. Following verifi-
cation, LibreMonitor transmitted the data to the Nightscout
cloud application over WiFi/3G/4G, where it is stored in
the database and will be available for future analysis and
reporting.

B. LibreMonitor COMPARISON
The comparison of LibreMonitor’s results with the Gold
Standard (Freestyle Libre) was performed through the
reports of the glycemic averages in the period from 26 to
28/05/2018 and is shown in Figure 4.

In Figure 4, it can be observed that, based on the Freestyle
Libre glycemic average, LibreMonitor reaches the follow-
ing percentages: 94.60% on May 26; 87.87% on 5/27; and
103.94% on 5/28. These small differences indicate the relia-
bility of LibreMonitor for measurements of diabetic patients,
requiring proper sensor calibrations and suggest that the
amount of glucose rate captured is equal to that of Freestyle
Libre.

C. GRAPHICAL INTERFACE
Initially, the system loads the graphical interface (as shown
in Figure 5). The function is to display information
related to checks, graphs and historical glucose rates, IoT

FIGURE 4. Comparison of average glycemic range from freestyle libre and
LibreMonitor.

(Simblee) card status, application calibration (offset and
slope), real-time glucose, measurement history, NFC module
and sensor ID, ambient temperature, sensor status, current
measurement graph, and information from the last 15minutes
and last 8 hours.

The glucose line, highlighted in red in Figure 6, denotes
the current glucose rate value and the two delta values show
how glucose is about to develop (linear extrapolation over the
next fifteen minutes). The first delta value is the difference
between the current and previous values, and the delta value
is the difference between the current glucose value and twice
the glucose value 8 minutes ago. The two prognostic glucose
values, or trends, are calculated by adding the delta values to
the current glucose value [40], [41].

The glucose rate is calculated from the gross value as
shown in Equation 1:

g = (ab)+ c (1)

where:
• g = glucose;
• a= gross values. Captured by the NFC module and sent
by the IoT card to the mobile application (converted to
application values);

• b = slope. Fixed value, converts gross values to the
approximate values measured by the sensor;

• c = offset. To correct the differences in values captured
by the sensor with the mobile application. Figure 7
shows the mobile app calibration.

D. SETTINGS INTERFACE
The Settings interface (Figure 8) shows the Calibration
and Upload to Nightscout options. These options permit
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FIGURE 5. LibreMonitor main graphical interface exhibits information
regarding the connection, general data and glucose trend/history graphic.

FIGURE 6. Current glucose rate, delta, and prognosis.

configuring the service in the Nightscout cloud. The recorded
data will allow the professionals to analyze and report mea-
surements.

E. CLOUD APPLICATION
By accessing the Nightscout cloud application (as shown
in Figure 9), the main screen displays information regarding
glucose rates over time and hypo- and hyperglycemia alerts.

FIGURE 7. Calibration interface.

FIGURE 8. Settings interface, which exhibits the options for device
calibration and data upload for Nightscout cloud application.

F. HARDWARE MODIFICATION
To perform the system evaluation, we invited a healthy adult
as a volunteer; also, we adapted the hardware that reads
Freestyle. Figure 10 provides the details of the prototype
attached to the volunteer’s arm.

G. SYSTEM EVALUATION
For the evaluation of the system, we recorded the measure-
ments at irregular periods. The assessment was performed
depending on the availability of the sensor. Due to its high
price and low availability, we faced difficulties in the evalu-
ation several times. The cost and availability also influenced
the number of volunteers.
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FIGURE 9. Nightscout cloud application interface.

FIGURE 10. Prototype’s hardware modifications that shows the freestyle
libre sensor, NFC card, and IoT board.

FIGURE 11. Glucose rates from 26 to 28/05 - freestyle libre.

The period selected for the evaluation was May 26–28.
During this period, we gathered the largest number of mea-
surements. Following it, gaps can be observed, especially on
May 27. The absence of the patient caused differences in the
calculation of daily glycemic averages between the mobile
application and Freestyle Libre.

Calibrations were performed only once a day during the
initial measurements.

The charts used in this section were generated by Abbott’s
official application. The sensor data was exported from the
scanner and was stored by the Nightscout and are available
for consultation.

Figure 11 shows the patient’s glucose rates, recorded
from May 26 to 28, 2008 with Freestyle Libre. The chart

FIGURE 12. Measurement chart from 26 to 28/05 - nightscout.

