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ABSTRACT Cloud computing is a novel paradigm, where the limitations of ubiquitous connected devices in
terms of computing, data access, networking and storage are solved through the use of cloud infrastructure.
The pervasive adoption of cloud computing results in a rising carbon footprint due to the high energy
consumption of computing servers. This negatively affects the environment and entails an associated increase
in electricity costs and consequently operational costs. Many works proposed scheduling algorithms using
software-centric power models in order to predict electric power consumption in underlying data centers and
to schedule cloud tasks so as to reduce energy consumption. Linear models which are based on the lowest-
and highest-power data points (referred to here as the ‘‘Power Endpoints Model’’ - PEM) and the simple
linear regression (SLR) model are the most used in the literature. However, these models have traditionally
been evaluated using different environments, experimental setups, workloads, and error calculation formulas.
In this paper, a unified classification and evaluation for these linear power models is presented, under
unified setup, benchmarking applications, and error formula with the main goal being to achieve an
objective comparison. A new powermodel is proposed, named Locally CorrectedMultiple Linear Regression
(LC-MLR), in order to increase prediction accuracy. A simulation framework for a cloud energy-aware
scheduler is introduced. The framework combines the Energy-Aware Task Scheduling on Cloud Virtual
Machines (EATSVM) with the LC-MLR power model, and facilitates performance measurement for cloud
data centers. The scheduler with the new power model increases energy efficiency without degrading the
qualities of service of the system. The workloads used for performance evaluation and comparisons in this
work are generated using a diverse set of applications. The results show that LC-MLR outperforms the
most-used models for simulation of power consumption of cloud data centers. The detailed performance
analysis is elaborated in the paper.

INDEX TERMS Cloud computing, data centers, energy-aware scheduling, energy efficiency, energy
simulation, green computing, linear least squares, power models.

I. INTRODUCTION
Cloud computing is an emerging technology enabling
on-demand access to a shared pool of configurable com-
puting resources, such as networks, servers, storage, appli-
cations and services. It can be rapidly provisioned and
released with minimal management effort or service provider
interaction [1]. It is envisioned that clouds will provide
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infrastructure and middleware for future smart cities appli-
cations [2]. Consequently, the cloud will be responsible for
handling real-time processing and analytics for an enormous
amount of streaming data from heterogeneous ubiquitous
Internet of Things (IoT) devices, and for managing smart
energy hubs [3]. The constantly expanding use of cloud com-
puting, with the associated growth in the size of datacen-
ters, makes energy consumption and related costs a critical
issue. According to the Natural Resources Defense Coun-
cil (NRDC) in the USA [4], data centers used about 91 billion
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kilowatt–hours of electrical energy in 2013, equivalent to
the output of 34 large coal fired plants. This is estimated
to reach 140 billion kWh by 2020, a 53% increase. The
associated expected annual electricity cost is $13 billion.
This will equate to about 100 million metric tons of carbon
pollution released into the atmosphere annually.

Energy consumption in data centers can be reduced
through deploying energy-efficient algorithms, modifying
hardware components architecture [5], using efficient power
supply options, designing measures for efficient air han-
dling [6] and cooling measures [6], [7]. In the various
energy-efficient algorithms, a power model is used to pre-
dict the power consumption of an application and/or to esti-
mate the energy consumed by a server after the execution
of an algorithm to assess the effectiveness of the algorithm
in achieving energy efficiency. Researchers proposed dif-
ferent power models for servers, based either on a server’s
hardware such as die temperature, fan speed, heat dissipa-
tion, voltage, current, capacitance, motherboard components,
and resistance [8]–[14] or its user-level utilization metrics
(CPU,memory, disk, and network) [15], [16], [25]–[34], [17],
[35]–[44], [18], [45]–[49], [19]–[24]. The hardware-based
power models require sensors to measure different vari-
ables on a server’s hardware. This adds in extra hardware
and energy consumption costs incurred by these sensors
attached to thousands of servers in a data center. However,
the software-based models do not require external sensors
to get the values of the model variables. These values are
reported by the server’s operating system as the perfor-
mance metrics adding no extra cost. Therefore, in this paper,
we focus on the software-based power models. These mod-
els are divided into 2 categories: 1) linear [15], [16], [25]–
[34], [17], [35]–[38], [43]–[48], [18], [49], [19]–[24], [50]
and 2) non-linear [17], [26], [39]–[42], [48]. A linear model
has a complexity of O(n) [51] compared to O(n2) for a
non-linear model [52]. In addition, a linear model has lower
latency compared to a non-linear one [51], [52]. Conse-
quently, we concentrate on the software-based linear power
models.

Most research on linear power models and energy
optimizations for servers propose models based on
the lowest- and highest-power data points (referred
to here as the ‘‘Power Endpoints Model’’ or simply
PEM) [15], [16], [27], [38], [43]–[49], [53], [17]–[24],
or models based on Simple Linear Regression (SLR)
[54], [25], [26], [28]–[31], to predict the amount of power
consumption. These models use CPU utilization as an inde-
pendent variable for power prediction. This is based on the
studies showing that server power consumption is highly
dominated by its CPU utilization compared to memory, disk,
and network utilizations [48]. However [32] validated exper-
imentally that memory, disk and network utilizations also
contribute to power consumption. Despite their adoption for
energy optimization, PEM and SLR have not yet been com-
pared using a unified environment and workload. The present
paper attempts to address this void. In addition, we propose

a Locally Corrected Multiple Linear Regression (LC-MLR)
power model that takes into account CPU, memory, disk
and network. LC-MLR, is an extension to the classical MLR
model aimed at improving the prediction accuracy. We exem-
plify our model in the context of a cloud computing data
center environment, but it is generic and can be applied in
any data center. We present a classification of linear power
models and a comparison between PEM, SLR and LC-MLR
models. We evaluate their performance in terms of standard
error of estimation between the actual power consumption
values and the predicted ones using those models. This is
done in a unified environment and experimental setup.We use
four different tools for the model building and validation and
five different applications for testing.

Energy-aware cloud VM placement and task scheduling
algorithms in cloud computing rely on power modeling for
energy prediction. Moreover, the desired energy efficiency
must be achieved while adhering to the Service Level Agree-
ments (SLAs) of the applications. An SLA is an agreement
between the service provider and the customer that identifies
the required levels of the services offered [55]. Therefore, it is
crucial to have a precise power model for more energy sav-
ings with the least violations of SLAs. To analyze the perfor-
mance of energy-aware scheduling algorithms in a cloud data
center, we introduce a simulation framework providing a pre-
cise power model and an energy-aware scheduler. We modify
our energy-aware scheduling algorithm Energy-Aware Task
Scheduling on Cloud Virtual Machines (EATSVM) [56] for
integration within the framework.

The major contributions of this paper are as follows:
1. We present a taxonomy of linear power models in the data

center energy consumptionmodeling literature. Theworks
on powermodeling are then classified into PEM, SLR, and
MLR techniques.

2. We propose a new power model, LC-MLR, to predict the
power consumption of single servers, which in multiple
experiments is found to be more accurate than the mostly
used linear power models. It is an extension to the classical
MLR model by adding an error correction term.

3. We evaluate the performance of the models by using a
diverse set of benchmarks and applications in a unified
experimental setup. The experimental results show that
the performance of LC-MLR is superior to that of PEM
and SLR, and that the precision of an energy-efficient
scheduler depends on the power model used. There is a
non-negligible impact of memory, disk, and network uti-
lizations on power consumption of CPU-intensive appli-
cations, which should be considered by power models for
more accurate prediction

4. We present a cloud energy-aware scheduler workflow.
We implement it by extending CloudSim [57], a simu-
lation framework for a cloud data center, with a model
builder and EATSVM scheduler to evaluate the power
models under study. The results show that LC-MLR has
the least standard error of estimation in both energy con-
sumption and SLA violations.

175004 VOLUME 7, 2019



L. Ismail, E. H. Abed: Linear Power Modeling for Cloud Data Centers: Taxonomy

5. We consider the impact of an increasing number of hosts
in a data center on the performance of the power models.

The remainder of the paper proceeds as follows. Section II
provides an overview of related literature. Section III synthe-
sizes a taxonomy of the power models which are based on
user-level server utilization metrics. Section IV presents our
new LC-MLR model. Section V describes the energy-aware
cloud system model used in this work, and an overall archi-
tecture andworkflow for energy-aware cloud scheduling. The
experimental setup, experiments and the performance evalu-
ation, in terms of standard error of estimation for LC-MLR
compared to the most used power models PEM and SLR are
presented in Section VI. Section VII concludes this paper
with lessons learned and possible future research directions.

II. RELATED WORKS
In this section, we provide an overview of related works on
energy-efficient scheduling strategies in data centers and the
power models used in data center design and/or operation.

A. CLOUD DATA CENTERS VM PLACEMENT AND TASK
SCHEDULING ALGORITHMS FOR ENERGY EFFICIENCY
There have been several research efforts aimed at
reducing energy consumption through virtual machine (VM)
consolidation/placement [43]–[45], [58]–[63] and task
scheduling algorithms [2], [20], [49], [64]–[69] in a
cloud data center. The works on those algorithms can be
classified into two categories: 1) energy-aware VM place-
ment [44], [45], [58]–[60], [62], [63] and task schedul-
ing [2], [20], [49], [64], [66], [68], [69] having power
consumption model as an integral part of the algorithms
equations, and 2) non-energy-aware VM placement [43, 61]
and task scheduling [65], [67], where the model is not part
of the algorithms equations, but is used to calculate the
power utilized by the underlying servers after the algorithm
is executed.

Concerning energy-aware algorithms, Beloglazov et al.
[45] proposed Modified Best Fit Decreasing (MBFD)
VM placement for energy optimization. MBFD places a
VM on a host where the increase in power consumption is
the least. Consequently, the algorithm consolidates the VMs,
making some servers idle. However, studies show that an
idle server consumes 50%-70% of the server’s maximum
power [48], suggesting that the number of idle servers should
be decreased for better energy efficiency. A similar approach
to MBFD was used by Sinha et al. [44] and Beloglazov and
Buyya [58] for the VM placement. In [60], Chowdhury et al.
address the issue of server consolidation based on Modified
Worst Fit Decreasing (MWFD), an algorithm which places
a VM on the host in which the increase in power consump-
tion is the maximum. MWFD showed more energy savings
than MBFD. Li et al. [62] proposed an energy-thermal-aware
VM placement algorithm to optimize both energy consump-
tion and SLA Violations (SLAVs). The algorithm places a
VM on a host satisfying the following 3 conditions: 1) the

increase in power consumption is the minimum, 2) the CPU
utilization is below a threshold, and 3) the cooling power
consumption required is the minimum. It requires sensors
to measure the temperature and a model for predicting the
increase in temperature. The proposed algorithm tends to
disperse the VMs over the data center to avoid having a
thermal hotspot and to optimize SLAVs. Ilager et al. [63]
use an algorithm to avoid this dispersion by consolidating the
VMs in a condition that there is no thermal hotspot. Their
results showed more energy savings than [62] but with more
SLAVs. Compared to MBFD [45] which consolidates the
VM, [63] has no thermal hotspot, saving more energy, and
has fewer SLAVs.

