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ABSTRACT Simultaneously locating multiple sources passively in the wireless sensor networks (WSN) is
challenging in the internet of things (IoT) applications, where reducing the computation and communication
load is of great importance due to the requirement on real-time processing and the energy constraint. This is
especially true when the number of sources or the number of sensor nodes is large. In this paper, a localization
algorithm to estimate multiple sources’ positions in the three-dimensional space is proposed. With the
direction-of-arrival (DOA) estimates for multiple sources obtained at each sensor node, it is crucial to
discriminate which estimate corresponds to which source. To save the computation resources, a classification
method based on the genetic algorithm is proposed to handle the multiple sources. A fitness function is
designed to assess the clustering of the DOA estimates. Extensive simulations are carried out to analyze
the algorithm performance under the various settings. Numerical examples show that the proposed method
could lower the computational burden by orders of magnitude compared to the conventional method, without
significantly sacrificing the estimation accuracy.

INDEX TERMS Direction-of-arrival, genetic algorithm, multiple sources localization, triangulation, wire-
less sensor network.

I. INTRODUCTION
Wireless sensor networks (WSN) have been widely applied
in both civilian and military applications, especially with the
advancement of internet of things (IoT) in recent years. The
data obtained by the sensors are informative only when
the physical locations are associated. As many applications
demand the awareness of source positions, the localization
of unknown sources with the WSN has drawn vast of atten-
tions. Unlike many conventional WSN implementations of
locating only a single source, the application scenarios of
IoT usually require to locate multiple passive sources in
three-dimensional space simultaneously. Extending the local-
ization to handle multiple sources is nontrivial, as many
existing methods for single source localization would fail
to work. One should be noted that many previous works in
the literature, such as [19], [25], [24], [27], [33], and [34],
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discuss the self-localization problem where the to-be-located
sources are cooperative sensor nodes in the WSN. This is
fundamentally different from the concern of this paper. In sce-
narios such as maritime surveillance, aerospace tracking,
biotic herd monitoring, and etc, the interested sources are
often non-cooperatively ‘‘passive’’ sources, providing barely
any prior knowledge or cooperation to the WSN. Another
common feature in the IoT applications is the large number of
deployed sensor nodes, which would result heavy computa-
tion burden and energy consumption for data fusion. In such
scenarios, the localization task becomes even more chal-
lenging. To efficiently and reliably locate multiple sources
becomes an extremely appealing task, which is not fully
explored in the literature [32].

Depending on the measurements, the conventional local-
ization algorithms for multiple sources in the literature
can be roughly classified into the following categories:
(1) the Global Positioning System (GPS) [4], (2) the directly
received data [2], [6], [22], [26], [28], (3) the received signal
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strength (RSS) [10], [8], [17], [23], [29], (4) the time-of-
arrival (TOA) or the time-difference-of-arrival (TDOA) [30],
[35] and (5) the direction-of-arrival (DOA) [18], [36]. For a
more detailed survey on the existing methods, one may refer
to [12], [14], and [32].

The GPS method is well known for its high accuracy in
localization. However, the GPS may be inapplicable to many
IoT scenarios because it is energy consuming and inefficient
in enclosed environment such as indoor and tunnel. The
localization scheme based on directly received data usually
involves either maximum likelihood estimation (MLE) [2],
[6], [22] or steer response power (SRP) evaluation [26], [28],
both resulting huge communication load at the sensor nodes,
as well as the heavy computation load at the fusion center. The
RSS based methods are simple and economic as no auxiliary
hardware is required at each sensor node. However, the RSS
based methods often depend on the prior knowledge of the
attenuation model of the propagation channel which may not
be available in applications. Moreover, many RSS methods
are either uncompetitive to handle multiple sources [31],
or involving sophisticated iterative algorithms unsuitable for
IoT applications [10], [8], [17], [23], [29]. The TOA/TDOA
based methods generally provide reasonable high accuracy of
localization. But their performances severely degrade when
locating multiple sources. It also requires critical time syn-
chronization between the sensor nodes. The DOA based
methods often work in a semi-distributed manner, which
is efficient for communication between the sensor nodes,
requiring neither the channel parameters nor the inter-node
synchronization. The major problem is that they are tradition-
ally considered power hungry with large dimensions, because
the sensor array is usually attached to each node. Fortunately,
the directional sensor nodes nowadays can be compactly and
economically implemented thanks to the recent development
of the micro-electromechanical systems (MEMS) [11], [13],
[15], [16].

