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ABSTRACT Skin-like tactile sensors provide robots with rich feedback related to the force distribution
applied to their soft surface. The complexity of interpreting raw tactile information has driven the use of
machine learning algorithms to convert the sensory feedback to the quantities of interest. However, the lack
of ground truth sources for the entire contact force distribution has mainly limited these techniques to
the sole estimation of the total contact force and the contact center on the sensor’s surface. The method
presented in this article uses a finite element model to obtain ground truth data for the three-dimensional
force distribution. The model is obtained with state-of-the-art material characterization methods and is
evaluated in an indentation setup, where it shows high agreement with the measurements retrieved from
a commercial force-torque sensor. The proposed technique is applied to a vision-based tactile sensor, which
aims to reconstruct the contact force distribution purely from images. Thousands of images are matched
to ground truth data and are used to train a neural network architecture, which is suitable for real-time
predictions.

INDEX TERMS Computer vision, finite element analysis, machine learning, soft robotics, tactile sensors.

I. INTRODUCTION
A growing number of applications require robots to interact
with the environment [1] and with humans [2]. The use of
soft materials for robotics applications [3] introduces intrinsic
safety during interactive tasks [4]. In addition, precise estima-
tion of contact forces is crucial for effective operation without
damaging the robot’s surroundings, e.g., for manipulation of
fragile objects [5].

Modeling the interaction of soft materials with generic
objects is highly complex. As a consequence, several tac-
tile sensing strategies leverage the use of machine learning
algorithms to map sensory feedback to the corresponding
quantities of interest, e.g., contact forces, shape andmaterials,
see [6]–[8]. These maps are generally retrieved by means of
supervised learning techniques, which fit a model to a large
amount of labeled data, i.e., sensory data paired with the
corresponding ground truth.
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However, the estimation of the full contact force distri-
bution purely from data is limited by the lack of a ground
truth source that does not alter the interaction between
the soft material and the objects in contact. This article
aims to provide a systematic way of labeling data with
ground truth for the three-dimensional force distribution,
which is obtained in simulation through the finite element
method (FEM).

The approach is evaluated on a vision-based tactile sen-
sor, originally presented in [9], which uses a camera to
track spherical particles within a transparent gel. Hypere-
lastic models of the sensor’s materials are retrieved from
state-of-the-art material characterization tests, which are fully
independent of the evaluation experiments. A label vector
representing the ground truth force distribution is assigned
to each image collected during an automatic indentation pro-
cedure. The total contact force also retrieved from the FEM
simulations shows a satisfactory agreement with the mea-
surements obtained from a commercial force-torque (F/T)
sensor.

173438 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7432-7634
https://orcid.org/0000-0002-9683-9403
https://orcid.org/0000-0002-1894-1795
https://orcid.org/0000-0001-5287-7849
https://orcid.org/0000-0001-5255-5559


C. Sferrazza et al.: Ground Truth Force Distribution for Learning-Based Tactile Sensing: Finite Element Approach

FIGURE 1. The tactile sensing technique presented in [9] is suitable to
cover large surfaces of arbitrary shape and dimension. A concept of a
robotic hand covered with cameras and a transparent gel embedding a
spread of red particles is shown in this figure.

The dataset generated with the strategy proposed here is
then used to train a deep neural network (DNN) architec-
ture [10], which maps optical flow features to the contact
force distribution. The evaluation of this strategy is carried
out in a specific indentation setup, with the resulting pipeline
running in real-time on the CPU of a standard laptop com-
puter (dual-core, 2.80 GHz) at 40 Hz.

A. RELATED WORK
In recent decades, tactile sensing research has shown the
potential of providing robots with the sense of touch,
exploited both singly [11] or in combination with vision [12].

Among the various categories of tactile sensors, see [13],
[14] for a survey, vision-based (or optical) tactile sensors are
based on optical devices that monitor properties related to the
contact between the sensor’s surface (generally soft) and the
environment. Among the advantages of this type of tactile
sensors are high resolution, low cost, ease of manufacture and
the preservation of the surface softness.