Lee and Zomaya’s Energy Conscious Task Consolida-
tion (ECTC) schedules an incoming task on a machine in
which the energy consumption to execute that task is the
minimum. It assigns the task to the server which has the max-
imum overlapping time between the incoming task and the
ongoing one(s) [20] aiming to maximize CPU utilization. The
algorithm considers only a homogeneous data center where
the execution time of the task is the same on all hosts. In our
previous works [2], [56], we extended the ECTC algorithm
to consider a heterogeneous data center, and the increase in
the execution time(s) of the ongoing task(s) due to overlaps
with the incoming task. Our results showed up to 35% of
energy savings compared to ECTC and a better application
performance in terms of execution time. Huai et al. [66] com-
pared the Power Best Fit (PBF) and the Load Balancing (LB)
algorithms for task scheduling. PBF schedules a task on the
server with the least increment in power consumption, while
LB, a non-energy-aware algorithm, distributes a task in a
way to maintain equal CPU utilizations of the servers. PBF
consumes more energy as it results in a bigger number of idle
servers than LB, because the latter avoids task consolidation.
Ying and Yu [64] propose a genetic algorithm to formulate a
bi-objective optimization problem for task scheduling. The
algorithm considers a fitness function for each server and
places the task on the server with the maximum fitness value.
The fitness function takes into account the power consump-
tion and the execution time of the task on each server.

Concerning non-energy-aware algorithms, Bagheri and
Zamanifar [43] address the issue of power consumption of
idle servers by consolidating the VMs on the active servers
and turning off the idle servers. However, the VM placement
algorithm does not consider the server’s turn-on and turn-off
time durations and their corresponding energy consumptions
and does not account for SLAVs. Farahnakian et al. [61] use
an ant colony approach to optimize both energy consumption
and SLAVs by reducing the number of VM migrations and
increasing the number of servers in the sleep state. A server in
sleep mode is switched on only when a VM cannot be placed
on the active servers due to the utilization requirements of the
VM. As in [66], Mehdi et al. [65] propose a load balancing
task scheduling algorithm. However, they consider the active
servers only as long as the task can be executed within
the required deadline. If the deadline cannot be satisfied,
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TABLE 1. Evaluation of past works on PEM and SLR power models.

then the task is scheduled on an idle server. Wu et al. [67]
consider both the energy and the SLAVs optimizations by
using the Dynamic Voltage and Frequency Scaling (DVFS)
technique. The algorithm places a task on a server where the
frequency required by the task lies between the minimum and
the maximum servers’ frequencies. The minimum ensures
the performance of the task, while the maximum prevents
server over-utilization. Singh et al. [68], [69] optimize both
the energy consumption and the SLAVs by using fuzzy logic.
Qureshi [49] propose a scheduling algorithm for applica-
tion workloads or tasks based on the Application Profiles
(APs). An AP includes the application’s arrival and comple-
tion times, the CPU and memory utilizations, and the power
consumption. Experimental results showed that for energy
efficiency there should be a tradeoff between the number of
VMs to execute an application and the application’s com-
pletion time. To improve the energy-efficiency the scheduler
considers running multi-tenancy of VMs on a single physical
server [70].

The works on energy-efficient VM placement and task
scheduling algorithms have focused on resource optimization
strategies that also reduce energy consumption. The algo-
rithms use power models either within the algorithm and/or
after its execution. However, the accuracy of these algorithms
depends on the power model used for power prediction. The
works on energy-efficient algorithms in the literature use
different power models. Next, we give an overview of power
models used to predict data centers energy consumption.

B. POWER MODELING FOR ENERGY EFFICIENCY IN DATA
CENTERS
Several recent research efforts have aimed at reducing energy
consumption in data centers at the circuit, processor, mem-
ory/storage, and server levels, as well as at the overall data
center level [71]. Power consumption models are pivotal
for designing and optimizing energy-efficient operations to
curb energy consumption in data centers. Several authors
have proposed various power models [71], either to be used
in simulation as a tool in designing energy-efficient data
centers [16], [25], [28], [32], [36], [42], [48], [72], [73], or for
server-level optimization [15], [17], [36], [37], [43], [45],
[48], [49], [59], [72]–[74], [20]–[25], [27], [32]. The

works on server-level optimization can be divided into two
categories: 1) hardware-based on the server’s die temper-
ature, fan speed, heat dissipation, voltage, current, capac-
itance, motherboard components, and resistance [8]–[14],
and 2) software-based, reflecting the server’s user-level
utilization metrics such as CPU, memory, disk, and
network [15], [16], [25]–[34], [17], [35]–[44], [18],
[45]–[49], [19]–[24]. The software-based models can
be divided into linear [15], [16], [25]–[34], [17],
[35]–[38], [43]–[48], [18], [49], [19]–[24] and non-
linear [17], [26], [39]–[42], [48] models. A non-linear model
has multiple local minima that usually require numerical
optimization algorithms for determining model parameters.
For a linear model, the sum of the squared error is a convex
function, allowing for a closed form equation; this may not be
the case for a non-linear model. For these reasons, the linear
models are less complex and consume less time compared to
non-linear models [51], [52], which explains their popular
use. Consequently, in this paper, we consider the linear
power model approaches. To predict the value of power con-
sumption of a server using a linear approach, most research
efforts proposed either powermodels based on SLR [25], [26],
[28]–[31] or PEM [15], [16], [27], [38], [43]–[49], [53],
[17]–[24]. These models use CPU only to predict the amount
of power consumption, following [48] which identifies
the CPU as the dominant factor in determining software
utilization.

However, there is no comparative evaluation of the per-
formance of these two most widely used approaches. The
evaluations, reported in the literature for those models, are
conducted using different setups, whether workloads, envi-
ronments and experimental testbeds (Table 1). Consequently,
one can’t assess the relative quality of the models based on
these evaluations. For instance, [48] does not report the error
value from the predicted model, while [26] reports a 4% error
value. In this work, we conduct an experimental evaluation of
these models in a unified setup using the same workload and
analyze their standard error of estimation. We also introduce
an error correction to the standard LR algorithm to increase
power modeling accuracy; we call this modified version of
LR by the name LC-MLR (Locally CorrectedMultiple Linear
Regression); this accounts for CPU, memory, disk and net-
work predicting the level of power consumption.We compare

175006 VOLUME 7, 2019



L. Ismail, E. H. Abed: Linear Power Modeling for Cloud Data Centers: Taxonomy

TABLE 2. Taxonomy of linear power consumption models.

the performance of our model (LC-MLR) with the most used
PEM and SLR, and evaluate the performances by using the
energy-aware scheduling algorithm EATSVM in terms of
standard error of variation in energy consumption and SLAVs
of a cloud system. This is by using a diverse set of benchmarks
and applications.

III. TAXONOMY OF LINEAR POWER CONSUMPTION
MODELS
Linear models to predict the power consumption of a com-
puting server aim to reduce the energy consumption of data
centers. The models are used either at the data center design
stage or during operation such as in the case of a cloud com-
puting data center where loads have to be automatically and
dynamically distributed by a cloud scheduler so as to reduce
the overall energy consumption. In this section, we present a
taxonomy (Table 2) of the linear models used in the literature.

A. PEM TECHNIQUE
In the PEM technique, the power model assumes a linear
relationship between power consumption and CPU utiliza-
tion of a computing server. The linear function based on
the calculation of a line segment, where the slope and the

intercept are based on the data endpoints, namely the max-
imum power consumption Pmax (at the peak 100% usage of
CPU resources) and the minimum power consumption Pmin
(at the CPU idle state) [16], [48]. The independent variable in
PEM is taken to be CPU utilization, considered the dominant
metric in server power consumption [48]. Heath et al. [16]
give a linear power model where Pmin is the intercept, mean-
ing that it is a power consumption value that is always counted
irrespective of utilization, and the difference between Pmax
and Pmin gives the slope defining the rate of increase in power
consumption per degree of utilization. Specifically, the model
in [16] is:

P = Pmin + (Pmax − Pmin)Ucpu (1)

Thismodel appears again in thework by Fan et al. [48]. The
model has significantly influenced recent energy-efficient
cloud computing data center research [15], [20], [45], [46],
[49], [21]–[24], [27], [38], [43], [44]. Qureshi et al. [17]
and Cheung et al. [19] use PEM to model the power
consumption at the data center level, and [18] use the
model for energy-aware resource management. Refer-
ences [44], [45], [47] use PEM taking Pmin to be 70% of Pmax.
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B. SIMPLE LINEAR REGRESSION (SLR) TECHNIQUE
In the SLR technique, collected experimental data on power
consumption, corresponding to a server’s single resource uti-
lization, are used to calculate the slope and the intercept of a
linear equation. Raghavendra et al. [28] propose a multi-level
power management system for data centers. The proposed
management system includes a Virtual Machine Controller
(VMC), which reads as input the resource utilizations of
the individual virtual machines (VMs) and implements an
optimizer that creates a VMs-to-servers mapping to minimize
the aggregate power for the whole data center. The mapping
of VMs-to-servers is based on the energy consumption of
VM on that particular server, which is predicted using the
following formula:

P = α + β∗Ucpu (2)

Pedram et al. [25] and Zhang et al. [26] used SLR to model
and predict power consumption for amulti-core server system
with virtualization. References [29]–[31] use the model for
energy-aware resource management in a data center based on
CPU utilization.

C. MULTIPLE LINEAR REGRESSION (MLR) TECHNIQUE
In the MLR technique, the experimental measures of the
power consumptions of several computing server metrics are
used to predict the power consumption of a running task on
a computing server. Economou et al. [32] introduce Mantis,
a method for modeling full system power consumption and
real-time power prediction. Mantis incorporates user-level
server utilization metrics such as CPU, disk, memory, and
network utilization as follows:

P = α + β ∗ Ucpu + γ
∗Umem + ζ

∗Udisk + δ
∗Unet (3)

Here, α, β, γ , ζ , and δ are regression coefficients, and Ucpu,
Umem, Udisk, and Unet are the current CPU utilization, mem-
ory access count, hard disk I/O rate, and network I/O rate
respectively.