Recently, an efficient multiple sources localization scheme
is proposed in [36]. With all the DOA estimates obtained at
the sensor nodes, a classification process is proposed to asso-
ciate each estimate with the corresponding source. This clas-
sification is modeled as an optimization problem, and solved
by the brute force search in the sense of least square error
(LSE). However, the computation load of [36] dramatically
increases as the number of nodes/sources increases. To solve
this problem, a data fusion strategy is proposed in this work.
By taking into account the statistical distribution of the DOA
estimates at the sensor nodes, a classification procedure is
formulated using the essentials of an evolutionary process,
and optimized in the paradigm of genetic algorithm. After
the DOA classification, the multiple sources can be simulta-
neously located in the three-dimensional space. Unlike that
[36] is capable of finding the global optimum of the clas-
sifications on the DOA estimates, the proposed method is
suboptimal due to the nature of the genetic algorithm. Thus,
[36] is utilized as a benchmark of estimation accuracy to the
proposed algorithm. The numerical comparison shows that

the proposed localization method has orders of magnitude
lower computational burden, without severely sacrificing the
estimation accuracy.

Another advantage is, the proposed localization algorithm
would not put challenge on the WSN’s energy consump-
tion and control overhead, since the computation in the pro-
posed scheme is centralized. The DOA classification and the
sources localization are implemented at the data process-
ing center, but not at the sensor nodes. Only a few scalars
(the DOA estimates) instead of the raw data are required
to be transmitted, which greatly reduces the communication
load between the sensor nodes and the center. The proposed
localization algorithm is not directly related to the general
definitions of the network lifetime, such as the sensor node
failure, power consumption, coverage, connectivity and etc,
though the aforementioned metrics could be important in
practice.

The following parts of this paper are organized as follows.
Section II formulates the problem and data model. Section III
proposes a DOA classification method based on genetic algo-
rithm to handle multiple sources. Section IV proposes the
localization method with the results obtained in Section III.
Section V summarizes the proposed algorithm. Section VII
presents the numerical examples showing the efficacy of the
proposed method. Section VIII concludes the paper.

II. PROBLEM FORMULATION
Assume M sensor nodes locating at pm = [xm, ym, zm]T for
m = 1, . . . ,M , and L sources locating at q` = [x`, y`, z`]T

for ` = 1, . . . ,L. Define the unitary direction vector pointing
from pm to q` as um,`, with the elevation angle θm,` ∈ [0, π]
measured from the positive z-axis, and the azimuth angle
φm,` ∈ [0, 2π ) measured from the positive x-axis, as shown
in Figure 1. Thus, the unitary direction vector from the m-th
sensor to the `-th source can be represented as

um,` = [sin θm,` cosφm,`, sin θm,` sinφm,`, cos θm,`]T . (1)

Suppose that each sensor node in the WSN is capable of
estimating the DOA of the L sources with respect to itself.1

With multiple independent measurements, the estimates of
the elevation angle and the azimuth angle can be modeled as{

θ̂m,` = θm,` + nθ
φ̂m,` = φm,` + nφ,

(2)

where nθ ∼ N (0, σ 2
θ ) and nφ ∼ N (0, σ 2

φ ) are angular errors
modeled as zero mean Gaussian random variables [5], [20],
with variances σθ � π