One category of optical tactile sensors uses a camera to
track sparse markers within a soft, transparent gel, which
deformswhen subject to external forces, see for example [15],
[16]. Other optical devices are able to provide information
about the contact with the environment, as shown with the
use of dynamic vision sensors [17] and depth cameras [18].
The sensor used here for the evaluation of the proposed
approach is based on an RGB camera (which retains a small
size) that tracks a dense spread of particles within a soft gel,
see for example Fig. 1. This design is presented in [9] and
shows performance advantages over sparse marker tracking,
and ease of manufacture, without any assumptions about the
surface shape.

Converting tactile information to quantities, such as the
force distribution, which are of high relevance for many
robotics tasks (e.g., grasping or manipulation), is not trivial.
In fact, the main complexity is introduced by the absence of a

generally valid closed-form model, which maps the deforma-
tion of a hyperelastic material to the external forces applied
to it. The use of data-driven techniques aims to overcome this
problem, approximating this map with a model learned from
a collection of past data. In [19], an optical tactile sensor
that exploits photometric stereo and markers painted on its
soft surface is used to reconstruct the total contact force by
means of a neural network architecture. In [20], an array
of light emitters and receivers is placed below a soft gel to
create tactile information, which is then provided to machine
learning algorithms that reconstruct the location and the depth
of an indentation, as well as the type of the employed indenter.
Although these techniques generally require large datasets,
transfer learning techniques can reuse information extracted
across different sensors, as shown in [21].

The FEM [22] is a powerful numerical technique that
provides approximate solutions of boundary value problems
arising in engineering, by subdividing a large system into
many smaller parts (called elements). One of the widespread
applications of this technique is the analysis of the behavior
of soft materials under various loading conditions. In [23],
the silicone gel pad of an optical tactile sensor is modeled as
a linear elastic material, and the FEM is used to compute the
stiffness matrix that approximates the relation between exter-
nal forces and displacements of the sensor’s material. Based
on reconstructed surface displacements, this matrix is then
used to compute an estimate of the force distribution applied
to the sensor. FEM simulations of a flexible 3D shape sensor
are used in [24] to optimize design parameters. Furthermore,
these simulations show the uniqueness of a strain-to-shape
mapping for the case considered. In [25], theoretical justifi-
cations based on FEM equations are provided to reconstruct
the external forces applied to soft bodies using information
about their deformation.

The strategy followed in this article exploits FEM sim-
ulations to obtain ground truth data for the contact force
distribution applied to the soft surface of a tactile sensor. The
lack of ground truth data has so far prevented the develop-
ment of learning-based tactile sensors that predict the full
force distribution, limiting them to the estimation of simpler
quantities, e.g., the resultant force and its location, and the
depth of a contact. The hyperelastic models identified capture
the full material behavior, including nonlinearities, rendering
highly accurate simulations. Images collected in experiments
on a vision-based tactile sensor are matched to the ground
truth and used to train a DNN that reconstructs the force
distribution with high accuracy and in real-time.

B. OUTLINE
The sensing principle and the hardware used for the evalua-
tion are presented in Section II, while the material character-
ization is discussed in Section III. In Section IV, the dataset
generation is described, from the collection of images to the
approach proposed for assigning ground truth labels. The
learning algorithm and the results are presented in Section V.
Section VI concludes the article with a brief discussion.
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FIGURE 2. The prototype of the sensor (designed for desktop testing) is
shown in (a). The dense spread of green particles is captured by the
camera placed inside the aluminum part. The resulting RGB image at a
state of zero force is shown in (b).

FIGURE 3. A scheme of the three-layer structure that composes the soft
material. The thickness of the different layers is shown in the
figure above. This structure yields a top surface of 32 × 32 mm.

