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ABSTRACT The high noise levels of high-rate Global Navigation Satellite System (GNSS) solutions
limit their seismological applications, including capturing earthquake-induced coseismic displacements.
In this study, we developed a new adaptive denoising approach for high-rate GNSS observations to improve
the precision of seismic displacements and preserve seismic waveforms in GNSS coseismic signals. The
performance of the proposed method was evaluated using high-rate (5 Hz) GNSS data acquired from
the moderate EI Mayor–Cucapah earthquake (Mw 7.2) on 4 April 2010 and the small Brawley seismic
swarm (Mw 4.6–5.5) on 26 August 2012. The performance of the proposed method was compared with
those of modified sidereal filtering, Stacking filtering, and MSF plus Stacking. The comparison showed
that the proposed method is more precise than other widely used method. It can significantly remove
high-frequency white noise and low-frequency colored noise caused by CME, multipath errors, and/or
other unmodeled systematic errors in high-rate GNSS displacements. The results were also compared with
collocated strong motion data (50 and 200 Hz). The high precision of the proposed method was mainly
afforded by the high performance of complete ensemble empirical mode decomposition, which was used
to decompose the GNSS signal into different frequency modes. However, the normalized autocorrelation
function and correlation coefficients used to determine the noise-dominated high-frequency modes and the
‘‘wavelet-like’’ soft-threshold used for direct denoising of the noise-dominated high-frequency modes also
contributed. Despite the high noise levels of GNSS solutions, especially regarding the vertical displacement
components, some small-amplitude details, which are usually only detectable by seismic instruments, could
be observed in the denoised displacements in this study. The results reported herein indicate that the proposed
method significantly improves the precision and reliability of GNSS displacements and the effectiveness of
seismic signal detection, which is particularly critical for the measurement of earthquake-induced coseismic
displacements.

INDEX TERMS Coseismic displacements, empirical mode decomposition, high-rate GNSS.
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I. INTRODUCTION
Global Navigation Satellite Systems (GNSSs) play an impor-
tant role in structure health monitoring [1], [2], seismic
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wave detection, and moderate and large earthquake early
warning (EEW) systems [3], [4]. The true dynamic dis-
placements estimated by high-rate GNSS observations enable
the generation of precise coseismic waveforms. Coseismic
displacement can be used to quickly estimate the magni-
tudes of large earthquakes for purposes such as issuing
tsunami warnings [5], [6], determining coseismic fields for
earthquake source model inversion [7], [8], producing cen-
troid moment tensor solutions [9], generating inverse earth-
quake focal mechanisms [10], [11], and modelling finite fault
slips [12], [13].

With respect to the use of broadband seismometers and
strong motions, GNSS observations have the significant
advantages of the no-clipping, no-tilting, and no-integrating
features [14]. Thus, GNSS data are suitable for use close
to the source of a large (>Mw 7) seismic event. This
enables the acquisition of reliable displacement information
for determination of the fault rupture process, identification
of the focal mechanism, and EEWmonitoring within minutes
of earthquake initiation [15], [16]. For typical EEW sys-
tems [17], [18], the key issue is detection of the arrival time
of the P-wave in order to predict the arrival time and inten-
sity of the destructive S-wave and surface wave [19], [20].
However, the precision and reliability of high-rate GNSS
solutions are strongly affected by systematic errors, such as
common mode error (CME) caused by spatial correlations
between GNSS stations [21], [22] and the multipath effects
of the coordinate time series [23]–[25]. High-rate GNSS
dynamic displacements are sufficiently low to resolvemost of
the surface wave spectrum of a moderate event within near-
source range or a large event at teleseismic distance [26].
In addition, although high-rate GNSS observations can be
directly used to measure static offsets and dynamic coseismic
displacements, the latter measurements are not sufficiently
accurate for identifying P-waves with millimeter-level or
smaller amplitudes [27]. Furthermore, GNSS-based displace-
ment waveforms are not sufficiently precise in the vertical
direction, in which lies most of the energy of an arriving
P-wave. This makes the detection of P-wave arrival more
difficult [28]. Boosting signals in seismic data is especially
crucial for seismic imaging [29], inversion [30], [31], and
interpretation [32]. Therefore, to improve the precision and
reliability of high-rate GNSS displacements and enable the
detection of P-wave arrival, denoising algorithms are required
to reduce or eliminate inherent noise and preserve seismic
waveforms in measured signals.

Many studies have revealed significant nonlinear varia-
tions in the dynamic displacements measured by high-rate
GNSSs [33]. Time-varying characteristics have also been
observed in short-period geophysical motions such as the
seismic waves generated by an earthquake. Because GNSS
time series are essentially nonlinear and multiscale, it is
often beneficial to have a method for decomposing sig-
nals into different temporal scales. A high-rate GNSS-PPP
method combining a wavelet-package transformation (WPT)
denoising and neural network prediction (NN) was proposed

in [34]. The method was proposed to denoise GNSS-derived
vertical displacements to improve the dynamic behavior of
structures. The results of experimental tests revealed that
the WPT-NN model improved the GNSS-PPP displacements
and can be used to accurately detect the dynamic behav-
ior of engineering structures. A data-driven method referred
to as complete ensemble empirical mode decomposition
(CEEMD)-based multiscale multiway principal component
analysis (C-MSMPCA) was proposed in [35] for denoising
daily GNSS position time series. C-MSMPCA combines
the ability of MSMPCA to extract the linear relationship
between signals with that of CEEMD to adaptively decom-
pose nonlinear and time-varying signals into various intrinsic
mode functions (IMFs). Daily and high-rate GNSS position
results indicate that C-MSMPCA outperforms other methods
commonly used for denoising non-coseismic GNSS time
series [36]. However, the performance of C-MSMPCA for
high-rate GNSS coseismic displacements during an earth-
quake is unknown.

Seismic waves are generally non-linear signals originat-
ing from a non-stationary process [37]. Reference [38] pro-
posed empirical mode decomposition (EMD), which is an
innovative signal analysis method for adaptively decompos-
ing signals into IMFs and residue from high-frequency to
low-frequency depending on the inherent characteristic of
the signals. Reference [39] reported a numerical study on
uniformly distributed white noise, finding that EMD is a
dyadic filter that can be used to effectively separate white
noise into IMF components. Reference [40] also numerically
investigated the statistical characteristics of fractional Gaus-
sian noise (fGn) [41] and found that EMD could be used as a
data-driven wavelet-like filter bank. Reference [42] reported
findings that agree with the results presented in [39] for the
case of white noise. The EMD procedure is adaptive, data-
driven, and very suitable for analyzing non-stationary and
non-linear data in various fields [43]–[48].