Davis et al. [36] evaluate the accuracy of formula (3) using
aMap Reduce-style workload. Nagasaka et al. [73] apply this
technique for estimating power consumption for GPU appli-
cations. They use the exposed GPU performance counters
as independent variables for applications. Kim et al. [59]
apply this technique for energy-efficient cloud data centers
by using the number of retired operations, memory accesses,
and active cores as utilization metrics.

As noted above, most work in the literature uses a power
model based on either PEM or SLR. In particular, these two
models were integrated in energy-efficient load scheduling
algorithms in cloud computing data centers. To our knowl-
edge, this is the first study to classify linear power mod-
els and consistently evaluate the performance of these two
most commonly used modeling approaches. In this work, we
experimentally evaluate the models on three different servers
with different power consumption profiles, and compare their
performance with the proposed LC-MLR model.

IV. LC-MLR POWER MODEL
The LC-MLR model is an extension to the classical MLR
model [75], involving the addition of an error correction
term. The LC-MLR model is piecewise linear with complex-
ity O(n). The error correction term for a power consumption
value, predicted using classical MLR, is calculated locally
on MLR training data set intervals bounding the user-level
server utilization metrics values corresponding to the pre-
dicted power consumption value. Thus, LC-MLR leverages
local correlation between the actual and the predicted data
values, bringing more precision to the prediction as compared
to PEM, LR, and MLR models. The introduced corrections
differ in different local regions of the data plot, leading to
a piecewise linear approximation, as opposed to the purely
linear forms in MLR and PEM.

To predict the server’s power consumption value for an
application having CPU, memory, disk, and network utiliza-
tion values of CPUa, mema, diska, and neta respectively using
the LC-MLR model, we use the following formula:

PCPUa,mema,diska,neta= ṔCPUa,mema,diska,neta
+ØCPUa,mema,diska,neta (4)

where ṔCPUa,mema,diska,neta is the predicted power consump-
tion using the MLR regression model given in Equation (5)
below, and ØCPUa,mema,diska,neta is an error correction term.
To calculate the regression coefficients (α, β1, β2, β3, and
β4) of theMLRmodel (Equation 5), a training data set is used
consisting of actual power consumptions corresponding to the
user-level server utilization metrics values (CPU, memory,
disk, and network). In a real data center scenario, this data set
is generated from the server’s history of power consumption
and utilizationmetrics obtainedwhile running different appli-
cations. However, in our laboratory environment, the training
data set is obtained experimentally. We run different tools
to stress the server’s user-level utilization metrics. While the
server is being stressed, we measure the utilization values of
CPU, memory, disk, and network by using the Linux perf
utility [76] and the collectd tool [77]. We simultaneously
measure the server’s power consumption values by using a
LabVIEW program [78] which we implemented to extract
data from an oscilloscope [79] connected to the server.

ṔCPUa,mema,diska,neta = α + β1 ∗ CPUa + β2 ∗ mema
+β3 ∗ diska + β4 ∗ neta (5)

To calculate the error correction term corresponding to
utilization values CPUa, mema, diska, and neta, the LC-
MLR model uses the training data set to determine the
intervals where CPUa, mema, diska, and neta lie (CPUa ∈
[CPUk ,CPUk+1], mema ∈ [meml,meml+1], diska ∈

[diskm, diskm+1], and neta ∈ [netn, netn+1]). These interval
lengths are used to calculate a linear model between the
server’s actual power consumption values for all segments
defined by interval endpoints. This is done by calculating
the slope for each line segment and its intercept. This slope
is obtained by dividing the difference between the classical
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FIGURE 1. LC-MLR model building to predict power consumption of an application.

power prediction errors of the interval endpoints by the cor-
responding interval length. The power prediction errors are
calculated for each metric utilization by fixing the remain-
ing utilization metrics to their lower interval endpoints. The
intercept is the power prediction error for the lower interval
endpoints. Consequently, the differences in prediction errors

between the interval’s endpoints and the corresponding inter-
val length, as well as the low-interval endpoints power predic-
tion error affect the value of the correction term, depending
on the training data set. The error correction term is calculated
as explicated in Equation (6), as shown at the bottom of this
page.

8CPUa,mema,diska,neta = eCPUk ,meml ,diskm,netn +

[(
eCPUk+1,meml ,diskm,netn − eCPUk ,meml ,diskm,netn

)
(CPUa − CPUk)

(CPUk+1 − CPUk )

]

+

[
(eCPUk ,meml+1,diskm,netn − eCPUk ,meml ,diskm,netn )(mema − meml)

(meml+1 − meml)

]
+

[
(eCPUk ,meml ,diskm+1,netn − eCPUk ,meml ,diskm,netn )(diska − diskm)

(diskm+1 − diskm)

]
+

[
(eCPUk ,meml ,diskm,netn+1 − eCPUk ,meml ,diskm,netn )(neta − netn)

(netn+1 − netn)

]
(6)
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Here, eCPUk ,meml ,diskm,netn , eCPUk+1,meml ,diskm,netn , eCPUk ,
meml+1, diskm, netn, eCPUk ,meml ,diskm+1,netn and eCPUk ,meml ,
diskm, netn+1 are the errors calculated by taking the differ-
ence between the actual power consumption value obtained
from the training data set and the predicted power consump-
tion value obtained from theMLRmodel. They are calculated
as follows:

eCPUk ,meml ,diskm,netn = P̂CPUk ,meml ,diskm,netn
− ṔCPUk ,meml ,diskm,netn (7)

eCPUk+1,meml ,diskm,netn = P̂CPUk+1,meml ,disskm,netn
− ṔCPUk+1,meml ,diskm,netn (8)

eCPUk ,meml+1,diskm,netn = P̂CPUk ,meml+1,diskm,netn
− ṔCPUk ,meml+1,diskm,netn (9)

eCPUk ,meml ,diskm+1,netn = P̂CPUk ,meml ,diskm+1,netn
− ṔCPUk ,meml ,diskm+1,netn (10)

eCPUk ,meml ,diskm,netn+1 = P̂CPUk ,meml ,diskm,netn+1
− ṔCPUk ,meml ,diskm,netn+1 (11)

Here, P̂CPUk ,meml ,diskm,netn is the actual power consumption
value and ṔCPUk ,meml ,diskm,netn is the predicted power con-
sumption value corresponding to CPU, memory, disk, and
network utilization values of CPUk, meml, diskm, and netn,
respectively. Figure 1 shows the pseudocode for building the
LC-MLR power model. In the Appendix we show an example
for the calculation of Equations (4)-(11) to predict the power
consumption.

V. OVERALL ARCHITECTURE AND WORKFLOW FOR
ENERGY-AWARE CLOUD SCHEDULER
A cloud middleware is a software supporting a set of
processes and workflow to ensure that users connect to
cloud Software as a Service (SaaS), Platform as a Ser-
vice (PaaS), and Infrastructure as a Service (IaaS) based on
users’ SLAs [1]. Scheduling algorithms are then used by the
middleware to satisfy users’ SLAs. An energy-aware cloud
middleware schedules users’ requests in a way estimated
to minimize the cloud energy consumption. In this section,
we present the energy-aware cloud system model considered
in this work. We also describe the overall architecture and
workflow of our simulation-based energy-aware cloud sched-
uler for cloud operation. The cloud systemmodel we consider
in this work consists of a setm heterogeneous VMs connected
to an energy-aware cloud broker as shown in Figure 2. Each
VM has information about its own clock speed (CS) in GHz
and processing speed in Million Instructions Per Second
(MIPS) as in the Amazon Elastic Cloud [80].

Figure 3 shows the overall architecture and workflow for
our energy-aware cloud scheduler. The power model is built
for all the heterogeneous server architectures under study.
The data workflow for developing the power model follows:
1. A workload stressing the user-level server utilization met-

rics (CPU, memory, disk and network) is executed on each
server. This is by running a variety of benchmarks.

FIGURE 2. Energy-aware cloud system model.

FIGURE 3. Overall architecture and workflow for proposed energy-aware
scheduler.

2. The utilization monitor (U) and the power consumption
monitor (P) record the user-level server utilization metrics
and the power consumption values, respectively, while the
workload is being executed. These values are written in
a file and sent to the data pre-processor where they are
synchronized and averaged to develop the data set.

3. 55% of the data set values, selected randomly, constitute
the training data set which is used to build the powermodel
by the model builder component. The builder then gener-
ates a prediction formula using LC-MLR, SLR, or PEM.

4. The model builder uses 100% of the data set values as val-
idation data set to determine the accuracy of the developed
model.

5. An energy-aware scheduling algorithm uses the prediction
model developed by the power model builder in order to
predict the power consumption of an incoming task to the
cloud.
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In our experiments, we modified our energy-aware
scheduling algorithm EATSVM [56] to evaluate the devel-
oped powermodels under study in a cloud-computing simula-
tion environment. In order to increase the energy-efficiency of
a cloud system, EATSVM uses the power formula generated
by the model builder component, to predict the increase in
power consumption caused by potentially placing the task on
one of the cloud servers. To schedule an incoming task having
its CPU, memory, disk, and network utilization requirements
on one of the cloud’s VMs, EATSVM proceeds as follows:
â It calculates the completion time of the task on a

VM based on the length of the task in terms of Millions
of Instructions (MI) and the speed of the VM in terms of
Million Instructions per Second (MIPS).

â If the VM is idle, the algorithm calculates the value of
the energy function for that task on that VM. The energy
function is the multiplication of the power consumed by
the task and the calculated completion time of the task.
The power consumption is calculated using the power
model.

â If the VM is active (i.e., having ongoing task(s)),
the algorithm first calculates the increase in the com-
pletion time of the ongoing task(s) and then calculates
a combined energy function for the incoming task and
the ongoing one(s).

â The algorithm calculates the value of the energy function
and places the task on the VM having the minimum
value of the energy function.

The runtime of the scheduler depends on the number of VMs
in the data center and the number of tasks to be scheduled.