II. HARDWARE
The approach discussed in this article for generating ground
truth labels is evaluated on a vision-based tactile sensor.
The tactile sensing strategy is presented in [9], and is based
on tracking the movement of spherical particles, which are
randomly spread within a soft gel placed in front of a camera.
The prototype used for the experiments and the camera image
at a state of zero force are shown in Fig. 2.
The soft material is produced in a three-layer structure,

as depicted in Fig. 3. From the bottom (which touches the
camera lens) to the top surface, the following materials are
used: 1) a stiffer layer (ELASTOSIL R© RT 601 RTV-2, mix-
ing ratio 7:1, shore hardness 45A); 2) the soft gel (EcoflexTM

GEL, mixing ratio 1:1, shore hardness 000-35) embedding
the particles, which comprise 1.96 % of the layer volume;
3) a black surface layer (ELASTOSIL R©RT 601 RTV-2, mix-
ing ratio 25:1, shore hardness 10A). After curing, the com-
plete sensor is placed in an oven at 60 ◦C for 8 hours. This step
has the effect of reducing the aging of the materials, which is
discussed in further detail in Section III.

III. MATERIAL CHARACTERIZATION
Finite element analysis (FEA) of arbitrary contact interac-
tions with the sensor’s soft surface requires material mod-
els that account for geometrical and material nonlinearities.
Soft elastomers are often modeled as hyperelastic materi-
als [26], and finding a suitable model formulation and cor-
responding parameters generally necessitates experimental

data from both uniaxial and biaxial stress states [27], [28].
To this end, a large-strain multiaxial characterization of the
two most compliant materials, the Ecoflex GEL and the
Elastosil 25:1, is performed. Samples of both materials are
tested in uniaxial tension (UA), pure shear (PS), and equibiax-
ial tension (EB) based on previously described protocols [28].
The bottom layer of Elastosil with the mixing ratio 7:1
is considerably stiffer than the soft adjacent Ecoflex GEL,
see Section III-E, and is therefore modeled as rigid in the
subsequent FEA.

A. SAMPLE PREPARATION
Thin material sheets of each elastomer are prepared as
described in Section II, and cast to a nominal thickness
of 0.5 mm. Test pieces are cut to obtain gauge dimensions
(length×width) of 40mm× 10mm forUA, 10mm× 60mm
for PS, and a diameter of 30 mm for membrane inflation tests
(EB). The test pieces of Ecoflex GEL used for the mechan-
ical characterization do not contain the spherical particles,
i.e. the pure material behavior is tested. An ink pattern is
applied to the sample surface to facilitate optical strain anal-
ysis [28]. After each experiment, the sample thickness h0 is
measured on cross-sections cut from the central region using
a confocal microscope (LSM 5 Pascal, Carl Zeiss AG) with
a 10× objective in brightfield mode.

B. MECHANICAL TESTING
UA and PS tests are performed on a tensile testing set-up
(MTS Systems) consisting of horizontal hydraulic actuators,
50 N force sensors, and a CCD-camera (Pike F-100B, Allied
Vision Technologies GmbH) equipped with a 0.25× tele-
centric lens (NT55-349, Edmund Optics Ltd.) that captures
top-view images of the deforming test piece. Displacement-
controlled monotonic tests are performed up to a specified
nominal strain (Ecoflex GEL: 200 %; Elastosil 25:1: 100 %)
at a nominal strain rate of 0.3%/s. The strain-rate dependence
is analyzed in an additional UA test, where the sample is
loaded cyclically with strain rates increasing from 0.1 %/s up
to 10 %/s.

An EB state of tension is realized in a pressure-controlled
membrane inflation test (see [28] for details). Briefly, a thin,
circular sample is clamped on top of a hollow cylinder and
inflated by means of a syringe pump (PhD Ultra, Harvard
Apparatus), while a pressure sensor (LEX 1, Keller AG) mea-
sures the inflation pressure p. Top and side-view images are
recorded with CCD cameras (GRAS-14S5C-C, Point Grey
Research), and the image sequences are used for evaluating
the in-plane deformation at the apex and the apex radius of
curvature r , respectively.
All experiments are performed at room temperature and on

the same day as completed curing. The mechanical properties
of soft elastomers are known to change with aging [28], [29],
a process attributed to additional, thermally activated cross-
linking [29]. To assess the influence of aging, additional UA
test pieces of the same sheets were kept at room temperature
and tested several weeks after fabrication.
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TABLE 1. Material parameters of Ogden’s model for the Ecoflex GEL and
the Elastosil 25:1.