The high-frequency IMF signals decomposed by EMD
mainly contain stochastic white noise and the low-frequency
IMFs usually contain the useful signal. The first few
high-frequency IMFs, considered to be composed of only
noise, can be directly removed. The denoised signals can
then be reconstructed using the remaining IMFs and the
residue [49]. In the denoising of white noise by abandoning
the first IMFs, some useful signals will also be lost, partic-
ularly those containing sharper information, such as seismic
signals. Moreover, all data analysis tools are susceptible to
noise corruption. Reference [50] reported the noise corrup-
tion of EMD and analyzed the characteristics of IMFs. They
found that there are ‘‘transition’’ IMFs, which capture both
white noise and signal in the same mode. Three categories
of IMFs decomposed by EMD of a noisy signal can be
identified [50]: 1) noisy IMFs, which are noise-dominated,
2) transition IMFs, which contain both white noise and signal,
and 3) monochromatic IMFs, which are signal-dominated.
Therefore, as in the CEEMD-based denoising method pro-
posed in [51] for solving the mode mixing problem and
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achieving residue noise toleration, the key is determining the
cut-off point for the transition between noise-dominated and
signal-dominated IMFs.

To improve precision and reliability and preserve pre-
cise seismic waveforms in high-rate GNSS seismic dis-
placements, the present study implemented a new improved
CEEMD-MPCA denoising approach based on a correla-
tion coefficient, a normalized autocorrelation function, and
‘‘wavelet-like’’ threshold denoising. The performance of the
proposed method was validated using high-rate (5 Hz) GNSS
data collected during the moderate EI Mayor-Cucapah earth-
quake (Mw 7.2) on 4 April, 2010 and the small Brawley
seismic swarm (Mw 4.6–5.5) on 26 August, 2012. The results
were compared with collocated strong motion data (50 and
200 Hz).

II. THEORY
Assume that n-dimensional noisy seismic signals can bemod-
eled as

X (t) = x(t)+ c(t)+ w(t), t = 1, 2, . . . ,m (1)

where n andm are the numbers of GNSS stations and epochs,
respectively; X (t) and x(t) (with dimensions m × n) denote
the original and denoised GNSS displacements, respectively;
c(t) represents a low-frequency colored noise; and w(t) rep-
resents a Gaussian white noise. Given noisy displacements
X (t), a denoising method aims to recover x(t) by removing
c(t) and w(t).
In the remainder of this section, the statistical properties

of the normalized autocorrelation function of white noise
will first be reviewed. Secondly, the correlation coefficient
between the original signal and each IMF decomposed by
CEEMD and the wavelet-like threshold denoising method
will be introduced. Finally, the proposed denoising method
will be described, along with its application to high-rate
GNSS seismic displacements.

A. NORMALIZED AUTOCORRELATION FUNCTION OF
EACH IMF
The autocorrelation function of white noisew(t) is an average
measure of its time-domain characteristics and reflects the
correlation degree of the white noise at two different times.
The autocorrelation function of white noise can be expressed
as

Rw(t1, t2) = E[w(t1)w(t2)] (2)

where the mean value of w(t) is 0.
To accurately represent the correlation degree of white

noise at different times, the normalized autocorrelation func-
tion is expressed as

ρw(τ ) =
Rw(τ )
Rw(0)

(3)

where τ = t2 − t1 represents the time lag. According to (3),
the normalized autocorrelation function of white noise n(t) is
as shown in Fig. 1.

FIGURE 1. White noise and its normalized autocorrelation function.

FIGURE 2. Original signal, noisy signal, and corresponding normalized
autocorrelation functions.

It can be observed from Fig. 1 that the correlation of
white noise is statistically characterized by randomness and is
very weak at any given time. The maximum autocorrelation
value at time zero is 1, while the values of the normalized
autocorrelation function at any other time decrease rapidly
to 0.

The original and noisy signals and their normalized auto-
correlation functions are shown in Fig. 2. The original signal
is a 100-Hz Ricker wavelet with a peak value of 1, sampling
frequency of 1 ms, and data length of 1024. The frequency
of the effective signal of a Ricker wavelet is mainly within
the range 0–0.03 Hz. Gaussian white noise was then added
to the original signal. It can be seen from Fig. 2 that the
normalized autocorrelation function of the general signal has
its maximum value at the zero point. Due to the relativity of
the signal itself, the value of the normalized autocorrelation
function does not rapidly decay at other times but varies with
the time difference. This variation is obviously determined
by the difference relative to the normalized autocorrelation
function of the white noise.

The noisy Ricker wavelet was first decomposed into var-
ious IMFs by CEEMD [51]. As can be observed from
Fig. 3(a), CEEMD actually involves adaptive decomposition,
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FIGURE 3. (a) IMFs obtained by CEEMD of the noisy Ricker wavelet and (b) the corresponding normalized
autocorrelation functions.

TABLE 1. Correlation coefficients between the noisy Ricker signal and the IMFs.

producing high-frequency to low-frequency IMFs depend-
ing on the inherent signal characteristics. The corresponding
normalized autocorrelation function of each IMF is shown
in Fig. 3(b). According to the definition of EMD, an IMF
is any function that has the properties of forced symmetry
and adaptability of the envelopes separately defined by the
local maxima and minima. From Fig. 3(b), it can be seen
that, the first few high-frequency IMF components mainly
contain white noise. The characteristics of this white noise
are destroyed, resulting in it no longer being white noise
in the real sense. However, the statistical characteristics of
the white noise are still approximately retained. This means
the normalized autocorrelation function’s maximum at time
is zero, and the values at other times rapidly decrease.
Regarding the other low-frequency IMF components, which
occur as general signals, their normalized autocorrelation
functions maximize at the zero point, and the values at
other times do not rapidly decay but vary with the time
difference.

Fig. 3(b) shows that the third IMF is mainly composed
of noise, while the fourth is mainly composed of signals.
However, the signals and noise in IMF3 and IMF4 could not
be effectively separated. IMF1–IMF3 are noise-dominated
IMFs. IMF5–IMF8 are signal-dominated IMFs. IMF4 is thus
the cut-off point component for IMF transition. The cut-off
point between the noise-dominated IMF and signal- domi-
nated IMF could be estimated based on the statistical char-
acteristics of the normalized autocorrelation function of the
white noise.

B. CORRELATION COEFFICIENT BETWEEN ORIGINAL
SIGNAL AND EACH IMF DECOMPOSED BY CEEMD
From Figs. 1–3, in the case of the first few high-frequency
IMF components, it was determined that there was a grad-
ual decrease in the primary function of the white noise in
each IMF, and a gradual increase in that of the function of
the signal. Therefore, the correlation coefficient between the
original signal and each IMF can be used to determine the
cut-off point between the noise-dominated IMF and signal-
dominated IMF. The correlation coefficient between the orig-
inal signal and each IMF can be expressed as

ri,j(Xj, ci,j) =

∑
m
(Xi − X̄i)(ci,j − c̄i,j)√∑

m
(Xi − X̄i)

2∑
m
(ci,j − c̄i,j)2

(4)

where Xj denotes the first j signals, ci,j denotes the first iIMF
components of the j signals, and m denotes the length of the
signal.