VI. PERFORMANCE ANALYSIS
In this section, we analyze the performance of our pro-
posed LC-MLR power consumption model on three differ-
ent servers, as compared to PEM and SLR under the same
environment, experimental setup, and workload. We evaluate
and compare their performance in terms of standard error of
estimation using:

eest =

√∑n
i=1 (Actual valuei − Predicted valuei)

2

n
(12)

where n is the length of the validation data set.

A. EXPERIMENTAL ENVIRONMENT
To evaluate the performance of LC-MLR, SLR and PEM
models, we use a testbed of three heterogeneous servers;
this testbed is part of our research laboratory as described
in Table 3. The three different server types are chosen to have
different architectures and capabilities.

To evaluate a model, we compare the predicted power
consumptions to their actual values at different user-level
server utilization metrics (CPU, memory, disk and network)
and hence different workloads. A training data set of loads
stressing the utilization metrics and measuring the corre-
sponding power consumptions is thus required for each server

TABLE 3. List of server types used in the experiments.

to build the studied models and validating and testing data
sets are required to evaluate the accuracy of the models.
The training, validating and testing data sets are obtained
experimentally by running different tools and benchmarks
on our servers. To generate the training and validating data
sets, we use the CPU Load Generator 1.0.0 [81], the Stress
1.0.4 [82], the Vdbench 5.04.06 [83], and the iperf 3.1.3 [84]
to stress the CPU, the memory, the disk I/O, and the network
I/O, respectively. CPU Load Generator uses a script that
generates a fixed CPU load for a finite user-defined time
duration. Stress uses a defined number of VM workers of a
specific memory allocation size for a defined time interval to
stress the memory. Vdbench generates a configurable amount
of disk I/O workloads on a server using a curve parameter
of a specific Vdbench’s run definition file. iperf3 generates a
configurable network I/O rate between the server under study
and a remote host server. We run the tools on each server and
measure the values of CPU and memory utilizations using
Linux perf utility [76], and disk I/O and network I/O values
using the collectd tool [77].

We use a two-channel digital oscilloscope of type Tek-
tronix – TD2012B [79] 100 MHz with 1GS/s sampling to
obtain the power consumption data of these servers while the
tools are running. We connect the oscilloscope to a current
probe [85] and a high differential voltage probe [85] for
acquiring the current and voltage signals, respectively, in real-
time by running a program that we developed. Our program
is implemented using the G programming language of the
LABVIEW 2016 software. Our program computes the power
consumption by multiplying the current and the voltage sig-
nals. We use the R environment 3.5.1 [86] for building the
studied models.

To evaluate the models in an energy-aware cloud
computing system, we implemented our cloud energy-aware
scheduler in CloudSim 3.0.3, written in Java programming
language. Therefore, we extend the power consumption class
of CloudSim to include the PEM, SLR, and LC-MLR, gen-
erated by the model builder of our scheduler. We create a
heterogeneous data center made of hosts of the three different
server types (Table 3). We use four VM types (Table 4).

We experimentally generate in our Lab synthetic work-
loads for the scheduler to typify real-life applications. The
workloads are generated using different benchmarks and
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TABLE 4. Specifications of VM types used in the experiments.

applications such as the Sysbench 1.0.17 benchmark [87],
MEncoder 1.2.1 application [88] whose source code is
included in the Mplayer project version SVN-r31628-
4.8.5 [88], PARSEC 3.0 benchmark’s Black Scholes model
and Streamcluster [89], and ensemble clustering application
using Weka 3.8.1 [90]. Sysbench stresses the CPU of a server
by calculating the prime numbers between zero and a user-
defined number. MEncoder stresses the CPU and memory
by performing a video compression operation on a spec-
ified video file. We use MPEG-4 video format [91] with
1920 × 1080 resolution. The Black Scholes model utilizes
the CPU, memory, and disk I/O by calculating the prices
of European options’ portfolio analytically using partial dif-
ferential equations (PDE). Streamcluster utilizes the CPU,
memory, disk I/O, and network I/O by solving an online clus-
tering problem. The data mining ensemble clustering stresses
the CPU, memory, and disk I/O by performing k-means
clustering on a specific data set. We use forest cover data
sets [92] consisting of geospatial descriptions of various
forest types. The data contains 581,000 instances, 7 classes,
and 54 attributes. We run these benchmarks and applications
on each server of our experimental testbed, and measure the
values of the different utilization metrics and the correspond-
ing power consumptions. The measured utilization metrics
values are then used as resource requirements for the cloud
workloads.

B. EXPERIMENTS
We perform two buckets of experiments. One bucket of
experiments is performed to obtain the training, validation,
and testing data sets for the models under study. The second
bucket simulates an energy-aware cloud data center that runs
our energy-aware scheduling algorithm EATSVM with each
of the models under study to compare their performance.

To generate the training and validation data sets, we stress
the CPU, memory, disk, and network individually by running
4 experiments on each server in our Lab. This is by using the
tools described in the above foregoing subsection. In a first
experiment, we produce 30 configurable CPU loads between
0-100% at random intervals using the CPU Load Generator.
For multi-core servers, we generate the CPU load on all the
cores simultaneously. In a second experiment, we use Stress
tool to populate the server’s memory using VM workers
of 30 random memory sizes. In a third experiment, we gen-
erate 30 I/O rates between 0% and 100% of the maximum
I/O rate of the server under experiment at random intervals
using Vdbench. In a fourth experiment, we ping the server
under experiment from a remote server using 30 bandwidths
between 0% and 100% of the maximum bandwidth of the

server under experiment at random intervals using iperf3.
Every experiment runs for 5 minutes during which we mea-
sure the values of utilization metrics and the corresponding
power consumption every 1-second, and write them to a file.
We calculate the average utilizations for each metric and
the average power consumption over the 5 minute period.
We repeat each experiment 25 times and compute the average
of all the averages. The powermodel builder randomly selects
55% of the data set generated experimentally as the training
data set to develop the models under study; 100% of the
generated data set is used for validation.

Several works in Cloud data centers propose energy-aware
VM placement [44], [45], [58]–[60], [62], [63] and task
scheduling [2], [20], [49], [64], [66], [68], [69] algorithms
for energy savings. These algorithms use a power model to
predict the value of energy consumption for energy-aware
optimal scheduling. Therefore, we verify the performance of
the studied powermodels in this work using our energy-aware
scheduling algorithm to compare the performance of the
power models in a cloud data center using the same environ-
mental setup and workload. We first simulate the data center
with an increasing number of hosts (50, 250, 500, 800, and
1000). The host types used for the simulation of the data
center are of the same specifications as the ones used in our
Lab, and are equally distributed in the simulated data center.
We then create 1500 VMs with the four VM types as shown
in Table 4 equally distributed.

We generate 5 synthetic workloads by running 5 different
benchmarks and applications on the servers’ testbed in our
Lab to produce the testing data set. The workloads repre-
sent a diverse set of applications which stress one or more
user-level utilization metrics. We run Sysbench to generate
a CPU-intensive workload by calculating the prime num-
bers between 0 and 20,000,000 using different number of
threads. The number of threads is increased randomly from
zero to the total number of threads of the server under test.
To produce a CPU and memory-intensive workload, we run
the MEncoder application which compresses a video file.
To assess the performance of the models against increasing
sizes, we compressed 10 different AVI format [93] video files
with increasing sizes from 5GB to 50GB at an interval of 5GB
using the compression function of MEncoder. To generate
an intensive workload of CPU, memory, and disk, we use
the Black Scholes application to calculate the prices of a
65,536 European options portfolio. We also use the ensem-
ble clustering application to perform k-means clustering of
data sets with different number of instances (2799, 279000,
2790000, and 5580000). We use the Streamcluster applica-
tion to generate an intensive workload of CPU, memory,
disk, and network by performing an online stream clustering
for native input options having 1,000,000 inputs points and
218 dimensions. We collect the utilization metrics and the
corresponding power consumption values every 1 second for
each experiment and calculate the average. We repeat every
experiment 25 times and calculate the average of the aver-
ages. The data set generated for each benchmark/application
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on each server is replicated 100 times and shuffled randomly
to create a large workload.

To evaluate the impact of each of the models under study
on energy-aware scheduling, we calculate the standard error
of estimation of the predicted cloud data center energy com-
pared to the actual one post scheduling. We also calculate the
standard error of estimation of SLAVs when using predicted
power versus actual. In the experiments, we first schedule
the workload on the hosts randomly. While the workload is
still running, we schedule the same workload on the host by
using EATSVM. We repeat this scheduling in 2 scenarios:
1) when the scheduler uses a power model, and 2) when the
schedule uses the actual power consumption values from the
testing data set. In each scenario, we measure the energy
consumption and SLAVs of the data center and calculate the
corresponding errors of estimation. We repeat both scenarios
3 times (referred to as a run), and calculate the average errors
of estimations for energy and SLAVs. The run is repeated for
each of the 5 workloads and for each power model under
study in a dynamic data center. The energy consumptions
of the running VMs, based on our Lab experimental power
consumption baseline, are added to find that of the data center
after the execution of the workload. The VM’s energy con-
sumption is calculated by multiplying its power consumption
of the machine and the time it has been running. The SLAVs
of the VMs are also added up to calculate the SLAVs of the
cloud.

We measure the SLAVs of the VMs (due to migrations)
post scheduling. This is in terms of the ratio of the CPU capac-
ity given to the VMs relative to the total capacity of a host
experiencing 100% CPU utilization using the equation [94]:

SLAV = OTF∗PDM (13)

where OTF (Overload/Time Fraction) is the fraction of the
time duringwhich, the active hosts experience 100%CPUuti-
lization and PDM (Performance Degradations due to Migra-
tions) is the overall performance degradation due to the
migration of VMs. OTF and PDM are calculated using Equa-
tions (14) and (15), respectively:

OTF = (
1
N
)
∑N

i=1

Tsi

Tai
(14)

PDM =
(
1
M

)∑M

k=1

Cdk
Crk

(15)

Here, N is the number of hosts, Tsi is the total time during
which host i has experienced utilization of 100% leading
to SLA violations, Tai is the total time of the host i being
active, M is the total number of VMs, Cdk is the estimate of
the performance degradation of VMk caused by migrations,
Crk is the total CPU capacity requested by VMk during its
lifetime, Cdk is estimated to be 10% of the CPU utilization in
MIPS during all migrations of the VMk.

C. EXPERIMENTAL RESULTS ANALYSIS
In this section, we evaluate our experimental results com-
paring between the studied models LC-MLR, SLR and

PEM using our servers’ testbed as well as for a dynamic
energy-aware cloud computing system. We also give insights
on and conclusions of these evaluations. In particular,
we explain the reasons for the rationale behind the models’
performance.