2 and σφ � π , respectively.
Inserting θ̂m,` and φ̂m,` into (1), the estimates of the unitary

direction vector ûm,` can be obtained. The estimated DOA

1The DOA estimates can be obtained by direction finding with sensor
array at each sensor node [15], [18], or by measuring the received signal
strength with directional sensor [16], [21]. To avoid the unnecessary distrac-
tion, the exact estimator used at each sensor node is not within the scope of
our current investigation, as it does not affect the proposed algorithm.
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FIGURE 1. L sources and M sensor nodes in the three dimensional
Cartesian coordinates system.

of q` with respect to pm can be defined by a directional ray{
pm, ûm,`

}
. The objective is to estimate all source positions

q̂`, given the M × L directional rays
{
pm, ûm,`

}
, where

m = 1, . . . ,M , and ` = 1, . . . ,L.

III. DOA CLASSIFICATION WITH GENETIC ALGORITHM
In the noiseless case, there would be M directional rays{
pm, ûm,`

}
,∀m intersecting exactly at the source locations

q`, for each of the specific `. In the noisy case, theseM direc-
tional rays are generally skew in the three dimensional space.
Despite not intersecting, they would likely be close to each
other around the source, if the signal to noise ratio (SNR)
is sufficiently high. Thus, correctly deciding the M direc-
tional rays associated with q` is essential to locating the
sources.

To classify all the M × L directional rays into L groups,
each containing M directional rays starting at M sensor
nodes, there are LM possible classifications in total. To find
the correct classification of directional rays associated with L
sources, [36] traverses all possible classifications with a cost
function in the sense of LSE. Since the number of possible
classifications increases exponentially against the number of
sensor nodes M , this method could result huge computation
load.

Proposed in this Section is a classification process based
on the genetic algorithm. The genetic algorithm is well
known as a probabilistic search method suitable to a variety
of combinatorial optimization problems by simulating the
natural evolutionary process [1]. The individuals who are
more successful in adapting to the environment will have
a better chance to survive during the population evolution.
On the other hand, the individuals who are not adapted to
the environment will be eventually eliminated. The genes of
the highly fit individuals will spread to a large amount of
descendants, such that the whole population will finally be
more adapted to the environment.

The aforementioned directional rays classification prob-
lem is formulated with the paradigm of genetic algorithm
using the following essentials.

A. ENCODING
Define an L-nary code of M bits, i.e., a chromosome, as

c , [[c]1 , [c]2 , · · · , [c]M ]T , (3)

where the m-th bit [c]m ∈ {1, . . . ,L} represents the direc-
tional ray

{
pm, ûm,[c]m

}
.

For some specific [c]1 = `, listing all possible c as columns
defines an M × LM−1 chromosome matrix

C` ,


` ` . . . ` `

1 1 . . . L L
...

...
...

...
...

1 2 . . . L − 1 L


M×LM−1

, (4)

where each column ofC` is called an individual, carrying the
indexes of M directional rays.
In the above C`, the number ` on the first row signifies

the current source of interest for DOA classification. Through
the algorithm described in the later Sections III-B to III-E,
this [c]1 = ` should remain unchanged, unless the source of
interest changes. Initially, one could assume [c]1 = 1 without
loss of generality.

B. FITNESS
To assess the closeness ofM directional rays indexed specif-
ically by c, the following fitness function is proposed

f (c),

w1

M∑
i=2

d([c]1 , [c]i)︸ ︷︷ ︸
,61

+w2

M∑
i=2

M∑
j=i+1

d([c]i , [c]j)︸ ︷︷ ︸
,62



−1

,

(5)

where w1 + w2 = 1, w1,w2 ∈ [0, 1] denote the weights of
the two summation terms 61 and 62. In equation (5),

d([c]i , [c]j) , min
∥∥∥ (pi + kiûi,[c]i)− (pj + kjûj,[c]j) ∥∥∥,

i 6= j, subject to ki ≥ 0 & kj ≥ 0 (6)

denotes the minimum distance between the directional rays{
pi, ûi,[c]i

}
and

{
pj, ûj,[c]j

}
. ‖·‖ signifies the Euclidean norm.