According to the correlation coefficient between the noisy
signal and IMFs of the noisy signal, the cut-off point for the
transition IMF can be defined as follows: Beginning with
the first IMF component, the IMF corresponding to the first
extremum of the correlation coefficients can be determined,
and the latter IMF can be determined as the cut-off tran-
sition IMF. The correlation coefficients between the noisy
Ricker signal and the IMFs decomposed by CEEMD are
listed in Table 1. By comparing the normalized autocorre-
lation functions of the IMF components (Fig.3) with the
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correlation coefficients between the IMF components and
the noisy signal (Table 1), IMF4 was confirmed to be the
cut-off point component. The cut-off point for IMF transition
determined by the correlation coefficient and the normalized
autocorrelation function could thus be compared and verified,
respectively.

C. WAVELET-LIKE’ SOFT-THRESHOLD DENOISING
For a given orthogonal wavelet basis, the discrete wavelet
transform (DWT) decomposes the original noisy signal X (t)
into wavelet coefficients:

c(t) = WX (t) (5)

where matrixW is an orthogonal (J+1)×(J+1) matrix, c(t)
contains J detailed components and an approximate compo-
nent, and J is the chosen decomposition level.
A simple wavelet de-noising algorithm involves three

steps: 1) wavelet coefficient decomposition, which includes
selection of the wavelet basis and the decomposition level
J, 2) threshold quantization processing of the wavelet detail
coefficients, including determination of the threshold method
and rule to reduce the noise in each level based on the signal-
to-noise ratio (SNR), and 3) reconstruction of the denoised
original signal using the inverse wavelet transform obtained
from the threshold detail coefficients and approximation
coefficients.

The fundamental principle of soft wavelet thresholding is
to assign a value of zero to all wavelet coefficients lower
than a threshold related to the noise level and to appropriately
shrink the other wavelet coefficients by an amount equal to
the threshold [52]. The soft thresholding operator is defined
by

ĉj =

{
sgn

(
cj
) (∣∣cj∣∣− δj) ∣∣cj∣∣ > δj

0
∣∣cj∣∣ ≤ δj (6)

where sgn denotes the sign function, cj denotes the wavelet
coefficients at level j, and δj denotes the threshold at level
j, determined by any of several available methods [53]. For
removal of the added Gaussian white noise, a universal
threshold δj was proposed by Donoho and Johnstone [54],
given by

δj = σj
√
2 ln(m) (7)

σj = MADj/0.6745 (8)

where σj is the noise level of the jth wavelet coefficient,
and MADj denotes the absolute median deviation of the jth
wavelet coefficient.

Instead of thresholding the wavelet coefficient, a wavelet-
like soft threshold denoising method can be used to directly
threshold the noise-dominated IMFs as follows [55]:

C ′j =

{
sgn

(
Cj
) (∣∣Cj∣∣− βj) ∣∣Cj∣∣ > βj

0
∣∣Cj∣∣ ≤ βj (9)

where Cj denotes the jth noise + signal mixed IMF compo-
nent, and βj is the threshold value of the jth noise + signal

mixed IMF component, given by

βj = σj
√
2 ln(m) =

Median
(
abs

(
Cj
))

0.6745
×

√
2 ln(m) (10)

The selection of the wavelet basis type and decomposition
level in the application of DWT is difficult and requires
experience. This significantly contributes to the achieved
denoising effect of the wavelet denoising algorithm. Without
the need for selection of the wavelet basis type and decom-
position level required for DWT, CEEMD can be used to
adaptively decompose the signals into various IMFs from
high-frequency to low-frequency based on the inherent char-
acteristic of the signals. The first few noise + signal mixed
IMFs can then be directly shrunk by the ‘wavelet-like’ soft
threshold method through the use of (9) to remove the added
Gaussianwhite noise. Especially in the case of a seismicwave
signal, the first few high-frequency IMFs contain sharper
information, which can be effectively retained by applying
the proposed CEEMD-based ‘wavelet-like’ soft thresholding
method.

D. PROPOSED ADAPTIVE THRESHOLD DENOISING
APPROACH
Based on the above methods, we developed an adaptive
CEEMD-MPCA denoising method. This enables the use of
the normalized autocorrelation function and correlation coef-
ficient to effectively remove the high-frequency white noise
and low frequency colored noise in a GNSS coseismic signal.

In the proposed method, CEEMD is first used to decom-
pose the signal into various IMFs. The cut-off point s is
determined using the normalized autocorrelation function
and correlation coefficient. Then, the IMFs are classified as
‘‘noise + signal’’ IMFs and ‘‘signal-dominated’’ IMFs. The
former are noisy IMFs and transition IMFs, while the latter
are almost monochromatic. The noise + signal IMF modes
are subsequently directly denoised using the wavelet-like soft
threshold. Finally, the processed noise + signal IMFs and
signal-dominated IMFs are grouped based on their frequency
bands (FBs) and processed by multiway PCA (MPCA) to
obtain the denoised signal. The detailed procedure of the
proposed method is as follows:

(i) Each variable of X (t) is decomposed by CEEMD [53]
into K different time scales, {C1, C2, . . . , CK}.
(ii) The normalized autocorrelation function of each IMF

and the correlation coefficient between the original signal and
each IMF (see above) is used to determine the cut-off point
s. The IMFs are then classified as noise + signal or signal-
dominated.

(iii) The first noise + signal IMFs are directly denoised
using the wavelet-like soft threshold to obtain the denoised
‘‘IMFs’’ {C ’

1, C
’
2, . . . ,C

’
s} (s < K ).

(iv) The denoised ‘‘IMFs’’ and signal-dominated IMFs are
grouped based on their frequency bands (FBs), which were
estimated by S-transform [56]. Each group of modes with the
same FB is then denoised using MPCA.
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TABLE 2. Correlation coefficients between signal 2 and the IMFs decomposed by CEEMD.

FIGURE 4. Simulation results for the original and noisy versions of the
Damped-Sinusoids and Ricker signals and their sum and difference. The
denoised signals are obtained by the proposed method.

(v) A new matrix is reconstructed from the processed
IMFs.

(vi) The new matrix is processed by the MPCA method to
obtain the denoised signal.

III. SYNTHETIC EXAMPLE
A four-dimensional model with m = 1024 was used as a
synthetic dataset to verify the proposed method for seismic
signals. In the synthetic dataset test, a 1024 × 4 original
data matrix X was simulated with two known true signals:
‘‘Damped-Sinusoids’’ and ‘‘Ricker’’. The Damped-Sinusoids
signal is given by

S(t)=0.8× rect(t)× sin(2π ft)× (a/π )1/8 × exp(−at2/2)

(11)

where f = 40 Hz. If |t| 6 0.15, rect (t) = 1; otherwise,
rect(t) = 0. The second signal was simulated by a 100-
Hz Ricker wavelet with a peak value of 3. The sampling
frequencies of the first two signals were 1 ms, and their data
lengths were 1024. The third and fourth signals were defined
by the sum and difference of the first two signals (Fig. 4),
respectively. Gaussian white noise and colored noise with a
strong spatiotemporal correlation were added to the original
signals. The Gaussian white noise was produced by an fGn
model with H = 0.5, and the time-correlated colored noise
was produced by an fGn model [42] with a Hurst exponent
H of 0.9. The detailed procedure of the noise production is
available in [35].