C. EXPERIMENTAL DATA ANALYSIS
Since nominal strains computed from the clamp displace-
ments are prone to errors due to sample slippage [30],
the local in-plane principal stretches in the center of the
test-piece, λ1 and λ2, are computed from the top-view
image sequences using a custom optical flow-tracking algo-
rithm [28]. The principal stretch in thickness direction is
calculated by assuming material incompressibility, i.e., λ3 =
1/(λ1λ2). In the UA and PS configurations, the Cauchy stress
in loading direction is evaluated as σ = Fλ/(w0 h0), where
F are the measured force values, λ := λ1 is the principal
stretch in loading direction, and w0 is the reference width of
the test piece. For inflation tests, the measured inflation pres-
sure and apex radius of curvature can be used to approximate
the equibiaxial Cauchy stress at the apex as σ = pr/(2h0λ3),
which holds for h0 � r [31].

D. CONSTITUTIVE MODELS
The experimental data are used to fit the parameters
of a hyperelastic, incompressible Ogden model [31], for
which the strain-energy density per unit reference volume
reads

W =
K∑
k=1

µk

αk

(
λ
αk
1 + λ

αk
2 + λ

αk
3 − 3

)
, λ1λ2λ3 = 1. (1)

The material parameters µk , αk must satisfy the constraint
µkαk > 0, k = 1, 2, . . . ,K , and can be used to calculate the
corresponding Young’s modulus as E = (1+ ν)

∑K
k=1 µkαk ,

with ν = 0.5 being the Poisson’s ratio of an isotropic incom-
pressible material. The principal Cauchy stresses immedi-
ately follow from (1) as (see [31], p. 571)

σi =

K∑
k=1

µkλ
αk
i − q, i = 1, 2, 3, (2)

where q is an arbitrary hydrostatic pressure arising due to
the incompressibility constraint, whose value depends on
the boundary conditions. By specializing (2) to the three
experimentally considered load cases (see [31]), the ana-
lytical formulas were used to minimize the squared error
between the model and the experiments using the mini-
mization routine fmincon available in MATLAB (R2018b,
The MathWorks, Inc.). Ogden models of order K = 2
were found to provide the best description of the data
for both materials compared to neo-Hookean or Mooney–
Rivlin formulations; the resulting parameter sets are reported
in Table 1.

E. RESULTS
The individual stress-stretch curves for each sample of the
two elastomers tested are reported in Fig. 4, together with
the sample averages and the model predictions. Both models
identified provide an excellent description of the mechanical
behavior over the whole range of deformation for all three
load cases. The additional UA tests suggest a negligible influ-
ence of both strain rate and shelf time (over 5 weeks) on the
mechanical behavior of the Elastosil 25:1 for the rates and
times tested. However, the Ecoflex GEL shows a dependence
on both strain rate and aging, see Fig. 12, in the Appendix.
These dependencies, as well as potential softening phenom-
ena upon cyclic loading (Mullins effect), are neglected in the
hyperelastic model.

Corresponding Young’s moduli (calculated using the
Ogden model coefficients) of the Ecoflex GEL and the Elas-
tosil 25:1 are 16.9 kPa and 370.2 kPa, respectively. For
comparison, the Young’s modulus of the stiffer Elastosil 7:1,
determined by microindentation tests (FT-MTA02, Femto-
Tools AG), is found to be 0.97 MPa, i.e. more than 50 times
stiffer than the Ecoflex GEL.