In equation (6), the constraints ki ≥ 0 and kj ≥ 0 guarantee
the distance is between two rays. Without these constraints,
d([c]i , [c]j) becomes the conventional definition of distance
between two lines.

The M directional rays indexed by a chromosome c can
be divided into two groups: (i) a single directional ray from
the first sensor node, i.e.,

{
p1, û1,[c]1

}
, and (ii) the other

M−1 directional rays. On the right hand side of equation (5),
the first summation term 61 calculates the sum of distances
between (i) and each of (ii), assessing how close (ii) is to
(i). The second summation term 62 calculates the sum of
distances between all possible pairs of the directional rays in
(ii), assessing the ‘‘closeness’’ of the M − 1 directional rays
in (ii).
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From equations (5) and (6), 61 depends on the accuracy
of the DOA estimate û1,[c]1 at the first sensor node, while
62 does not. If w1 > w2, f (c) would be more likely to
depend on the directional ray

{
p1, û1,[c]1

}
, thus the estimation

error of û1,[c]1 . On the other hand, if w1 < w2, f (c) would
be more likely to depend on the rest of M − 1 directional
rays. Thus, different weighting strategy can be applied. For
example, by setting w1 = w2 =

1
2 , equation (5) degenerates

to f (c) = 2(61+62)−1 = 2
[∑M

i=1
∑M

j=i+1 d
(
[c]i , [c]j

)]−1
,

which puts identical weight on each of the M directional
rays and has the highest computational complexity. By setting
w1 = 1 and w2 = 0, equation (5) degenerates to f (c) = 6−11 ,
which weighs more on

{
p1, û1,[c]1

}
and has the lowest com-

putational complexity. How the weighting strategy affects
the proposed algorithm will be discussed in more details in
Section VII-B.

C. SELECTION
Randomly selecting K ≤ LM−1 individuals (columns) from
C` in (4), denoted as c1, . . . , cK , form a generation of chro-
mosomes, whose corresponding fitness f (ck ) can be obtained
by equation (5). Define the selection probabilities as

p(ck ) ,
f (ck )∑K
k=1 f (ck )

, k = 1, . . . ,K (7)

Thus, each individual ck survives to the next generation with
the probability p(ck ). This can be implemented by roulette
wheel selection [3] using a random variable with uniform
distribution, i.e, η ∼ U [0, 1]. The next generation of individ-
uals are selected by performing the following selection for K
times:

ck ′ =



c1, 0 ≤ η ≤ p(c1)
...

ck ,
∑k−1

i=1
p(ci) < η ≤

∑k

i=1
p(ci)

...

cK ,
∑K−1

i=1
p(ci) < η ≤ 1

. (8)

Note that performingK times of the above selection results
K (not necessarily distinct) individuals.

D. CROSSOVER
After selection, pairs of the parent chromosomes c(par)i and
c(par)j , randomly recombine (crossover) with probability α,

to generate two offspring chromosomes c(off)i and c(off)j as
follows {

c(par)i =
[
[ci]1 , · · · , [ci]a , · · · , [ci]M

]T
c(par)j =

[[
cj
]
1 , · · · ,

[
cj
]
a , · · · ,

[
cj
]
M

]T
⇓{

c(off)i =
[
[ci]1 , · · · ,

[
cj
]
a , · · · ,

[
cj
]
M

]T
c(off)j =

[[
cj
]
1 , · · · , [ci]a , · · · , [ci]M

]T
,

(9)

where a ∈ {2, . . . ,M} is randomly selected with equal proba-
bility, indicating the position of crossover in the chromosome.

E. MUTATION
After crossover, each of the K individuals randomly alter-
nates a single bit with probability β as follows, which is
known as mutation,

c(par)i =
[
[ci]1 , · · · , [ci]b , · · · , [ci]M

]T
⇓

c(off)i =
[
[ci]1 , · · · , [ci]

′
b , · · · , [ci]M

]T
, (10)

where [ci]′b 6= [ci]b, and b ∈ {2, . . . ,M} is randomly selected
with equal probability, indicating the position of mutation in
the chromosome.