The second Ricker wavelet was used as an example to
analyze the performance of the proposed method. The noisy

TABLE 3. Root mean square errors (RMSEs) and signal-to-noise
ratios (SNRs) for the different methods used to denoise the simulated
noisy signals.

signal 2 was first decomposed using CEEMD (Fig. 5a).
Fig. 5b shows the corresponding normalized autocorrela-
tion functions, and Table 2 lists the correlation coefficients
between signal 2 and the IMFs decomposed by CEEMD.
From Table 2 and Fig. 5b, it can be seen that the higher-
frequency IMFs (IMF1–IMF3) are mainly composed of
noise, while signals are the main components of IMF4. How-
ever, the signals and noise in IMF3 and IMF4 could not
be effectively separated. IMF4 was thus the cut-off point
component. IMF1–IMF4 were therefore classified as noise
+ signal modes and directly denoised using the wavelet-
like soft threshold. Finally, the processed high-frequency and
low-frequency IMFs were grouped based on their FBs and
handled using MPCA to obtain the denoised signal.

The original simulated signal and the denoised signals
obtained by the proposed method are shown in Fig. 6.
The root mean square errors (RMSEs) and signal-to-noise
ratios (SNRs) of the four noisy signals are listed in Table 3.
From Fig. 6, it can be seen that the four signals are well
recovered.

The proposed method can be used to remove much of the
noise inherent in the sample dataset and preserve useful sig-
nals. Compared with the noisy signals, the proposed method
reduced the RMSEs of the four signals by 66.7%, 61.9%,
59.1%, and 52.4%, respectively, and improved the SNRs
by 66.7%, 52.4%, 45.8%, and 42.2%, respectively. Overall,
Fig. 6 and Table 3 illustrate the satisfactory performance of
the proposed method.

IV. HIGH-RATE GNSS SEISMIC DATASETS AND DATA
PROCESSING
The performance of the proposed method was tested
on two high-rate (5 Hz) GNSS seismic datasets, which
were compared with strong motion accelerometer data
with high-rate sampling at 50-200 Hz and high preci-
sion. The first GNSS seismic dataset was for the Mw
7.2 moderate El Mayor–Cucapah earthquake. It occurred
at 22:40:42 UTC on 4 April 2010 in northern Baja, Cal-
ifornia, approximately 40 km south of the United States-
Mexico border (epicenter location: 32.286◦N, 115.295◦W,
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FIGURE 5. (a) IMFs obtained by CEEMD for signal 2 and (b) the corresponding normalized autocorrelation functions.

FIGURE 6. Original and denoised signals. First to fourth rows:
Damped-Sinusoids and Ricker signals and their sum and difference.

focal depth: 10 km ) (Fig. 7). The high-rate (5 Hz)
GNSS data obtained through high-rate GNSSs in south-
ern California were available from UNAVCO (ftp://data-
out.unavco.org/pub/highrate/). Very high-rate (200 and
50 Hz) strong motion data were obtained from CESMD
(http://www.strongmotioncenter.org/cgi-bin/CESMD/archive
.pl). The GNSS stations used to collect the data were gen-
erally not collocated with the strong motion stations in the
observation network. Fig. 7 shows the epicenter of the earth-
quake, the distribution of the 45 GNSS stations in the Cali-
fornia Real-time GNSS Network (CRTN), and the 18 strong
motion stations in southern California used to monitor the

FIGURE 7. Distribution of the 45 GNSS stations of the California
Real-time GNSS Network (CRTN) and 18 strong motion stations in
southern California. The green triangles represent the high-rate GNSS
stations, the red circles represent the strong motion stations, and the red
star indicates the location of the Mw 7.2 El Mayor–Cucapah earthquake.

El Mayor–Cucapah earthquake. Table 4 gives the station
names, locations, and distances to the epicenter, as well as
the separation distances of five collocated stations.

The second GNSS seismic dataset was for the small Braw-
ley seismic swarm that started at approximately 15:30 UTC
on 26 August 2012, comprised of six events with Mw <

2.0 and three Mw 2.5 events. All the events occurred within
a few minutes. The four largest events had magnitudes
of 4.6–5.5. The earthquakes occurred in a northeast-striking
fault zone located approximately 6 km north of the northeast
end of the Imperial fault (http://www.scsn.org/2012Brawley.
html). This area has a history of seismic swarms including an
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TABLE 4. Collocated high-rate GNSS and strong motion (SM) stations of
the Mw 7.2 El Mayor–Cucapah earthquake.

TABLE 5. Locations and magnitudes of the analyzed events of the
26 August 2012 Brawley seismic swarm A.

TABLE 6. Collocated high-rate GNSS and strong motion (SM) stations of
the 26 August 2012 Brawley seismic swarm.

earthquakewith amaximummagnitude of 5.1 in 2005, specif-
ically at Obsidian Buttes [57], and another in June 2008 in the
same general location as the 2012 event [58]. The three largest
events among those considered herein (Table 5) occurred at
19:20:04 UTC (Mw = 4.6; Event 1), 19:31:23 UTC (Mw =

5.4; Event 2), 19:33:01 UTC (Mw = 4.9; Event 2-doublet),
and 20:57:58 UTC (Mw = 5.5; Event 3) (USGS Earthquake
Database, https://earthquake.usgs.gov/earthquakes/browse/).

The high-rate (5 Hz) GNSS data and strong motion data
of the second seismic swarm dataset used in this study were
also obtained from UNAVCO and CESMD, respectively.
Fig. 8 shows the epicenter location of the three largest events
and the distribution of the 16 GNSS stations and 11 strong
motion stations used to monitor the Brawley swarm. Table 6
lists the station names, locations, and distances to the epi-
center, as well as the separation distances of three collocated
stations.

Both considered GNSS datasets were analyzed using the
Positioning and Navigation Data Analyst (PANDA) soft-
ware developed by the GNSS Research Center, Wuhan Uni-
versity [59]. The post-processing kinematic Precise Point

FIGURE 8. Distribution of the 16 GNSS stations of the California
Real-time GNSS Network (CRTN) and 11 strong motion stations in
southern California. The green squares represent the high-rate GNSS
stations, the blue circles represent the strong motion stations, and the
red stars indicate the locations of the three largest events of the
26 August 2012 Brawley seismic swarm.

FIGURE 9. East (green), north (blue), and vertical (red) components of the
GNSS dynamic seismic displacements at station P496 during the
4 April 2010 Mw 7.2 EI Mayor–Cucapah earthquake.