IV. GENERATING A DATASET
The task of mapping the information extracted from the
images to the applied contact force distribution is formulated
here as a supervised learning problem. This requires a training
dataset composed of input features (here retrieved from the
images) and the respective ground truth labels (here obtained
from finite element simulations, using the material models
derived in Section III). These labels represent the quantities
of interest in the inference process (e.g., the contact force
distribution). The following subsections describe in detail
each of the components of the dataset.

A. FEATURES
In order to perform a large number of indentations within
a feasible time, an automatic milling and drilling machine
(Fehlmann PICOMAX 56 TOP) is used to press an inden-
ter against the soft surface of the tactile sensor at different
locations and depths. The machine is equipped with fast and
precise motion control (up to 10−3 mm). In the experiments
presented here, a stainless steel spherical-ended cylindrical
indenter is used. The indenter has a diameter of 10 mm and
is attached to the spindle of the milling machine, together
with a six-axis F/T sensor (ATI Mini 27 Titanium). The
experimental data collection setup is shown in Fig. 5.
A total of 13,448 vertical indentations were performed,

on an horizontal grid with a regular spacing of 0.55 mm,
at various depths (with a maximum depth of 2 mm). The
RGB images of the particle spread are captured once
the indentation has reached the commanded position. Five
images were collected for each indentation in order to
improve the robustness to image noise. The F/T sensor’s
measurements of the total vertical and horizontal (over two
perpendicular axes) contact force were recorded.
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FIGURE 4. Stress-stretch response of the Ecoflex GEL (a) and the Elastosil 25:1 (b) in, from left to right, uniaxial tension (UA), pure
shear (PS), and equibiaxial tension (EB), together with corresponding hyperelastic model predictions. Note the different scales in
(a) and (b), in particular the significantly stiffer equibiaxial response of the Elastosil 25:1.

FIGURE 5. The experimental data collection setup is shown above. The
indenter and the F/T sensor (connected through the cable on the top
right) are attached to the spindle of an automatic milling machine.

The optical flow field is extracted from the images (con-
verted to grayscale) through an algorithm based on Dense
Inverse Search [32]. The magnitude and the direction of the

field are then averaged in m image regions of equal area,
as described in [9]. The tuples of magnitude and direction for
each of these regions yield a set of 2 × m features for each
data point.

The readings from the F/T sensor are used to assess the
quality of the ground truth labels, as described in the next
subsection. The range of forces recorded in this procedure
spans up to 1.7 N in the vertical direction and 0.15 N in
each of the horizontal axes. Note that the large difference
in magnitude between the vertical and horizontal forces is
mainly due to the symmetry of the indentations, which leads
to the cancellation of the symmetric contributions to the total
horizontal force, with the exception of the regions close to the
edges of the surface.

B. LABELS
Although the F/T sensor provides the total contact force in
each direction, it does not provide any information about
the force distribution over the contact surface. The force
distribution renders a compact representation of various con-
tact aspects for generic indentations. In fact, it encodes
information about the contact area and forces applied to
the surface, even in the case of interactions with objects of
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FIGURE 6. The result of a sample FEM indentation in Abaqus is shown in
this figure. The indenter and the gel are modeled to reflect their actual
material and geometric properties, see (a). An example of the resulting
contact pressure distribution (top view) is shown in (b), where the colors
are mapped to the pressure magnitude (from zero, in blue, to the
maximum, in red).

complex geometries or when multiple and distinct contact
points are present. An example application, in which both
the contact area and the total contact force are necessary,
is presented in [33], where the interaction with a specific
object is exploited. The contact force distribution is obtained
in this article through FEA, which essentially simulates the
indentation experiments performed with the milling machine,
see for example Fig. 6.