F. SUMMARY
With the initial K individuals as the first generation,
the genetic algorithm applies selection, crossover, and muta-
tion iteratively, until some preset number of iterations I
is achieved. The generated individuals in each iteration is
known as a new generation. After the last generation of indi-
viduals are obtained, the individual with the greatest fitness
is regarded as the optimized solution, i.e.,

copt = arg
ck

max {f (ck )} , for k = 1, . . . ,K . (11)

The steps of DOA classification with genetic algorithm is
summarized in Table 1.

TABLE 1. Summary of DOA classification steps with genetic algorithm.

IV. MULTIPLE SOURCES LOCALIZATION
With the initialization of [c]1, applying the algorithms in
Sections III results only one group of classified directional
rays steering to a single source of interest. To locate all L
sources in the space, the aforementioned procedure should
be carried out iteratively for L times.

For one specific copt obtained in (11), it corresponds to M

directional rays
{
pm, ûm,[copt]m

}
, where m = 1, . . . ,M . The

least square estimate of the corresponding source position can
be obtained by [7], [9]

q̂ =
(
MI− ÛÛT

)−1
Aw (12)
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FIGURE 2. The flow chart of the proposed multiple source localization
algorithm.

where I is the identity matrix with compatible size, Û =[̂
u1,[copt]1 , · · · , ûM ,[copt]M

]
, w = [1, · · · , 1︸ ︷︷ ︸

M

]T , and

A =
[(

I− û1,[copt]1

(̂
u1,[copt]1

)T)
p1, · · · ,(

I− ûM ,[copt]M

(̂
uM ,[copt]M

)T)
pM

]
.

V. OVERVIEW OF THE PROPOSED ALGORITHM
Concluding Sections III to IV, the proposed multiple sources
localization algorithm is summarized in Figure 2.

VI. PERFORMANCE METRICS
A. ANGULAR ERROR
The direction vector um,` from the m-th sensor node to the
`-th source is modeled in equation (1), and its estimate is
defined as ûm,` in Section II. The angular error of um,` and
ûm,` can be thus defined by their in-between angle:

ψm,` , arccos
(
uTm,`ûm,`

)
= arccos

(
sin θm,` cosφm,` sin θ̂m,` cos φ̂m,`

+ sin θm,` sinφm,` sin θ̂m,` sin φ̂m,`

+ cos θm,` cos θ̂m,`
)

= arccos
[
sin θm,` sin θ̂m,` cos(φm,` − φ̂m,`)

+ cos θm,` cos θ̂m,`
]

= arccos

[
cos(θm,` − θ̂m,`) cos2

(
φm,` − φ̂m,`

2

)
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FIGURE 3. ψm,` (as the vertical axis) against nφ and nθ (as the horizontal
axes).

+ cos(θm,` + θ̂m,`) sin2
(
φm,` − φ̂m,`

2

)]
= arccos

[
cos(nθ ) cos2

(nφ
2

)
+ cos

(
2θm,` + nθ

)
sin2

(nφ
2

)]
, (13)

where the fourth equality in (13) holds due to the trigonomet-
ric identities, nθ and nφ defined in equation (2). Apparently,
the realization of ψm,` depends on three degrees of freedom:
θm,`, the realization of nφ , and the realization of nθ . For
specific θm,`, Figure 3 plots ψm,` in equation (13) against nφ
and nθ . It is intuitive thatψm,` increases as nφ or nθ increases.
Note that ψm,` is random due to the random variables

nθ and nφ . The statistics of ψm,` can be hardly obtained
in closed-form because of the complexity of equation (13).
Alternatively, the average level of direction vectors’ angular
errors can be numerically assessed by the standard deviations
of ψm,`,∀m,∀`

σψ ,
1
ML

∑
m,`

Std
{
ψm,`

}
. (14)

B. LOCALIZATION ERROR
For the `-th source, define the absolute localization error as
the Euclidean distance between the source’s true location and
its estimate, i.e., 1` = ‖q̂` − q`‖. This absolute localization
error may not be the best metric to assess the localization
performance, because it depends on the distances from the
sensors to the source, with even the same level of angular
errors in (2).