Figure 4 shows that PEM has the highest average standard
error of estimation compared to SLR, and LC-MLR, while
LC-MLR has the least error. This is because PEM is based
only on the power consumptions endpoint values Pmax and
Pmin and consists of a straight line model in which all the
possible predicted values lie. Therefore, the model does not
consider the implications of other power consumption data
between Pmin and Pmax for its predictions. However, the SLR
and LC-MLR models compute a linear regression plane to
best fit data distribution while minimizing the sum of the
squares of vertical deviations from each data point to the
plane.

Comparing the performance of LC-MLR with SLR, based
on our results (Figure 4), LC-MLR has the least standard
error of estimation. This is thanks to the piecewise planar
linearization in LC-MLR, whereas SLR computes a single
regression line for the entire data set. This indicates an advan-
tage of modeling the power consumption data collected on
our experimental testbed as linear within intervals rather than
over the entire range (i.e., the advantage of using a piecewise
linear model).

In summary, LC-MLR model has the least standard error
of estimation compared to the SLR and PEM models. For
the validation data set, the standard error of estimation in
server 1 is 4.3142, 6.7853 and 8.1312, in server 2 is 4.0913,
5.0252 and 7.2509, and in server 3 is 5.5454, 8.0324 and
11.8538, using LC-MLR, SLR and PEM respectively.

Figure 5 shows that our energy-aware scheduling algo-
rithm using PEM has the highest standard error of estima-
tion of energy consumption, compared to using SLR and
LC-MLR. This is due to its high error in the prediction
of power consumption. On the other hand, our algorithm
using LC-MLR predicts the energy consumption with the
least standard error of estimation, very close to real energy
data.

Our experimental results (Figure 5) reveal that the
PEM, SLR errors are higher using MEncoder, Portfolio,
K-means, and Streamcluster applications than Sysbench.
This is because SLR and PEM models use only CPU utiliza-
tion as an independent variable. Sysbench heavily involves
the CPU during its execution. On the other hand, MEncoder
involves CPU and memory utilizations, Portfolio and
K-means involve CPU, memory, and disk I/O operations, and
Streamcluster involves CPU, memory, disk and network I/O
operations.

Figure 6 shows the standard error of estimation in SLA
violations of our energy-aware scheduling algorithm using
the studied models. It shows that our algorithm using PEM
has the highest standard error of estimation, while using
LC-MLR has the least. This is due to the low accuracy of
the prediction of power consumption by PEM for a running
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FIGURE 4. Standard error of estimation of LC-MLR. SLR and PEM using the validation data set.

task, leading to more server consolidation. Consequently, this
leads to more SLA violations.

In summary, the average standard error of estimation
of energy consumption when scheduling tasks using our

energy-aware scheduling algorithm for workloads in all our
scenarios of a dynamic data center is 5.0096, 25.8878, and
34.6062 using LC-MLR, SLR, and PEM respectively. The
average standard error of estimation in SLA violations is
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FIGURE 5. Standard error of estimation of energy consumption using LC-MLR, SLR and PEM for EATSVM with increasing
number of hosts for different workloads.

FIGURE 6. Standard error of estimation of SLA violations using LC-MLR, SLR and PEM for EATSVM with increasing number
of hosts using different workloads.

4.5134, 19.8068, and 25.3911 using LC-MLR, SLR, and
PEM respectively.

VII. CONCLUSION AND SUMMARY
Cloud computing is a technology that is being rapidly adopted
and will be extensively used, especially with the emergence
of IoT and Big Data analytics on enormous amounts of
data collected from ubiquitous devices. Power consumption
of cloud computing infrastructure thus becomes a crucial
issue. Along with this trend, the need for green computing
environments is also becoming more pressing. Therefore,
many research works propose cloud computing scheduling
algorithms to reduce cloud energy consumption. Most such
algorithms use PEM to predict power consumption of cloud
applications. PEM uses CPU utilization as the independent
variable because CPU use is considered the dominant factor

in server power consumption. Other linear power models
were also proposed in the literature. Very few works validate
those models, but these haven’t employed identical experi-
mental setups and workload data. This makes it difficult to
perform comparisons of efficacy of the models from existing
validations.

In this work, we have presented a classification of linear
power models based on user-level server utilization metrics,
such as CPU,memory, network and disk utilizations.We eval-
uated CPU-based PEM and SLR models, using identical
experimental setups andworkload data. In addition, we devel-
oped LC-MLR, an extended version of MLR, and compared
its performance to SLR and PEM, the latter having been
used most frequently in research works in green computing.
To perform the comparisons, we utilized a testbed with sev-
eral available hardware architectures, and used it for several
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experiments for the evaluation. We also proposed an energy-
aware simulation framework which allowed us to implement
and experiment with energy-aware scheduling algorithms
using different power models.

Our experimental results show that LC-MLRgives the least
standard error of estimation of power consumption with up
to 5.5454 using the validation data set. The results show
that the relative performance of these models persists in the
different servers’ architecture considered in our experimental
testbed. The results remain valid for energy consumption and
SLAs violation using our energy-aware scheduling algorithm
giving the least standard error of estimation of energy pre-
diction with up to 6.9832, and of SLAs violation with up
to 5.3141.

When developing energy-aware algorithms in cloud com-
puting, it is important to choose an accurate power con-
sumption model to enhance energy savings and reduce SLAs
violations. When developing a power model to predict the
power consumption of a running application on a server, the
following requirements should be considered:

1) Considering Data Range: the local regression
model (LR) has an important implication in accurately
predicting power consumption.

2) Piecewise Linearity: linearity in different local regions
of the data plot (LC-MLR) that replaces purely LR leads
to more accurate prediction than LR.

3) User-Level Server Utilization Metrics: other server’s
utilization metrics such as memory, disk, and network
contribute to a server’s power consumption. Metrics
other than CPU utilization should be then considered by
the power models.

In future research work, we propose investigations in the
following directions. It would be valuable to validate and
compare the different linear and non-linear power models in
the literature, as the accuracy of the model directly impacts
the accuracy of the energy-efficient algorithms using it. In
addition, energy-efficient VM placement and task scheduling
algorithms in cloud data centers should take into considera-
tion the energy consumption of building the power modes.
Therefore, analytical and experimental evaluation of building
power models in terms of energy consumption is then crucial
for the selection of the power model in cloud computing
data centers. Furthermore, the runtime of energy-efficient
algorithms and corresponding energy consumption should be
studied.

APPENDIX
EXAMPLE FOR PREDICTING THE POWER CONSUMPTION
OF AN APPLICATION USING LC-MLR
In this example, we would like to predict the power con-
sumption, using LC-MLR (Equation 4), of an application
having CPU utilization CPUa = 50.03%, memory utilization
mema = 50.31%, disk utilization diska = 49.73%, and
network utilization neta = 49.89%. We first predict the

TABLE 5. Training data set obtained from real experiments.

power consumption using MLR. Then, we calculate the error
correction term.
1. Prediction of Power Consumption using MLR: we cal-

culate the values of the regression coefficients (α, β1,
β2, β3, and β4) by using the training data set (Table 5).
We use the R programming language to obtain these
coefficients values. We calculate the predicted power
consumption for the application by substituting the coef-
ficients and the utilization metrics by their correspond-
ing values in Equation 5 as follows:

ṔCPUa,mema,diska,neta
= 204.2955+(95.42945 ∗ 50.03%)

+ (−13.1792 ∗ 50.31%)

+ (0.46406 ∗ 49.73%)

+ (24.13667 ∗ 49.89%) = 257.2194

2. Calculation of the Error Correction Term: to calculate
the error correction term (Equation 6), we proceed as
follows:
a. The MLR model uses the training data set to find the

intervals where CPU, memory, disk, and network uti-
lization values of the application lie. In our example,
the intervals are:

CPUa = 50.03%ε[CPUk
= 38.87%,CPUk+1
= 59.08%]

mema = 50.31%ε[meml
= 40.98%,meml+1
= 58.72%]

diska = 49.73%ε[diskm
= 38.85%, diskm+1
= 60.01%]

neta = 49.89%ε[netn
= 38.30%, netn+1
= 62.62%]

b. The error correction term involves linear functions
between the interval endpoints for each utilization.
These are evaluated by calculating the intercept and
slope for each line. The intercept is calculated using
Equation (7) by substituting the values of the actual
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power consumption and the predicted one using MLR
for the lower interval endpoints as follows:

eCPUk ,meml ,diskm,netn = 243.53660− 245.0511

= −1.5145

The slope for each line is calculated by dividing the
difference between the MLR prediction errors at the
interval endpoints by the interval length. The predic-
tion errors for the interval endpoints for CPU, memory,
disk, and network utilizations are calculated using Equa-
tions (8), (9), (10), and (11), respectively. This is done by
substituting the values of the actual power consumption
and the predicted one using MLR for the upper interval
endpoints as follows:

eCPUk+1,meml ,diskm,netn
= 261.27630− 264.3374

= −3.0611

eCPUk ,meml+1,diskm,netn
= 247.90260− 242.7118

= 5.19083

eCPUk ,meml ,diskm+1,netn
= 246.01790− 244.9529

= 1.06503

eCPUk ,meml ,diskm,netn+1
= 252.62190− 250.9235

= 1.69838

Consequently, the error correction term is calculated
using Equation (6) as follows:

ØCPUa,mema,diska,neta

= −1.5145− 0.8877+ 3.5265+ 1.3263+ 1.4730

= 3.9236

The results from Steps 1) and 2) above are used in Equa-
tion (4) to obtain the predicted power consumption for the
application as follows:

PCPUa,mema,diska,neta = 257.2194+ 3.9236 = 261.143

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable comments that helped to improve the content,
quality, and presentation of the article.

REFERENCES
[1] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing: Rec-

ommendations of the national institute of standards and technology,’’
NIST, Gaithersburg, MD, USA, NIST Special Publication 800-145, 2011,
doi: 10.1136/emj.2010.096966.

[2] L. Ismail and A. A. Fardoun, ‘‘Energy-aware task scheduling (EATS)
framework for efficient energy in smart cities cloud computing infras-
tructures,’’ Int. J. Thermal Environ. Eng., vol. 13, no. 1, pp. 37–48, 2016,
doi: 10.5383/ijtee.13.01.007.