The FEM simulations are carried out in Abaqus/
Standard [34]. The geometry of the two top layers of the
sensor is modeled as shown in Fig. 3, and material properties
are assigned to each layer as described in Section III, using
the implementation of Ogden’s model provided by Abaqus.
Note that this neglects the influence of the spherical particles,
as the model was derived from tests on the pure Ecoflex GEL.
Assuming rigid particles, the ratio between the Ecoflex–
particle composite modulus Ec and the Young’s modulus E
of the pure Ecoflex GEL can be estimated using Eshelby
inclusion theory [35], Ec/E = 1/(1 − 5φ/2) ≈ 1.05 for a
particle volume fraction φ = 0.0196. The spherical-ended
indenter is modeled as an analytical rigid shell. The finite
element mesh is composed of linear tetrahedral elements
(C3D4H) and hexahedral elements with reduced integration
(C3D8RH). Both element types are usedwith hybrid formula-
tion as appropriate for incompressiblematerials. A localmesh

FIGURE 7. The procedure to discretize the force distribution is sketched
in this figure. The sensor’s surface is discretized into n bins of equal size,
with the boundaries shown in red. The surface mesh used for the FEA is
shown in black in the undeformed state. Each node is assigned to the bin
that contains it, as is the case for the green nodes contained in the bin
shown in solid red. For each indentation, the resulting forces at the nodes
assigned to the same bin are summed along each axis to determine the
three label vector components for the corresponding bin.

refinement is performed at the contact and at the interface of
the materials, with a characteristic element size of 0.3 mm.
Tie constraints are applied at the material interface to enforce
the same displacement of the nodes in contact. The bottom
nodes are fixed, reflecting the interface with the much stiffer
bottom layer (Elastosil 7:1).

The contact between the top surface and the indenter is
modeled as a hard contact and discretized with a surface-to-
surface method. The friction coefficient between the indenter
and the top layer is estimated by letting a block of Elastosil
25:1 rest on an inclined stainless steel plate. The maximum
tilt angle θ before the block begins to slide is recorded with
an external camera, and the static friction coefficient µ0
is calculated from static equilibrium as µ0 = tan θ . This
procedure yields a friction coefficient of 0.45. The friction
coefficient was assumed constant, a possible dependence on
the contact pressure was neglected.

The FEM simulations generate the normal and shear com-
ponents of the contact force distribution resulting from each
indentation. Note that both the normal and shear forces act-
ing at each node are generally 3D vectors. As an example,
the normal force that stems from a pure vertical indentation
is not necessarily vertical, as a consequence of the material
deformation (although the vertical component generally has
the largest magnitude).

The normal and shear force distributions are discretized by
summing the respective nodal forces inside n surface bins,
as shown in Fig. 7. The resulting 3D force for each of these
bins is used as a ground truth label with 3×n components for
each data point.

This procedure is applied to assign ground truth labels to
the 13,448 indentations described in the previous subsection.
Since there are no readily available sensors that measure the
full contact force distribution with high spatial resolution
and without altering the sensor’s soft surface, the quality
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TABLE 2. Total force agreement (FEA vs F/T sensor).

of the labels is evaluated by comparing the components of
the total force resulting from the FEM simulations with the
ones measured by the F/T sensor. Note that the total force
components can be obtained from the FEM simulations by
summing the contact force values of all the n bins, or simply
summing the force values at all nodes of the surface mesh
used for the FEA. The resulting root-mean-square error on
the ground truth (RMSEGT) for the entire dataset is reported
in Table 2 for each component. x and y are the horizontal
axes, and z is the vertical axis, which is positive pointing
from the camera towards the top surface. The resulting errors
are comparable to the F/T sensor’s resolution, shown in the
table as a reference. In Fig. 8, the plots show the agree-
ment on the z component of the total force between the
F/T sensor’s readings and the results from the FEA for two of
the indentation locations. The good agreement between the
F/T measurements and the FEM simulations further justifies
the simplifying assumptions taken in the material character-
ization and the FEM modeling. Additionally, the same plots
show that using a linear elastic material model and neglecting
geometric nonlinearities (i.e., NLgeom flag in Abaqus) lead
to a considerable performance loss for large deformations.

Although the FEM simulations can be time consuming to
carry out, depending on the accuracy required, most of the
operations are highly parallelizable, as for example, the sev-
eral indentations. This makes it possible to exploit cluster
computers or GPUs to reduce the time consumption. The
simulations presented here are carried out on the Euler cluster
of ETH Zurich.