Positioning (PPP) mode of the software was employed. The
procedure of GNSS data processing using PPP is described
in [36]. The time series for the east, north, and vertical
coordinate components were combined in a 3-D data matrix
X̄ (m, n, p), where m, n, and p represent the numbers of
epochs, stations, and coordinate components. The 3-D data
matrix X̄ (m, n, p) was transformed into a new 2-D data
matrix X (m, q), where q = n× p.

V. RESULTS AND DISCUSSION
We first analyze the results of the application of the proposed
method to the 5-Hz GNSS seismic time series, compared
with those of modified sidereal filtering (MSF) [23], Stack-
ing filtering [60] and MSF plus Stacking. Then, we further
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FIGURE 10. (a) IMFs obtained by CEEMD for the E components of the GNSS seismic displacements at station P496 and (b) the
corresponding normalized autocorrelation functions.

TABLE 7. Correlation coefficients between the E components of the GNSS seismic displacements at station P496 and the IMFs obtained by CEEMD.

analyze the performance of the proposed method by compar-
ison with the collocated strong motion data (200 and 50 Hz)
for the moderate 2010 EI Mayor–Cucapah earthquake. Due
to the relatively small magnitudes of the earthquakes and the
excellent distribution of the nearby GNSS stations, we also
analyze the results of the proposed method for the 5-Hz
GNSS seismic time series and compare the GNSS data with
the collocated strong motion data (200 Hz) collected during
the small 2012 Brawley seismic swarm.

A. MODERATE EARTHQUAKE EXAMPLE: 2010 EI
MAYOR–CUCAPAH EARTHQUAKE
As examples for analysis of the performance of the pro-
posed method, we firstly take the seismic displacements of
the station ‘‘P496’’ as an example to analyze the perfor-
mance of the proposed method compared with the widely
used methods. Then, we further analyze the performance of
the propose method and compare with the seismic displace-
ments of the collocated stations P496 (GNSS)/5058 (strong
motion), P744/5028, and GMPK/GLA. The three pairs of

the collocated stations are located approximately 60, 67, and
98 km from the earthquake epicenter and approximately 0.18,
0.32 and 0.03 km from each other, respectively.

1) GNSS SEISMIC DISPLACEMENT ANALYSIS
Fig. 9 shows the east (E), north (N), and vertical (U) compo-
nents of the 5-Hz GNSS dynamic seismic displacements of
station P496 during the EI Mayor-Cucapah earthquake. It can
be seen from the figure that the GNSS seismic displacements
estimated by instantaneous GNSS positioning in the PPP
mode contain various errors. To obtain pure GNSS seismic
signals, it was necessary to first estimate the noise in the
dynamic seismic displacements. The 5-Hz GNSS seismic
displacements at station P496 were therefore denoised using
the proposed method.

First, the dynamic seismic displacements were decom-
posed into different IMFs by CEEMD based on the inher-
ent characteristics of the seismic signals. Considering the
IMFs in the E components at station P496 (Fig. 10a) as an
example, the seismic signal is composed of 10 IMFs and a
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residue. Because of the large amplitude of the seismic signal,
IMF1 still contains a part of the signal and not only pure
white noise components. In addition, it can be observed that
the noise plays a dominant role in IMF1, while the signal
plays the dominant role in the other IMFs. It can also be seen
from Fig. 10(b) and Table 7 that the noise plays dominant
roles in IMF1 and IMF2 and that IMF3 is the cut-off IMF
component. Therefore, during the denoising, IMF1–IMF3,
which were considered as the noise + signal modes, were
directly denoised using the wavelet-like soft threshold. The
processed IMF1–IMF3 and the remaining IMFs were then
grouped based on their FBs and handled by MPCA to obtain
the denoised signal.

To analyze the performance of the proposed method,
the results of the proposed method are compared with those
of MSF [23], Stacking filtering and MSF plus Stacking.
For MSF, the original displacements for the two days (DOY
092 and 093) before the El Mayor–Cucapah earthquake were
timed shifted by the orbital repeat period (23 h, 55 min, 54 s).
Then they were point-wised averaged and smoothed with
3-level wavelet denoising to form a profile on the earthquake
day (DOY 094). MSF can remove station-specific errors
caused by repeatable errors such as multipath, resulting in
a filtered coordinate time series. For Stacking filtering, posi-
tions from several nearest stations outside the region of active
deformation were combined to form a profile of the common-
mode error. To apply Stacking filtering, the profile was sub-
tracted from positions of the station of interest. Stacking can
remove systematic errors caused by un-modeled errors affect-
ing all stations simultaneously [3]. For the majority of results
in this study, because the available nearest stations with high-
rate sampling outside the region of active deformation is
limited, two IGS stations BREW and AMC2 were chosen
for Stacking spatial filtering. The BREW and AMC2 stations
with sampling at 1 Hz are located at (48.1333◦ N, 119.6833◦

W) and (38.8031◦ N, 104.5246◦ W), respectively. The two
IGS data at 1Hz used for Stacking were obtained from IGS
(ftp://cddis.gsfc.nasa.gov/pub/gps/products/). For MSF plus
Stacking, after MSF, Stacking filtering was further used for
the filtered displacements by MSF.

The two stations used for Stacking spatial filtering were
at 1 Hz. Thus, before analyzing the results of the origi-
nal and denoised seismic displacements by MSF, Stacking
and MSF plus Stacking, the 5Hz original GNSS data were
resampled to 1 Hz. Fig. 11 presents examples of the original
and denoised GNSS seismic displacements with resampling
rate 1 Hz for the three components of the ‘‘P496’’ station.
From Fig. 11(a-b), it can be seen that, after denoising the
horizontal components of the seismic displacements at sta-
tion P496, in two periods before (80985–81642 s) and after
(82001–82785 s) the earthquake, the denoised displacements
using the proposed method were smoother than the original
displacements and those of the MSF, Stacking and MSF plus
Stackingmethods.Moreover, the seismic wave signals during
the occurrence of the earthquake (81642–82000 s) were well
preserved. The results show that the proposed method and

FIGURE 11. Original and GNSS denoised (a) east, (b) north, and
(c) vertical components of the seismic displacements at station P496 with
resample rate 1Hz for the 4 April 2010 EI Mayor–Cucapah earthquake
(UTC time). The displacements of the original GNSS, MSF, Stacking, and
MSF plus Stacking are represented by the black, pink, green, blue, and red
solid lines, respectively. For applying MSF, the original seismic
displacements on the day of the earthquake subtracted the MSF filter
profile. For Stacking, the distant stations over 1200km from P496. The
original seismic displacements subtracted the Stacking filter profile form
P496. For MSF plus Stacking, the filtered displacements after MSF
subtracted the Stacking filter profile from P496, resulting in the final
GNSS displacements. Note: For better distinguishing the performance of
each method, the seismic displacements are plotted with respect to
nominal offsets.
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other methods can eliminate the low-frequency noise while
effectively retaining the seismic wave signals.