[3] A. Sheikhi, M. Rayati, A. M. Ranjbar, S. Sattari, and S. Bahrami, ‘‘A cloud
computing framework on demand side management game in smart energy
hubs,’’ Int. J. Elect. Power Energy Syst., vol. 64, pp. 1007–1016, Jan. 2015,
doi: 10.1016/j.ijepes.2014.08.020.

[4] P. Delforge. (2015). America’s Data Centers Consuming and Wasting
Growing Amounts of Energy | NRDC. Accessed: Aug. 16, 2018.
[Online]. Available: https://www.nrdc.org/resources/americas-data-
centers-consuming-and-wasting-growing-amounts-energy

[5] D. Meisner and T. F. Wenisch, ‘‘Peak power modeling for data
center servers with switched-mode power supplies,’’ in Proc. 16th
ACM/IEEE Int. Symp. Low Power Electron. Design, 2010, pp. 319–324,
doi: 10.1145/1840845.1840911.

[6] S. Greenberg, E. Mills, and B. Tschudi, ‘‘Best practices for data
centers: Lessons learned from benchmarking 22 data centers,’’ in
Proc. ACEEE Summer Energy Efficiency Buildings, 2006, pp. 76–87,
doi: 10.1016/j.energy.2012.04.037.

[7] T. Brey, P. Lembke, J. Prisco, and K. A. Emerson, ‘‘Case study: The ROI
of cooling system energy efficiency upgrades,’’ White Paper # 39, 2011,
pp. 1–42.

[8] O. Sarood, A. Langer, A. Gupta, and L. Kale, ‘‘Maximizing throughput
of overprovisioned HPC data centers under a strict power budget,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2014,
pp. 807–818, doi: 10.1109/SC.2014.71.

[9] D. Shin, J. Kim, J. Choi, S. W. Chung, E.-Y. Chung, and N. Chang,
‘‘Energy-optimal dynamic thermal management for green computing,’’
in Proc. Int. Conf. Comput. Design (ICCAD), Nov. 2009, pp. 652–657,
doi: 10.1145/1687399.1687520.

[10] B. Mills, T. Znati, R. Melhem, K. B. Ferreira, and R. E. Grant, ‘‘Energy
consumption of resilience mechanisms in large scale systems,’’ in Proc.
22nd Euromicro Int. Conf. Parallel, Distrib., Netw.-Based Process. (PDP),
2014, pp. 528–535, doi: 10.1109/PDP.2014.111.

[11] T. Horvath and K. Skadron, ‘‘Multi-mode energy management for multi-
tier server clusters,’’ in Proc. Int. Conf. Parallel Archit. Compilation Techn.
(PACT), 2008, pp. 270–279, doi: 10.1145/1454115.1454153.

[12] S.-W. Ham, M.-H. Kim, B.-N. Choi, and J.-W. Jeong, ‘‘Simplified server
model to simulate data center cooling energy consumption,’’ Energy Build-
ings, vol. 86, pp. 328–339, Jan. 2015, doi: 10.1016/j.enbuild.2014.10.058.

[13] E. N. Elnozahy, M. Kistler, and R. Rajamony, ‘‘Energy-efficient server
clusters,’’ in Proc. Int. Workshop Power-Aware Comput. Syst., 2003,
pp. 179–197, doi: 10.1007/3-540-36612-1_12.

[14] W.Wu, L. Jin, P. Liu, S. X.-D. Tan, and J. Yang, ‘‘Efficient power modeling
and software thermal sensing for runtime temperature monitoring,’’ ACM
Trans. Des. Automat. Electron. Syst., vol. 12, no. 3, 2007, Art. no. 25,
doi: 10.1145/1255456.1255462.

[15] R. Buyya, A. Beloglazov, and J. Abawajy, ‘‘Energy-efficient management
of data center resources for cloud computing: A vision, architectural ele-
ments, and open challenges,’’ in Proc. Int. Conf. Parallel Distrib. Process.
Technol. Appl., 2010, pp. 1–12, doi: 10.1002/cpe.1867.

[16] T. Heath, Jr., A. P. Centeno, L. Ramos, Y. Jaluria, R. Bianchini, and
P. George, ‘‘Mercury and freon: Temperature emulation and manage-
ment for server systems,’’ in Proc. 12th Int. Conf. Architectural Support
Program. Lang. Oper. Syst., 2006, pp. 106–116, doi: 10.1145/1168857.
1168872.

[17] A. Qureshi, R. Weber, J. Guttag, B. Maggs, and H. Balakrishnan, ‘‘Cutting
the electric bill for Internet-scale systems,’’ ACM SIGCOMM Comput.
Commun. Rev. vol. 39, pp. 123–134, Oct. 2009, doi: 10.1145/1594977.
1592584.

[18] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, ‘‘Resource pool
management: Reactive versus proactive or let’s be friends,’’Comput. Netw.
vol. 53, pp. 2905–2922, Dec. 2009, doi: 10.1016/j.comnet.2009.08.011.

[19] H. Cheung, S. Wang, C. Zhuang, and J. Gu, ‘‘A simplified power con-
sumption model of information technology (IT) equipment in data centers
for energy system real-time dynamic simulation,’’ Appl. Energy, vol. 222,
pp. 329–342, Jul. 2018, doi: 10.1016/j.apenergy.2018.03.138.

[20] Y. C. Lee and A. Y. Zomaya, ‘‘Energy efficient utilization of resources
in cloud computing systems,’’ J. Supercomput., vol. 60, pp. 268–280,
May 2012, doi: 10.1007/s11227-010-0421-3.

[21] P. Raycroft, R. Jansen, M. Jarus, P. R. Brenner, ‘‘Performance bounded
energy efficient virtual machine allocation in the global cloud,’’ Sustain.
Comput., Inform. Syst., vol. 4, pp. 1–9, Mar. 2014, doi: 10.1016/j.suscom.
2013.07.001.

[22] X. Dai, J. M. Wang, and B. Bensaou, ‘‘Energy-efficient virtual machines
scheduling in multi-tenant data centers,’’ IEEE Trans. Cloud Comput.,
vol. 4, no. 2, pp. 210–221, Jun. 2016, doi: 10.1109/TCC.2015.2481401.

VOLUME 7, 2019 175017

http://dx.doi.org/10.1136/emj.2010.096966
http://dx.doi.org/10.5383/ijtee.13.01.007
http://dx.doi.org/10.1016/j.ijepes.2014.08.020
http://dx.doi.org/10.1145/1840845.1840911
http://dx.doi.org/10.1016/j.energy.2012.04.037
http://dx.doi.org/10.1109/SC.2014.71
http://dx.doi.org/10.1145/1687399.1687520
http://dx.doi.org/10.1109/PDP.2014.111
http://dx.doi.org/10.1145/1454115.1454153
http://dx.doi.org/10.1016/j.enbuild.2014.10.058
http://dx.doi.org/10.1007/3-540-36612-1_12
http://dx.doi.org/10.1145/1255456.1255462
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1145/1168857.1168872
http://dx.doi.org/10.1145/1168857.1168872
http://dx.doi.org/10.1145/1594977.1592584
http://dx.doi.org/10.1145/1594977.1592584
http://dx.doi.org/10.1016/j.comnet.2009.08.011
http://dx.doi.org/10.1016/j.apenergy.2018.03.138
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1016/j.suscom.2013.07.001
http://dx.doi.org/10.1016/j.suscom.2013.07.001
http://dx.doi.org/10.1109/TCC.2015.2481401


L. Ismail, E. H. Abed: Linear Power Modeling for Cloud Data Centers: Taxonomy

[23] N. K. Sharma and G. R. M. Reddy, ‘‘Multi-objective energy efficient
virtual machines allocation at the cloud data center,’’ IEEE Trans. Services
Comput., vol. 12, no. 1, pp. 158–171, Jan./Feb. 2019, doi: 10.1109/TSC.
2016.2596289.

[24] X. Ye, Y. Yin, and L. Lan, ‘‘Energy-efficient many-objective virtual
machine placement optimization in a cloud computing environment,’’
IEEE Access, vol. 5, pp. 16006–16020, 2017, doi: 10.1109/ACCESS.
2017.2733723.

[25] M. Pedram and I. Hwang, ‘‘Power and performance modeling in a virtual-
ized server system,’’ in Proc. 39th Int. Conf. Parallel Process. Workshops,
2010, pp. 520–526, doi: 10.1109/ICPPW.2010.76.

[26] X. Zhang, J.-J. Lu, X. Qin, andX.-N. Zhao, ‘‘A high-level energy consump-
tion model for heterogeneous data centers,’’ Simul. Model. Pract. Theory,
vol. 39, pp. 41–55, Dec. 2013, doi: 10.1016/j.simpat.2013.05.006.

[27] L. Hongyou, W. Jiangyong, W. Junfeng, L. Tang, and P. Jian, ‘‘Energy-
aware scheduling scheme using workload-aware consolidation technique
in cloud data centres,’’ China Commun., vol. 10, pp. 114–124, Dec. 2013,
doi: 10.1109/CC.2013.6723884.

[28] R. Raghavendra, P. Ranganathan, Z. Wang, X. Zhu, and V. Talwar, ‘‘No
power struggles: Coordinated multi-level power management for the data
center,’’ ACM SIGARCH Comput. Archit. News, vol. 36, pp. 48–59,
Mar. 2008.

[29] C. Gong, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, ‘‘Energy-
aware server provisioning and load dispatching for connection-intensive
Internet services,’’ in Proc. USENIX Symp Netw. Syst. Design Implement.,
2008, pp. 337–350, doi: 10.1109/INFCOM.2012.6195719.

[30] J. L. Berral, Í. Goiri, F. Julià, J. Guitart, R. Gavaldà, J. Torres, and
R. Nou, ‘‘Towards energy-aware scheduling in data centers using machine
learning,’’ in Proc. 1st Int. Conf. Energy-Efficient Comput. Netw., 2010,
pp. 215–224.

[31] J. L. Berral, R. Gavalda, and J. Torres, ‘‘Adaptive scheduling on power-
aware managed data-centers using machine learning,’’ in Proc. IEEE/ACM
12th Int. Conf. Grid Comput., Sep. 2011, pp. 66–73.

[32] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, ‘‘Full-system
power analysis and modeling for server environments,’’ in Proc. Int. Symp.
Comput. Archit., 2006, pp. 807–812.

[33] J. W. Smith, A. Khajeh-Hosseini, J. S. Ward, and I. Sommerville, ‘‘Cloud-
Monitor: Profiling power usage,’’ in Proc. IEEE 5th Int. Conf. Cloud
Comput. (CLOUD), Jun. 2012, pp. 3–4.