FIGURE 13. Glycemic average May 26 - freestyle libre.

line is generated with measurements taken internally every
15 minutes [36] by the sensor (but is not presented to the
patient).

Figure 12 shows the chart provided by the cloud applica-
tion, which shows glucose rates for the same period. We can
see all measurements taken from the FL sensor, including
those that the previous chart does not display. A similarity can
be observed in the plotting of the charts, where the rates have
similar values. Moreover, it can be observed that on May 27,
the checks were performed only in the afternoon, which may
impact the glycemic average of that day.

Analyzing the samples from May 26th, 27th, and 28th
separately, it can be observed that the glycemic averages
between the data recorded from the mobile app and Freestyle
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FIGURE 14. Glycemic average May 26 - cloud application.

FIGURE 15. Glycemic average May 27 - freestyle libre.

FIGURE 16. Glycemic average May 27 - cloud application.

Libre are highly similar. The importance of calibrating (tilting
and shifting) the mobile application before its use is essential.
Research indicates that evenwith a factory-calibrated device–
in this case, the Freestyle Libre–there may be differences
in the values of blood glucose measurements [36], [42].
Considering this scenario, evenwith the observed differences,
we can recognize the robustness and effectiveness of the
proposed system.

Figures 13 and 14 show that the glycemic average on
May 26 was 176 mg/dL for Freestyle Libre and 166.5 mg / dL
for the mobile app.

We can observe from Figures 15 and 16 the most sig-
nificant difference in glycemic averages on May 27. The
difference may have been caused because the patient did not
make calculations with the application in the morning.

For May 28th sampling, the patient was on the system
for an entire day. Freestyle Libre presented a glycemic aver-
age of 193 mg/dL (Figure 17) and the mobile application
of 200.6 mg/dL (Figure 18).

FIGURE 17. Glycemic average May 28 - freestyle libre.

FIGURE 18. Glycemic average May 28 - cloud application.

TABLE 2. Glycemic averages.

TABLE 3. Price comparison between solutions.

The percentage difference in the glycemic averages
between the system and Freestyle are shown in Table 2.

Even though the system was tested on only one volun-
teer, it had positive and negative points and possibilities for
improvement.

1) POSITIVE ASPECTS
Accurate, easy to read, graphical and reportable analysis
with clear real-time accuracy, and hypo- and hyperglycemia
alerts. Although the hardware acquisition cost is high, it is
still helpful to invest in LibreMonitor over market devices
(ex. BluCon by Ambrosia Systems Inc. [40] and Miao Miao
byHigh Brilliant Technology [41]).We can compare the price
of the presented alternatives in Table 3; furthermore, the last
two are not sold in part of South America.

2) WEAK ASPECTS
The size of the device is not practical because it must be
adapted to the patient’s body. The LibreMonitor mobile
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app only supports the Apple platform. The low number of
volunteers was a factor that impacted the evaluations. It was
difficult to locate people who use Freestyle Libre, probably
either due to lack of information or financial issues since as
the product is relatively expensive.

3) POSSIBILITIES FOR IMPROVEMENTS
Migrate to the Android platform, minimize hardware for
using with more comfort, and more configuration options
such as bolus calculation, patient data, and screen login.

VI. CONCLUSION AND FUTURE WORK
In recent years, data mining, machine learning, and the inte-
gration with IoT have emerged as some critical challenges in
the health area [19], [25].

In this work, a device capable of converting a flash glucose
monitoring-system to a low-cost continuous glucose moni-
toring system (CGM) was tested. The proposed system can
collect Freestyle Libre sensor glucose rate measurements and
display them on a smartphone, without scanning manually.
A cloud-based application was used to store data and analyze
and report the glucose rates for diabetic patients.Furthermore,
the data provided allows the application of data mining and
machine learning techniques.

Moreover, we tested the glycemic system, comparing it
with the Freestyle Libre and gathering a favorable result
through few differences observed in the percentages.

We concluded that the system meets the criteria of
glycemic average, precision, and accuracy in the recording of
blood glucose measurements made by the sensor and that its
use is possible, always with the supervision of a specialized
professional.

For future work, we expect that the mobile app can
be ported to other platforms and new options can be
implemented.
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