Owing to a number of factors such as satellite constella-
tion distribution, receiver clock error, and tropospheric delay
error, the precision of the vertical components of the GNSS
solutions was usually lower than that of the horizontal com-
ponents by a factor of 2–3 [61]. It can also be observed
from Fig. 11(c) that the vertical components of the seis-
mic displacements contain centimeter-level fluctuations and
high-frequency random fluctuations. This indicates that the
original signals contained low-frequency colored noise and
high-frequency random noise. Similarly, after denoising the
vertical components of the seismic displacements, during
the two periods before (80985–81642 s) and after (82001–
82785 s) the earthquake, the denoised seismic displacements
using the proposed method were significantly smoother than
those of the original, MSF, Stacking and MSF plus Stacking
methods. Meanwhile, the seismic wave signal was also well
preserved during the earthquake occurrence period (81642–
82000 s). The results also show that, compared with other
methods, the proposed method can significantly eliminate
more low-frequency colored noise and high-frequency white
noise while more effectively retaining the seismic wave
signals.

To accurately analyze the performance of the proposed
method, Fig. 12(a) shows examples of the residual displace-
ment time series of the original, MSF, Stacking, MSF plus
Stacking at P496 station, as observed in the 10 min before
the EI Mayor–Cucapah earthquake began. Fig. 12(b) shows
the power spectral density (PSD) of the original displacement
time series and those of other methods. The PSD of each
time series was computed using theWelch method [62]. Each
spectrum can be divided into two parts: high-frequency white
noise over 0.1–0.5 Hz (2–10 s periods) and low-frequency
colored noise over 0.001–0.1 Hz (10–1000 s periods) [3].
By comparing the PSDs of the original time series with
the PSDs of the MSF, Stacking, MSF plus Stacking and
the proposed method, these results indicated that the high-
rate GNSS data suffer from high-frequency white noise and
low-frequency colored noise. MSF, Stacking and MSF plus
Stacking captured the low-frequency variability in the range
of 80–1000 seconds. Because their results are still subject to
high-frequency noise, these commonly used methods seem to
have limited ability to deal with high-frequency white noise
in the range of 2–10s. This may be due to the fact that they do
not adopt the advantage of wavelet transform to decrease the
influence of high-frequency white noise [36]. The proposed
method can significantly remove high-frequency white noise
and low-frequency colored noise, caused by CME, multipath
errors, and/or other unmodeled systematic errors in the high-
rate GNSS displacements. In comparison, for removing the
high- and low-frequency noises, the proposed method is more
effective and accurate than the aforementioned methods. This
is mainly attributed to the combination of the advantages of
wavelet-like soft-threshold denoising method, CEEMD and
MSMPCA.

Table 8 lists the average standard deviations of the original
and denoised residual GNSS time series (10 min pre-event
displacement time series) of the 45 GNSS stations. The aver-
age standard deviations of the original residual GNSS time
series were determined to be 1.79, 2.62, and 7.28 mm for
the east, north, and vertical components, respectively. The
results indicate that the average original standard deviations
on the horizontal component are much less than those on
the vertical component, and those on the east component are
less than those on the north component. This may be caused
by incomplete integer-cycle phase ambiguity resolution in
this network. This agrees with the results of the CRTN in
south California from [36]. The average standard deviations
obtained by MSF plus Stacking are both less than those
by MSF and Stacking. MSF reduced the nonrandom error
caused by repeatable errors, such as multipath error. After
MSF, some nonwhite systematic errors remained, which are
caused by unmodeled common mode error affecting all sta-
tions simultaneously. Thus, MSF plus Stacking is superior
to MSF and Stacking. The average RMSEs obtained by the
proposed method were 0.70, 0.91, and 4.19 mm, respectively,
representing RMSE reductions of 60.9%, 65.3%, and 42.4%,
respectively. The results of the proposed method reflect
submillimeter-level accuracy for the horizontal component,
andmillimeter-level accuracy for the vertical component. The
proposed method is superior to MSF, Stacking, andMSF plus
Stacking. The high accuracy of the proposed method can be
mainly attributed to the following: 1) the high performance
of CEEMD for decomposing GNSS signals into IMFs of
differing frequencies, 2) the use of the normalized autocor-
relation function and correlation coefficients to determine
the noise-dominated high-frequency IMFs, and 3) the use of
the wavelet-like soft threshold to directly denoise the noise-
dominated high-frequency IMFs.

2) COMPARISON OF GNSS DATA AND STRONG MOTION
DATA
It is generally accepted that seismic seismometers-derived
displacements with high-rates (50-200 Hz) have extremely
high precision and are reliable [3], [26]. For further perfor-
mance analysis of the proposed method, the seismic displace-
ments of the collocated stations are analyzed. GNSS stations
are generally not collocated with strong motion stations in an
observation network. The collocation details of the stations
for the present study are presented in Table 4. The coseismic
displacements of the collocated stations P496 (GNSS)/5058
(strong motion), P744/5028 and GMPK/GLA, were com-
pared to analyze the performance of the proposed method.
Fig. 13 compares the east, north, and vertical components of
the original (black dots), GNSS denoised (blue lines), and
seismic displacements (red lines) on the collocated stations
P496 (5 Hz GNSS) and 5058 (200 Hz strong motion).

Fig. 13(a) shows the east component of the seismic shaking
over its entire period. The original and seismic displacements
can be observed to agree very well, almost coinciding. This
indicates that the GNSS positioning solutions have very high
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FIGURE 12. (a) Original and GNSS signals denoised for all three components of the residual time series of the original
and other methods at station P496 with resampling rate 1 Hz, as observed in the 10 min before the 4 April 2010 EI
Mayor–Cucapah earthquake began. The residual time series of the original GNSS, MSF, Stacking, and MSF plus Stacking
are represented by the black, pink, green, blue, and red solid lines, respectively. (b) The corresponding power spectral
density for all three components of the residual time series of the original and other methods at station P496, as
observed in the 10 min before the 4 April 2010 EI Mayor–Cucapah earthquake began. Note: For better distinguishing the
performance of each method, the residual time series are plotted with respect to nominal offsets.

TABLE 8. Average standard deviations of the original and denoised residual time series (10-min pre-event time series) with resampling rate 1 Hz of the
45 GNSS stations for the 4 April 2010 EI Mayor–Cucapah earthquake (units: mm).

precision on the east component. The denoised and seismic
displacements similarly agree very well, indicating that the
proposed method effectively retains the seismic signal.

As can be further observed from Fig. 13(b), the origi-
nal and seismic displacements also exhibit a high degree
of similarity between their north components. The major
difference exists over approximately the first 25 s, where a
permanent coseismic offset of 17 cm can be seen. Because
the location of the GNSS receiver antenna appears to have a
permanent offset [63] and a seismic measurement instrument
uses gravity as the datum, the permanent coseismic offset
in seismic displacements during an earthquake is lost. The
good agreement between the present original and denoised
displacements indicates a low noise level in the north com-
ponent, and that the proposed method effectively retains the
seismic signal.