To account for the spatial dimension that spanned by the
`-th source and all the M sensors, the average source-sensor
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distance is defined as d̄` , 1
M

∑M
m=1 ‖pm−q`‖. The relative

localization error is then suggested as δ` , 1`/d̄`, for
` = 1, · · · ,L. By considering all the L sources, the average
relative localization error is proposed as

δ̄ ,
1
L

L∑
`=1

δ` =
1
L

L∑
`=1

1`

d̄`

=
1
L

L∑
`=1

‖q̂` − q`‖
1
M

∑M
m=1 ‖pm − q`‖

. (15)

Since the metric δ̄ is a random variable due to the random
estimator q̂`, N times independent Monte Carlo runs can be
performed to evaluate the statistical average of δ̄.

VII. NUMERICAL RESULTS
A. PROPOSED ALGORITHM V.S. [36]
The proposed multiple sources localization method is based
on the following essentials:
(i) the DOA classification with the genetic algorithm in

Section III,
(ii) the close-form estimates of the multiple sources posi-

tions in Section IV.
To show the efficacy of multiple sources estimation,

the proposed algorithm is compared with the localization
strategy in [36], where the DOA classification in (i) is substi-
tuted by the sequential-search while (ii) remains unchanged.
Note that [36] searches for the global optimum of the

DOA classification, while the proposed genetic algorithm
guarantees only the suboptimal. Thus, in the noiseless case
the proposed algorithm would not generally outperform [36]
in terms of localization accuracy. In other word, [36] would
readily serve as a benchmark for the proposed algorithm’s
accuracy.

In the simulations, M = 6 sensor nodes are deployed,
with L = 15 sources distributed in the space. The spatial
locations of the sensor nodes and the sources are summarized
in Table 2. The proposed DOA classification with genetic
algorithm has the parameters ofK = 300, α = 0.7, β = 0.05,
I = 120, w1 = 0.8, and w2 = 0.2.

With the spatial positions of sensor nodes and sources
presented in Table 2, the proposed algorithm is evaluated

TABLE 2. Spatial locations of the sensor nodes and the sources.

TABLE 3. Localization statistics defined in Section VI-B, at σψ ≈ 0.4◦.

at the average angular error of σψ ≈ 0.4◦. 1`, d̄`, and δ`
defined in Section VI-B for all 15 sources are calculated and
summarized in Table 3. It can be seen that min{δ`} = 0.85%
and max{δ`} = 17.14%, which gives the average relative
localization error of δ̄ = 3.48%.

The proposed multiple sources localization algorithm
is compared with the sequential-search method in [36].
Figure 4a evaluates both algorithms’ localization accuracy.
The average relative localization error δ̄ against the standard
deviation of angular error σψ is shown with N = 100 Monte
Carlo runs. It can be observed that the proposed algorithm
results δ̄ ≤ 5% when σψ ≤ 0.5◦, which is only about
2 to 3 percentage points higher than the sequential-search
method. As σψ increases, δ̄ of both the proposed algorithm
and the sequential-search method increases. And the perfor-
mance gap between the two algorithms eventually decreases.

Figure 4b shows the average run time of the proposed
algorithm and the sequential-search method in [36], where
the simulations are conducted in a computer environment
with Microsoft Windows 10.0.17134 operation system, Intel
Core i7-8700 CPU @ 3.20GHz, and 24GB memory. It is
shown that the run time of the proposed algorithm maintains
a low level of around 6 seconds, which is only 22.2% of the
sequential-search method’s run time of roughly 27 seconds.

Figures 4a and 4b together indicate that the proposed
algorithm greatly reduces 77.8% of the computation load by
yielding no more than 3% of the localization accuracy.