[34] A. Kansal, F. Zhao, N. Kothari, A. A. Bhattacharya, and J. Liu, ‘‘Virtual
machine powermetering and provisioning,’’ inProc. 1st ACMSymp. Cloud
Comput. (SoCC), 2010, pp. 39–50, doi: 10.1145/1807128.1807136.

[35] Y. Li, Y. Wang, B. Yin, and L. Guan, ‘‘An online power metering model
for cloud environment,’’ Proc. IEEE 11th Int Symp. Netw. Comput. Appl.
(NCA), Aug. 2012, pp. 175–180, doi: 10.1109/NCA.2012.10.

[36] J. D. Davis, S. Rivoire, M. Goldszmidt, and E. K. Ardestani, ‘‘CHAOS:
Composable Highly Accurate OS-based power models,’’ in Proc. IEEE
Int. Symp. Workload Characterization (IISWC), Nov. 2012, pp. 153–163,
doi: 10.1109/IISWC.2012.6402920.

[37] I. Alan, E. Arslan, and T. Kosar, ‘‘Energy-aware data transfer tuning,’’ in
Proc. 14th IEEE/ACM Int. Symp. Cluster, Cloud, Grid Comput. (CCGrid),
2014, pp. 626–634, doi: 10.1109/CCGrid.2014.117.

[38] M. Tang and S. Pan, ‘‘A hybrid genetic algorithm for the energy-efficient
virtual machine placement problem in data centers,’’ Neural Process. Lett.,
vol. 41, no. 2, pp. 211–221, 2015, doi: 10.1007/s11063-014-9339-8.

[39] G. Sun, V. Anand, D. Liao, C. Lu, X. Zhang, and N.-H. Bao, ‘‘Power-
efficient provisioning for online virtual network requests in cloud-based
data centers,’’ IEEE Syst. J., vol. 9, no. 2, pp. 427–441, Jun. 2015,
doi: 10.1109/JSYST.2013.2289584.

[40] C.-H. Lien, Y.-W. Bai, and M.-B. Lin, ‘‘Estimation by software for
the power consumption of streaming-media servers,’’ IEEE Trans.
Instrum. Meas., vol. 56, no. 5, pp. 1859–1870, Oct. 2007, doi: 10.1109/
TIM.2007.904554.

[41] C.-J. Tang and M.-R. Dai, ‘‘Dynamic computing resource adjustment
for enhancing energy efficiency of cloud service data centers,’’ in Proc.
IEEE/SICE Int. Symp. Syst. Integr. (SII), Dec. 2011, pp. 1159–1164,
doi: 10.1109/SII.2011.6147613.

[42] S. Janacek, K. Schröder, G. Schomaker, W. Nebel, M. Rüschen, and
G. Pistoor, ‘‘Modeling and approaching a cost transparent, specific data
center power consumption,’’ in Proc. Int. Conf. Energy Aware Comput.
(ICEAC), Dec. 2012, pp. 1–6, doi: 10.1109/ICEAC.2012.6471012.

[43] Z. Bagheri and K. Zamanifar, ‘‘Enhancing energy efficiency in resource
allocation for real-time cloud services,’’ in Proc. 7th Int. Symp. Telecom-
mun. (IST), 2014, pp. 701–706, doi: 10.1109/ISTEL.2014.7000793.

[44] R. Sinha, N. Purohit, and H. Diwanji, ‘‘Power aware live migration for data
centers in cloud using dynamic threshold,’’ Int. J. Comput. Technol. Appl.,
vol. 2, no. 6, pp. 2041–2046, 2011, doi: 10.1.1.658.4169.

[45] A. Beloglazov, J. Abawajy, and R. Buyya, ‘‘Energy-aware resource allo-
cation heuristics for efficient management of data centers for Cloud com-
puting,’’ Future Gener. Comput. Syst., vol. 28, pp. 755–768, May 2012,
doi: 10.1016/j.future.2011.04.017.

[46] R. Patel, H. Patel, and S. Patel, ‘‘Efficient resource allocation in cloud
computing,’’ Int. J. Technol. Res. Eng., vol. 2, pp. 1253–1260, Mar. 2015.

[47] G. Han, W. Que, G. Jia, and L. Shu, ‘‘An efficient virtual machine consol-
idation scheme for multimedia cloud computing,’’ Sensors, vol. 16, no. 2,
p. 246, 2016, doi: 10.3390/s16020246.

[48] X. Fan, W.-D. Weber, and L. A. Barroso, ‘‘Power provisioning for
a warehouse-sized computer,’’ ACM SIGARCH Comput. Archit. News,
vol. 35, pp. 13–23, May 2007, doi: 10.1145/1273440.1250665.

[49] B. Qureshi, ‘‘Profile-based power-aware workflow scheduling framework
for energy-efficient data centers,’’ Future Gener. Comput. Syst., vol. 94,
pp. 453–467, May 2019, doi: 10.1016/j.future.2018.11.010.

[50] R. Buyya, A. Beloglazov, and J. Abawajy, ‘‘Energy-efficient management
of data center resources for cloud computing: A vision, architectural ele-
ments, and open challenges,’’ in Proc. Int. Conf. Parallel Distrib. Process.
Techn. Appl. (PDPTA), Las Vegas, NV, USA, Jul. 2010, pp. 1–12.

[51] Complexity of Linear Regression Model. Accessed: Apr. 14, 2019.
[Online]. Available: https://www.thekerneltrip.com/machine/learning/
computational-complexity-learning-algorithms/

[52] L. Li, ‘‘A new complexity bound for the least-squares problem,’’ Comput.
Math. Appl., vol. 31, pp. 15–16, Jun. 1996.

[53] Y. Jin, Y. Wen, Q. Chen, and Z. Zhu, ‘‘An empirical investigation of the
impact of server virtualization on energy efficiency for green data center,’’
Comput. J., vol. 56, pp. 977–990, Aug. 2013, doi: 10.1093/comjnl/bxt017.

[54] Find a Linear Regression Equation. Accessed: Jun. 24, 2019.
[Online]. Available: https://www.statisticshowto.datasciencecentral.com/
probability-and-statistics/regression-analysis/find-a-linear-regression-
equation/

[55] A. Butterfield and G. E. Ngondi, A Dictionary of Computer Science.
Oxford, U.K.: Oxford Univ. Press, 2016.

[56] L. Ismail and H. Materwala, ‘‘EATSVM: Energy-aware task scheduling
on cloud virtual machines,’’ Procedia Comput. Sci., vol. 135, pp. 248–258,
2018, doi: 10.1016/j.procs.2018.08.172.

[57] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, pp. 23–50, Jan. 2011.

[58] A. Beloglazov and R. Buyya, ‘‘Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in Cloud data centers,’’ Con-
currency Comput. Pract. Exper., vol. 24, pp. 1397–1420, Sep. 2012,
doi: 10.1002/cpe.1867.

[59] N. Kim, J. Cho, and E. Seo, ‘‘Energy-credit scheduler: An energy-aware
virtual machine scheduler for cloud systems,’’ Future Gener. Comput.
Syst., vol. 32, pp. 128–137, Mar. 2014, doi: 10.1016/j.future.2012.05.019.

[60] M. R. Chowdhury, M. R. Mahmud, and R. M. Rahman, ‘‘Implemen-
tation and performance analysis of various VM placement strategies in
CloudSim,’’ J. Cloud Comput., vol. 4, Nov. 2015, Art. no. 20, doi: 10.1186/
s13677-015-0045-5.

[61] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres,
and H. Tenhunen, ‘‘Using ant colony system to consolidate VMs for
green cloud computing,’’ IEEE Trans. Services Comput., vol. 8, no. 2,
pp. 187–198, Mar./Apr. 2015, doi: 10.1109/TSC.2014.2382555.

[62] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, ‘‘Holistic virtual machine
scheduling in cloud datacenters towards minimizing total energy,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1317–1331, Jun. 2018,
doi: 10.1109/TPDS.2017.2688445.

[63] S. Ilager, K. Ramamohanarao, and R. Buyya, ‘‘ETAS: Energy and thermal-
aware dynamic virtual machine consolidation in cloud data center with
proactive hotspot mitigation,’’ Concurrency Comput., vol. 31, Sep. 2019,
Art. no. e5221, doi: 10.1002/cpe.5221.

[64] Y. Changtian and Y. Jiong, ‘‘Energy-aware genetic algorithms for task
scheduling in cloud computing,’’ in Proc. 7th ChinaGrid Annu. Conf.
ChinaGrid, 2012, pp. 43–48, doi: 10.1109/ChinaGrid.2012.15.

[65] N. A. Mehdi, H. Ali, A. Amer, and Z. T. Abdul-Mehdi, ‘‘Two-
phase provisioning for HPC tasks in virtualized datacenters,’’ in Proc.
Int. Conf. Emerg. Trends Comput. Electron. Eng. (ICETCEE), Dubai,
United Arab Emirates, 2012, pp. 29–35.

175018 VOLUME 7, 2019

http://dx.doi.org/10.1109/TSC.2016.2596289
http://dx.doi.org/10.1109/TSC.2016.2596289
http://dx.doi.org/10.1109/ACCESS.2017.2733723
http://dx.doi.org/10.1109/ACCESS.2017.2733723
http://dx.doi.org/10.1109/ICPPW.2010.76
http://dx.doi.org/10.1016/j.simpat.2013.05.006
http://dx.doi.org/10.1109/CC.2013.6723884
http://dx.doi.org/10.1109/INFCOM.2012.6195719
http://dx.doi.org/10.1145/1807128.1807136
http://dx.doi.org/10.1109/NCA.2012.10
http://dx.doi.org/10.1109/IISWC.2012.6402920
http://dx.doi.org/10.1109/CCGrid.2014.117
http://dx.doi.org/10.1007/s11063-014-9339-8
http://dx.doi.org/10.1109/JSYST.2013.2289584
http://dx.doi.org/10.1109/TIM.2007.904554
http://dx.doi.org/10.1109/TIM.2007.904554
http://dx.doi.org/10.1109/SII.2011.6147613
http://dx.doi.org/10.1109/ICEAC.2012.6471012
http://dx.doi.org/10.1109/ISTEL.2014.7000793
http://dx.doi.org/10.1.1.658.4169
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.3390/s16020246
http://dx.doi.org/10.1145/1273440.1250665
http://dx.doi.org/10.1016/j.future.2018.11.010
http://dx.doi.org/10.1093/comjnl/bxt017
http://dx.doi.org/10.1016/j.procs.2018.08.172
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1016/j.future.2012.05.019
http://dx.doi.org/10.1186/s13677-015-0045-5
http://dx.doi.org/10.1186/s13677-015-0045-5
http://dx.doi.org/10.1109/TSC.2014.2382555
http://dx.doi.org/10.1109/TPDS.2017.2688445
http://dx.doi.org/10.1002/cpe.5221
http://dx.doi.org/10.1109/ChinaGrid.2012.15


L. Ismail, E. H. Abed: Linear Power Modeling for Cloud Data Centers: Taxonomy

[66] W. Huai, Z. Qian, X. Li, G. Luo, and S. Lu, ‘‘Energy aware task scheduling
in data centers,’’ J. Wireless Mobile Netw., vol. 4, no. 2, pp. 18–38, 2013.