Expectedly, the vertical components of the original seismic
displacements had the highest noise level, due to the effects
of the satellite constellation distribution, receiver clock error,
and tropospheric delay error. However, the denoised seismic
displacements were smoother. Compared with the original

results, the denoised and seismic displacements exhibited a
higher degree of similarity between their vertical dynamic
components. This indicates that the proposed method pro-
duced a more precise seismic waveform. Despite the high
noise level in the vertical components of the GNSS solu-
tions for moderate earthquakes, the small amplitudes of the
coseismic signal could not be detected in the original dis-
placements. However, they were detected in the denoised
vertical displacements obtained by the propose method (e.g.
between 13 and 30 s in Fig. 13c). This represents a significant
improvement for cases in which the seismic signal can only
be detected in strong events with significant shaking. Hence,
the proposed method not only significantly eliminates the
noise in the GNSS seismic displacements, but also effectively
retains the seismic signal.

For clarity, Fig. 14 shows magnifications of the coseismic
displacement time series over the first 47 s. It can be seen that,
in terms of the peak displacements and the long-term stabil-
ity of the horizontal components (Fig. 14a-b), the denoised
displacements are in good agreement with the original
solutions. The precision of the displacement time series was
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FIGURE 13. Comparison of the original, GNSS denoised, and seismic
displacements on the collocated stations P496 (5-Hz GNSS) and 5058
(200-Hz strong motion) during the Mw 7.2 EI Mayor–Cucapah earthquake
on 4 April 2010. Panels (a)–(c) respectively show the east, north, and
vertical components of the seismic shaking over its entire period. The
GNSS, GNSS denoised, and 200-Hz strong motion displacements are
represented by the black dotted, blue solid, and red solid lines,
respectively.

also improved by the proposed method. It is well known that
the precision of the vertical component of aGNSS positioning
solution is significantly lower than those of the horizontal
components. Therefore, compared with the vertical compo-
nents of the original displacements (Fig. 14c), the denoised
and seismic displacements exhibit a higher degree of similar-
ity in their dynamic components.

Figs. 15 and 16 compare the east, north, and vertical com-
ponents of the original (black dots), GNSS denoised (blue
lines), and seismic displacements (red lines) on the collocated
stations P744/5028 (200 Hz strongmotion) and GMPK /GLA
(50 Hz strong motion). It can be observed from Fig. 15(a-b)
that, the original and seismic displacements on the collocated
stations P744/5028 also exhibit a high degree of similarity
between their horizontal components. The GNSS denoised
and seismic displacements similarly agree very well. For
the vertical component (Fig. 15c), the original and seismic
displacements only exhibit a certain degree of similarity.
However, the denoised GNSS and seismic displacements

FIGURE 14. Magnifications of the first 47 s of the (a) east, (b), north, and
(c) vertical components of the coseismic displacements of stations P496
(GNSS) and 5058 (strong motion) during the El Mayor–Cucapah
earthquake on 4 April 2010.

exhibit a higher degree of similarity, indicating that the pro-
posed method produces a more precise seismic waveform.
It can be seen from Fig. 16(a-b) that, the original and seismic
waveforms on the collocated stations GMPK /GLA have a
low degree of similarity. However, the denoised GNSS and
seismic displacements exhibit a higher degree of similarity in
their dynamic components. Due to the expected high noise
level in the vertical component, the coseismic displacements
of the original and denoised GNSS do not agree with that
of the seismic displacements, except for the time segments
during 60–80s (Fig. 16c).

Compared with the amplitudes of seismic signals of the
collocated stations P496/5058 (Fig. 13), and P744/5028
(Fig. 15), those on the collocated stations GMPK/GLA
(Fig. 16) are obviously smaller. Based on the analysis of
the seismic displacements of the three pairs, the visual per-
formance of the proposed method on the El Mayor earth-
quake (Mw 7.2) depends on the amplitudes of seismic signals,
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FIGURE 15. Comparison of the original, GNSS denoised, and seismic
displacements on the collocated stations P744 (5-Hz GNSS) and 5028
(200-Hz strong motion) during the Mw 7.2 EI Mayor–Cucapah earthquake
on 4 April 2010. Panels (a)–(c) respectively show the east, north, and
vertical components of the seismic shaking over its entire period. The
GNSS, GNSS denoised, and 200-Hz strong motion displacements are
represented by the black dotted, blue solid and red solid lines,
respectively.

which are related to the earthquake magnitude and epicen-
tral distance. As the amplitudes of seismic signals become
smaller and the performance of our approach becomes
more remarkable. Therefore, the proposed method can sig-
nificantly improve the precision of GNSS solutions and
enable effective detection of seismic signals for a moderate
earthquake.

B. MODERATE EARTHQUAKE EXAMPLE: 2010 EI
MAYOR–CUCAPAH EARTHQUAKE
Due to the relatively small magnitudes of the earthquakes
and excellent distribution of the nearby GNSS stations,
the 2012 Brawley seismic swarm produced unique seis-
mic waveforms. They were estimated from the high-rate
GNSS data with collocated strong motion data for further

FIGURE 16. Comparison of the original, GNSS denoised, and seismic
displacements on the collocated stations GMPK (5-Hz GNSS) and GLA
(50-Hz strong motion) during the Mw 7.2 EI Mayor–Cucapah earthquake
on 4 April 2010. Panels (a)–(c) respectively show the east, north, and
vertical components of the seismic shaking over its entire period. The
GNSS, GNSS denoised, and 50-Hz strong motion displacements are
represented by the black dotted, blue solid and red solid lines,
respectively.

validation of the performance of the proposed denoising
method. As example, we considered the seismic displace-
ments of the GNSS station P744 and the collocated seis-
mic station 5028. The collocated stations were located
approximately 20 km from the epicenter of Event 1 and
approximately 0.32 km from each other.

Fig. 17 shows the horizontal components of the original
and denoised seismic displacements at station P744 during
the three largest events. It can be seen that the horizontal
components of the seismic displacement time series for the
three events have obvious centimeter-level fluctuations and
high-frequency random fluctuations. This indicates that the
original displacements contain low-frequency colored noise
and high-frequency random noise. The coseismic displace-
ments of Event 1 (Mw 4.6) do not have any significant
horizontal (east and north) component. In the case of Event 2
(Mw 5.4), the coseismic displacements only have significant
east components, while those of Event 3 (Mw 5.5) have signif-
icant east and north components. Expectedly, no significant
vertical components of the coseismic displacements were
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FIGURE 17. Original and GNSS denoised horizontal components of the seismic displacements at station P744 during the
three largest events of the Brawley Swarm on 26 August 2012. It should be noted that Event 2 involved only the seismic
displacements of the first earthquake (Mw = 5.4). The displacements of the original and our method are represented by the
blue and red solid lines, respectively. The vertical grey lines indicate the origin time of the corresponding earthquake.

observed in any of the three events, including at the stations
closest to the epicenters. After denoising using the proposed
method, the displacements for the three events were smoother
and the observed coseismic signals were well preserved,
especially the horizontal components of Event 3. The present
denoising results show that the proposedmethod significantly
eliminates high-frequency white noise and low-frequency
colored noise while effectively retaining the seismic wave
signals.