B. FITNESS FUNCTION ON w1 AND w2
The fitness function (5) in Section III-B is designed as a
weighted sum of 61 and 62. Note that 61 assesses the
closeness between a single directional ray

{
p1, û1,[c]1

}
and

the rest M − 1 directional rays
{
pm, ûm,[c]m

}
where m =

2, 3, . . . ,M . On the other hand, 62 assesses the closeness of
the rest M − 1 directional rays only. In this Section VII-B,
numerical examples are shown to demonstrate the proposed
algorithm’s performance against different weighting strategy.
With the sources and sensor nodes described in Table 2,

Figure 5a illustrates the localization performance of the pro-
posed algorithm depending on various weighting strategies
where the other algorithm parameters remain the same as
in Figures 4a and 4b. As w1 gets larger from w1 = 0.5 to
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(a)

(b)

FIGURE 4. (4a) Estimation accuracy assessment in terms of δ̄, where
L = 15, M = 6, K = 300, α = 0.7, β = 0.05, I = 120, w1 = 0.8, w2 = 0.2,
and N = 100. (4b) Computational complexity assessment in terms of
algorithm time, where L = 15, M = 6, K = 300, α = 0.7, β = 0.05, I = 120,
w1 = 0.8, w2 = 0.2, and N = 100.

w1 = 0.9, it can be observed that the localization accuracy
improves as the overall level of δ̄ decreases. The improvement
is especially significant when σ̄ψ is relatively small (due
to the weaker angular noise). This is intuitive, because the
larger w1 means 61 is more dominant in (5), which helps to
better classify the directional rays corresponding to the source
concerned.

Comparing to the other values of w1, the blue curve with
w1 = 1 shows a steeper increasing trend of δ̄ as σ̄ψ increases.
It implies that the localization accuracy with w1 = 1 is more
sensitive to the angular noise than the other weights. Note that
the fitness function in (5) degenerates to f (c) = 6−11 when
w1 = 1. The absence of 62, which reflects the closeness
of the rest of M − 1 directional rays, may cause the fitness
being more vulnerable to the noise, thus less robustness of
the algorithm.

FIGURE 5. (5a) Estimation accuracy assessment in terms of δ̄, where
L = 15, M = 6, K = 300, α = 0.7, β = 0.05, I = 120, and N = 100.
(5b) Computational complexity assessment in terms of algorithm time,
where L = 15, M = 6, K = 300, α = 0.7, β = 0.05, I = 120, and N = 100.

Figure 5b compares the average run time of the proposed
algorithm with different weighting strategy. From w1 = 0.5
to w1 = 0.9, the algorithm time does not vary much. On the
other hand, the run time for w1 = 1 is about 33% lower than
the other weights. This is reasonable, because the computa-
tion of (5) for w1 = 1 can be significantly reduced due to the
absence of the double summation term 62.

Figures 5a and 5b together indicate that, the weighting
strategy with w1 = 0.9 may be a good choice to offer robust
and accurate localization estimates comparing to the other
weights.

C. ALGORITHM PERFORMANCE AGAINST THE
NUMBER OF SOURCES
Figures 6a and 6b compare the proposed algorithm with
the sequential-search method in [36], against the number of
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TABLE 4. Spatial locations of the sensor nodes and the sources.

TABLE 5. Spatial locations of the sensor nodes and the sources.

sources L increasing from 5 to 33. The sources are randomly
distributed inside a sphere with radius of 25 meters centering
at [50, 50, 50]T . For K = 50, 100 and 200, M = 5 sensor

FIGURE 6. (6a) Estimation accuracy assessment in terms of δ̄, where
M = 5, α = 0.7, β = 0.05, I = 120, w1 = 0.9, w2 = 0.1 and N = 100. (6b)
Computational complexity assessment in terms of algorithm time, where
M = 5, α = 0.7, β = 0.05, I = 120, w1 = 0.9, w2 = 0.1 and N = 100.

nodes are used with the genetic algorithm parameters of
α = 0.7, β = 0.05, I = 120, w1 = 0.9, and w2 = 0.1.
The spatial locations of the sources and the sensor nodes are
shown in Table 4.