[67] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, ‘‘A green energy-efficient
scheduling algorithm using the DVFS technique for cloud datacenters,’’
Future Gener. Comput. Syst., vol. 37, pp. 141–147, Jul. 2014, doi: 10.1016/
j.future.2013.06.009.

[68] S. Singh and I. Chana, ‘‘EARTH: Energy-aware autonomic resource
scheduling in cloud computing,’’ J. Intell. Fuzzy Syst., vol. 30, no. 3,
pp. 1581–1600, 2016, doi: 10.3233/IFS-151866.

[69] S. Singh, I. Chana, M. Singh, and R. Buyya, ‘‘SOCCER: Self-optimization
of energy-efficient cloud resources,’’ Cluster Comput., vol. 19, no. 4,
pp. 1787–1800, 2016, doi: 10.1007/s10586-016-0623-4.

[70] B. Qureshi, S. Alwehaibi, andA.Koubaa, ‘‘On power consumption profiles
for data intensive workloads in virtualized Hadoop clusters,’’ inProc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2017,
pp. 42–47.

[71] M. Dayarathna, Y. Wen, and R. Fan, ‘‘Data center energy consump-
tion modeling: A survey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 732–794, 1st Quart., 2016, doi: 10.1109/COMST.2015.2481183.

[72] T. Li and L. K. John, ‘‘Run-time modeling and estimation of operating
system power consumption,’’ ACM SIGMETRICS Perform. Eval. Rev.,
vol. 31, pp. 160–171, Jun. 2003, doi: 10.1145/885651.781048.

[73] H. Nagasaka, A. Nukada, T. Endo, S. Matsuoka, and N. Maruyama,
‘‘Statistical power modeling of GPU kernels using performance counters,’’
in Proc. Int. Conf. Green Comput., Aug. 2010, pp. 115–122.

[74] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, ‘‘Performance and
energy modeling for live migration of virtual machines,’’ in Proc. 20th
Int. Symp. High Perform. Distrib. Comput. (HPDC), 2011, pp. 171–182,
doi: 10.1145/1996130.1996154.

[75] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, Applied
Linear Statistical Models. Chicago, IL, USA: Irwin, 1997.

[76] Linux Perf Examples. Accessed: Sep. 2, 2019. [Online]. Available:
http://www.brendangregg.com/perf.html

[77] Collectd. Accessed: Sep. 1, 2019. [Online]. Available: https://collectd.
org/wiki/index.php/Main_Page

[78] What is LabVIEW?—National Instruments. Accessed: Sep. 21, 2019.
[Online]. Available: https://www.ni.com/en-lb/shop/labview.html

[79] User Manual TDS1000- and TDS2000-Series Digital Storage Oscillo-
scope, Tektronix, Beaverton, OR, USA, 2009.

[80] What Is Amazon EC2?—Amazon Elastic Compute Cloud.
Accessed: Dec. 4, 2019. [Online]. Available: https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/concepts.html

[81] Carlucci G CPU Load Generator. Accessed: Sep. 1, 2019. [Online].
Available: https://github.com/GaetanoCarlucci/CPULoadGenerator

[82] Stress Project Page. Accessed: Sep. 1, 2019. [Online]. Available:
https://people.seas.harvard.edu/~apw/stress/

[83] H. Vandenbergh. Vdbench Users Guide. Accessed: Dec. 4, 2019. [Online].
Available: https://www.oracle.com/technetwork/server-storage/vdbench-
1901683.pdf

[84] M. Mortimer. iperf3 Documentation. Accessed: Dec. 4, 2019.
[Online]. Available: https://buildmedia.readthedocs.org/media/pdf/iperf3-
python/latest/iperf3-python.pdf

[85] B. D. Wedlock and J. K. Roberge, Electronic Components and Measure-
ments. Englewood Cliffs, NJ, USA: Prentice-Hall, 1969.

[86] R: What is R? Accessed: Dec. 4, 2019. [Online]. Available: https://www.
r-project.org/about.html

[87] Kopytov A Sysbench. Accessed: Aug. 14, 2018. [Online]. Available:
https://github.com/akopytov/sysbench#sysbench

[88] MPlayer—The Movie Player. Accessed: Aug. 14, 2018. [Online]. Avail-
able: http://www.mplayerhq.hu/design7/dload.html

[89] The PARSEC Benchmark Suite. Accessed: Aug. 14, 2018. [Online]. Avail-
able: http://parsec.cs.princeton.edu/parsec3-doc.htm

[90] Weka 3—Data Mining With Open Source Machine Learning Software
in Java. Accessed: Aug. 25, 2018. [Online]. Available: https://www.
cs.waikato.ac.nz/ml/weka/downloading.html

[91] H264 Video Format. Accessed: Aug. 14, 2018. [Online]. Available:
http://www.h264info.com/h264.htmlis

[92] UCI Machine Learning Repository. Accessed: Aug. 25, 2018. [Online].
Available: https://archive.ics.uci.edu/ml/index.php

[93] AVI Format | AVI Player | AVI Codec. Accessed: Dec. 4, 2019. [Online].
Available: https://www.divx.com/

[94] A. Beloglazov, ‘‘Energy-efficient management of virtual machines in
data centers for cloud computing,’’ Ph.D. dissertation, Univ. Melbourne,
Melbourne, VIC, Australia, 2013.

LEILA ISMAIL received the DEA degree
from the Joseph Fourier University (Greno-
ble I)/ENSIMAG Engineering School, France,
and the Ph.D. degree (Hons.) from the Depart-
ment of Computer Engineering/Distributed Sys-
tems, National Polytechnic Institute of Grenoble,
France, in 2000, all in distributed systems.

She has vast industrial and academic experience
with Sun Microsystems Research and Develop-
ment involved in the design and implementation

of highly available distributed systems and participated in the deposit of
a US patent in the domain. She served as a Teacher with Grenoble I,
France, and as an Assistant Professor with the American University of
Beirut. She has been an Adjunct Professor with the Digital Ecosystems and
Business Intelligence Institute, Curtin University, Australia. She has been
an Associate Professor with the College of Information Technology (CIT),
United Arab Emirates University (UAE), since 2005, where she is currently
the Founder and the Head of the Distributed Computing and Distributed
Systems Research Laboratory. Her current research interests include cloud
computing, energy efficiency, green computing, resource management, and
scheduling problems in distributed systems with an emphasis on clouds,
middleware, HPC, and software security in distributed systems.

Dr. Ismail has international collaborations and is publishing the research
results in prestigious journals and international conferences. She received
the IBM Shared University Research (SURA) and the IBM Faculty Award,
very competitive worldwide, funding for major projects as a PI/Co-PI and
the funded project by UAE/NRF was top-ranked by external anonymous
reviewers. She served as a Chair, Co-Chair, and Track Chair for many
IEEE international conferences, including being a General Chair for IEEE
DEST 2009 and a General Chair, Technical Program Chair, and Organizing
Committee Chair for the 11th International Conference on Innovations in
Information Technology 2015 (IIT’15) for which she received the support
of the IEEE Computer Society (HQs) Technical Sponsorship. She served as
an Associate Editor for the International Journal of Parallel, Emergent and
Distributed Systems for several years. She is an Editor of the Information
Innovation Technology in Smart Cities, (Nature Springer, 2018).

EYAD H. ABED received the S.B. degree from the
Massachusetts Institute of Technology, in 1979,
and the M.S. and Ph.D. degrees from the Univer-
sity of California at Berkeley, in 1981 and 1982,
respectively, all in electrical engineering. From
2002 to 2008, he was the Director of the Institute
for Systems Research, University of Maryland,
College Park. From 2009 to 2012, he was the Dean
of the College of Information Technology, United
Arab Emirates University. From 2014 to 2017,

he was a Program Director in the Energy, Power, Control and Networks
Program with the Electrical, Communications and Cyber Systems Division,
National Science Foundation. He has been on the Faculty of the Department
of Electrical and Computer Engineering, University ofMaryland, since 1983,
where he is currently a Professor. His current research interests include sys-
tem and control theory, especially, nonlinear dynamics and control, applica-
tions in electric power systems, communication networks, power electronics,
aerospace systems, and social networks.

VOLUME 7, 2019 175019

http://dx.doi.org/10.1016/j.future.2013.06.009
http://dx.doi.org/10.1016/j.future.2013.06.009
http://dx.doi.org/10.3233/IFS-151866
http://dx.doi.org/10.1007/s10586-016-0623-4
http://dx.doi.org/10.1109/COMST.2015.2481183
http://dx.doi.org/10.1145/885651.781048
http://dx.doi.org/10.1145/1996130.1996154

	INTRODUCTION
	RELATED WORKS
	CLOUD DATA CENTERS VM PLACEMENT AND TASK SCHEDULING ALGORITHMS FOR ENERGY EFFICIENCY
	POWER MODELING FOR ENERGY EFFICIENCY IN DATA CENTERS

	TAXONOMY OF LINEAR POWER CONSUMPTION MODELS
	PEM TECHNIQUE
	SIMPLE LINEAR REGRESSION (SLR) TECHNIQUE
	MULTIPLE LINEAR REGRESSION (MLR) TECHNIQUE

	LC-MLR POWER MODEL
	OVERALL ARCHITECTURE AND WORKFLOW FOR ENERGY-AWARE CLOUD SCHEDULER
	PERFORMANCE ANALYSIS
	EXPERIMENTAL ENVIRONMENT
	EXPERIMENTS
	EXPERIMENTAL RESULTS ANALYSIS

	CONCLUSION AND SUMMARY
	REFERENCES
	Biographies
	LEILA ISMAIL
	EYAD H. ABED