For further performance analysis of the proposed method,
the seismic displacements of collocated stations P744 and
5028 were compared. Fig. 18 compares the horizontal com-
ponents of the original, denoised, and seismic displacements
at these collocated stations during the Brawley seismic swarm
on 26 August 2012. It can be seen from the figure that for

Event 1 (Mw = 4.6), the horizontal components of the
original and denoised coseismic displacements do not agree
with those of the seismic seismometer-derived displacements.
This indicates that, even after denoising, no significant hor-
izontal component of the coseismic displacements could be
found. Similarly, the horizontal components of the original
displacements during Event 2 (Mw = 5.4) do not match those
of the seismic displacements, and there are also clear static
offsets in the east and north components (0.8 and 0.3 cm,
respectively) after the earthquake. However, denoising using
the proposed method produces some similarities between
the denoised coseismic displacements and the seismic
displacements over the first 13–45 s, especially in the east
component. This shows that the proposed method not only
significantly eliminates noise from the GNSS seismic dis-
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FIGURE 18. Comparison of the horizontal components of the original, GNSS denoised, and seismic displacements at collocated stations
P744 (GNSS) and 5028 (strong motion) during the three largest events of the Brawley seismic swarm on 26 August 2012. The GNSS, GNSS
denoised, and 200-Hz strong-motion displacements are represented by the black dotted, blue solid, and red solid lines, respectively. The
vertical black lines indicate the origin time of the corresponding earthquake. It should be noted that Event 2 involved only the seismic
displacements of the first earthquake (Mw = 5.4).

placements but also effectively distinguishes the seismic sig-
nal. In the case of Event 3 (Mw = 5.5), the horizontal
components of the original displacements do not match those
of the seismic displacements. However, denoising using the
proposed method produces significant similarity, especially
during the first 8–45 s. This shows that the proposed method
affords a more precise seismic waveform.

Despite the high noise level in the horizontal components
of the GNSS solutions for the small earthquakes, the small
amplitudes of the coseismic signal are not detectable in the
original displacements. However, they could be detected from
the denoised displacements obtained by the proposed method
(e.g. between 8 and 15 s in Event 3 in Fig. 18). Comparedwith
the original GNSS displacements, this represents a signifi-
cant improvement for cases in which the seismic signal can
only be detected for strong events with significant shaking.

The results indicate that the proposed method significantly
improves the precision of the GNSS solutions and effectively
preserves the seismic wave signals.

Table 9 gives the average standard deviations of the
original and denoised displacements (10-min pre-event
time series) of the 16 GNSS stations for the three
largest earthquakes during the Brawley seismic swarm on
26 August 2012. It can be seen that, for the three earthquake
events, the average standard deviations of the horizontal
components of the original and denoised high-rate GNSS
displacement time series are smaller than those of the verti-
cal components. As also indicated in Table 9, the averages
standard deviations of the original GNSS solutions for the
three earthquake events are 1.60, 1.57, and 4.49 mm for the
east, north, and vertical components, respectively, while the
corresponding values for the denoising results are 0.60, 0.61,
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TABLE 9. Average standard deviations of the original and GNSS denoised
displacements (10-min pre-event time series) of the 16 GNSS stations at
5 Hz for the three largest earthquakes during the Brawley swarm on
26 August 2012 (units: mm).

and 2.50 mm, respectively. This represents standard deviation
reductions of 62.5%, 61.1%, and 44.3%, respectively. The
proposed method offers submillimeter-level accuracy for the
horizontal components, and millimeter-level accuracy for the
vertical component. This high accuracy is mainly afforded by
the high performance of CEEMD, the use of the normalized
autocorrelation function and correlation coefficients, and the
use of the wavelet-like soft threshold to directly denoise
the noise-dominated high-frequency IMFs. The proposed
method thus avoids the theoretical shortcoming of the exces-
sive sensitivity of the wavelet transform to the modulation
of the wavelet parameters, and thus produces more precise
seismic waveforms for moderate and small earthquakes.

VI. CONCLUSION
We presented a new adaptive denoising method for preserv-
ing more accurate high-rate GNSS seismic waveforms. The
proposed method utilizes the correlation coefficients between
the original signal and the IMFs obtained from it by CEEMD,
the normalized autocorrelation functions of the IMFs, and
‘wavelet-like’ threshold denoising. The performance of the
proposed method was validated using the high-rate (5 Hz)
GNSS data obtained during the moderate EI Mayor–Cucapah
earthquake (Mw 7.2) of 4 April 2010 and the small Brawley
seismic swarm (Mw 4.6–5.5) of 26 August 2012.
The results showed that for denoising the high-rate GNSS

displacements, the proposed method is more precise than the
other widely used method, such as MSF, Stacking, and MSF
plus Stacking. The proposedmethod can significantly remove
high-frequency white noise and low-frequency colored noise,
caused by CME, multipath errors, and/or other unmodeled
systematic errors in high-rate GNSS displacements. Further,
the standard deviations of the GNSS original data indi-
cate millimeter-level and centimeter-level accuracies for the
horizontal and vertical displacements components, respec-
tively. While denoised GNSS results obtained by the pro-
posedmethod reveal submillimeter-level andmillimeter-level
accuracies, respectively. In particularly, the GNSS denoised
coseismic displacements obtained by the proposed method
were well preserved to match the seismic displacements mea-
sured by seismic instruments, better than the original GNSS
solutions. Some small-amplitude details that were undetected
in the original seismic displacements were detected in the
GNSS denoised seismic displacements. This high accuracy of

the proposed method is mainly attributable to the following:
1) the high performance of CEEMD for decomposing GNSS
signals into IMFs of different frequencies, 2) the use of the
normalized autocorrelation function and the correlation coef-
ficients to determine the noise-dominated high-frequency
IMFs, and 3) the use of the wavelet-like soft threshold to
directly denoise noise-dominated high-frequency IMFs. The
above attributes confirmed that the proposed method signifi-
cantly improved the precision of GNSS solutions and enabled
effective detection of seismic signals for moderate and small
earthquakes.

For future prospects and challenges, three main issues
must be considered. First, denosied GNSS coseismic dis-
placements require further assessments of the lower bound of
sensitivity of GNSS-only or combined GNSS/accelerometer
seismogeodetic waveforms. Secondly, further studies will be
built on the characteristics of GNSS noise and the denoising
techniques introduced in this paper to improve the precision
of GNSS solutions. Finally, the real-time coseismic estima-
tion of GNSS-only and combined GNSS/ accelerometer solu-
tions with the proposed method must be additionally checked
to accurately detect P-wave arrival and quickly estimate the
earthquake magnitude for EEW systems.
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