Note that the strategy presented above provides the ground
truth for the full contact force distribution under no assump-
tions on the specific tactile sensing technique. It is therefore
not limited to use on vision-based devices, but more generally
on data-driven approaches to the force reconstruction task.

V. NEURAL NETWORK TRAINING
A. LEARNING ARCHITECTURE
A feedforward DNN architecture (see Fig. 9) is used to
address the supervised learning task of reconstructing the full
contact force distribution from the features extracted from the
images. An input layer with 2×m units represents the image
features described in Section IV-A (a tuple of averaged optical
flow magnitude and direction for each of the chosen image
regions). Similarly, an output layer with 3×n units represents
the discretized force distribution applied to the surface of
the sensor (a three-dimensional force vector for each of the
discrete surface bins).

Three fully connected hidden layers with a sigmoid activa-
tion function are used to model the map between the inputs

FIGURE 8. The plots above show the agreement on the total vertical
contact force between the measurements obtained from the F/T sensor
(in blue) and the FEM simulations (in red). The results from the
simulations are accurate for indentations at the center of the surface (a)
and close to the corners (b) (5 mm from each of the edges) for different
indentation depths. The F/T sensor readings are shown with ±0.06 N
bars, representing the resolution of the F/T sensor. In green, the results
obtained using a linear elastic model (as opposed to the hyperelastic
model described in Section III) and neglecting geometric nonlinearities
are shown.

FIGURE 9. A diagram of the learning architecture used to predict the
3D contact force distribution. In yellow the input layer, representing the
image features, in cyan the hidden layers, and in magenta the output
layer, representing the discretized force distribution.

and the outputs. Dropout layers are used after each of the
hidden layers during the training phase. Twenty percent of
the dataset is used as a test set, while the remaining data are
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FIGURE 10. The plots above show the predicted (left) and ground truth (right) 3D contact force distribution applied to the top surface of the
tactile sensor for an indentation in the test set. Note that the axes are defined as in Section IV, that is, with two perpendicular horizontal axes x
and y , aligned with two of the top surface edges, and a vertical axis z , which is positive pointing from the camera towards the top surface.

used for training. The architecture is trainedwith PyTorch1 by
minimizing the mean squared error (MSE) through the Adam
optimizer, see [36]. The remaining parameters chosen for the
optimization, as well as the size of each layer, are summarized

1www.pytorch.org

in Table 3. Note that the spatial resolution of the tactile sensor
is determined by the size of the surface bins, which have
a side of 1.6 mm, comparable to the spatial resolution of
the human fingertip [37]. However, a finer resolution may
yield additional discrimination capabilities, i.e., for sensing
an object’s roughness or texture.
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FIGURE 11. Similarly to Figure 10, the plots above show the predicted (left) and ground truth (right) 3D contact force distribution applied to the
top surface of the tactile sensor for an indentation in the test set. In this case, the indentation was centered at 5 mm from the top and right
edges, with the indenter’s radius being 5 mm. It can be noted a larger asymmetry in the force distribution, affected by the stiffer edges of the gel.

In contrast to architectures that directly learn from the
pixels (e.g., convolutional neural networks), the extraction
of the optical flow features described in Section IV-A yields
a relatively shallow model, reducing the training times and
the data requirements. Additionally, the use of these features
makes it possible to efficiently transfer the model across
different sensors, as shown in previous work [21]. However,

these features do not exploit the information about particles
placed at different distances from the camera.

B. RESULTS
After training, the quality of the DNN predictions is evaluated
on the test set. Additionally to the root-mean-square error
(RMSE) on the entire test set, the sparse RMSE on the

173446 VOLUME 7, 2019



C. Sferrazza et al.: Ground Truth Force Distribution for Learning-Based Tactile Sensing: Finite Element Approach

TABLE 3. DNN parameters.