FromFigure 6a, δ̄ of bothmethods increases as L increases,
where the sequential-search method in [36] has the lowest
overall level of δ̄. However, as K increases from 50 to 200,
the proposed method eventually approaches [36]. The differ-
ence in δ̄ between the twomethods can be within 2% for all L.
From Figure 6b, the run time of the proposed method

increases as L increases, but much more slowly than that of
[36]. When L ≥ 22, the proposed method with K = 50,
100 and 200 significantly outperforms the sequential-search
method in [36]. Moreover, as K increases from 50 to 200,
the overall run time of the proposed method increases, which
reflects the cost of having the better localization accuracy
in Figure 6a.
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FIGURE 7. (7a) Estimation accuracy assessment in terms of δ̄, where
L = 5, α = 0.7, β = 0.05, w1 = 0.95, w2 = 0.05, K = 200 and N = 100. (7b)
Computational complexity assessment in terms of algorithm time, where
L = 5, α = 0.7, β = 0.05, w1 = 0.95, w2 = 0.05, K = 200 and N = 100.

D. ALGORITHM PERFORMANCE AGAINST THE NUMBER
OF SENSOR NODES
To assess proposed algorithm’s performance against network
scale, Figures 7a and 7b show the simulation results against
increasing number of sensor nodes from 5 to 50, for I =
100, 200, 300, 400 iterations. In this scenario, L = 5 sources
are to be located, where the proposed DOA classification
have the genetic algorithm parameters of α = 0.7, β = 0.05,
w1 = 0.95, w2 = 0.05, and K = 200. The spatial locations
of the sources and the sensor nodes are shown in Table 5.

From the simulation, the following insights can be drawn:
(i) From Figure 7a, δ̄ decreases and then increases as

M increases from 5 to 50. It implies that increas-
ing the number of sensor nodes may help, but not
always, to locate the multiple sources more accurately
to some extent. If M keeps increasing, δ̄ would even-
tually increases. This may be explained as follows.

AsM increases, the dimensions of chromosome matrix
in equation (4) increases dramatically. The invariant
setting of the genetic algorithmmay eventually become
ineffective to find the optimal solution. This phe-
nomenon implies that it is not the best to deploy as
many sensor nodes as possible.

(ii) For each curve in Figure 7a, a support range of M can
be found where δ̄ does not dramatically vary, implying
that the localization accuracy is relatively robust when
the network scale increases. For I = 100, 200, 300 and
400, this range is roughly M ∈ [5, 15], M ∈ [5, 25],
M ∈ [5, 30], and M ∈ [5, 30], respectively. This
support range reflects the network size with which the
algorithm is scalable.

(iii) Figure 7b shows that the run time monotonically
increases as M increases. This is intuitive because the
largerM means more summation terms to calculate the
fitness function in (5) and (6).

(iv) In Figure 7a, the overall level of δ̄ decreases and the
algorithm scalable range of M widens, as the number
of iterations I increases. This is reasonable, because
more iterations would increase the opportunity of the
genetic algorithm to find the optimum solution. As a
cost, more iterations results the heavier computation
burden and longer algorithm run time, which is illus-
trated in Figure 7b.

VIII. CONCLUSION
With the direction-of-arrivals estimates obtained at each sen-
sor node, proposed in this paper is a multiple sources local-
ization method in the WSN. A DOA classification method is
developed by using the genetic algorithm. The localization
performance is compared with the conventional sequential-
search method. Numerical results show that the proposed
algorithm greatly reduces the computation load, by yielding
little to the localization accuracy. The proposed algorithm has
the advantages of the low computational load and inter-node
communication burden, which could be especially suitable
for the IoT applications with a large number of sources and/or
sensor nodes.
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