TABLE 4. Resulting errors on force distribution and total force.

non-zero values of the FEM ground truth is also computed
as

RMSES :=

√√√√ 1
|I|

∑
(i,l)∈I

(
f (l)i − f̂

(l)
i

)2
,

where f (l)i and f̂ (l)i are the i-th components of the ground truth
and the predicted label, respectively, for the l-th sample in the
test set, and,

I :=
{
(i, l)∈{0, . . . , 3n− 1}×{0, . . . ,Nset − 1} | f (l)i 6= 0

}
,

with Nset the number of samples in the test set. This metric
emphasizes the prediction performance in the location where
the contact is expected.

Moreover, the RMSE on the total force is estimated for
both the cases, in which the ground truth is provided either
by the FEM simulations (RMSETFEM) or the F/T sensor
(RMSETF/T). The resulting errors from the predictions on the
test set are summarized in Table 4 for each axis. The values
in the last row are affected by both the errors introduced by
the FEM modeling and the DNN predictions. Note that it
is only possible to compute the metrics for the force distri-
bution (first two rows) in relation to the FEM simulations
(the F/T sensor only provides total forces, without specific
information about the force distribution). As a reference,
the ranges of force provided by the ground truth labels are
summarized in Table 5. Examples of the predicted contact
force distribution are shown in Fig. 10 and Fig. 11.
The resulting DNN is deployed on the dual-core lap-

top computer introduced in Section I. The entire pipeline
yields real-time predictions on an image stream of 40 frames
per second, as shown in the experiments available in the
video attached to this article. The parallelization of both
the optical flow algorithm and the neural network predic-
tion step is not exploited here, but it may be leveraged
on commercially available embedded computers provided
of GPUs.

TABLE 5. Range of ground truth forces.

FIGURE 12. Uniaxial tension (UA) tests showing (a) strain-rate and
(b) shelf-time (aging) dependence on the mechanical properties of
Ecoflex GEL.

VI. CONCLUSION
This article has presented a strategy to provide ground truth
contact force distribution for learning-based tactile sensing.
The approach has been evaluated on a vision-based tactile
sensor, which is based on tracking particles spread within a
soft gel. After the characterization of the hyperelastic materi-
als, which provides accurate material models for FEA, a large
number of real indentations and corresponding simulations
have been performed to generate a dataset that includes image
features and ground truth for the 3D contact force distribu-
tion. Although the material characterization was performed
with considerably different tests and setup (i.e., UA, PS,
EB tests) than the indentations considered in the evaluation,
the total forces recorded in the experiments are comparable
to the ones determined in simulation, showing the general-
ization potential of the approach proposed. Note that due
to the fact that the simulation labels are assigned to real
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data obtained from experimental indentations, the experimen-
tal setup needs to be carefully arranged. As an example,
the alignment of the tactile sensor with the reference axes of
the milling machine used for the data collection is crucial for
obtaining good performance.

As shown in Section V, the dataset generated with the
strategy proposed in this article can be used to train a DNN
for accurate reconstruction of the force distribution applied
to the surface of the tactile sensor. Although in these experi-
ments the DNN has been trained and evaluated on a sample
indenter, the techniques presented here are directly appli-
cable to generic shapes and indentations, including multi-
ple and distinct contact areas. However, this would likely
require the collection of a dataset under various contact condi-
tions, involving interactions with complex objects. Therefore,
the generalization capabilities of this strategy will be object
of future work.

APPENDIX
STRAIN-RATE AND SHELF-TIME DEPENDENT
PROPERTIES OF ECOFLEX GEL
The additional experimental data on the rate-dependence and
the aging effect on the mechanical behavior of the Ecoflex
GEL are shown in Fig. 12. While the strain-rate depen-
dence remains relatively low over the three decades analyzed
(Fig. 12a), a significant stiffening after 9 weeks of storage at
room temperature is evident due to material aging (Fig. 12b).
Longer curing times and higher curing temperatures may
be used to approach the final, curing-independent material
properties [28], [29].
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