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ABSTRACT Automated change-point detection of EEG signals is becoming essential for the monitoring of
health behaviors and health status in a wide range of clinical applications. This paper presents a structural
time-series analysis to capture and characterize the dynamic behavior of EEG signals, and develops a method
to detect the EEG change points. For a given EEG signal, the proposed method is operated as follows: 1) a
sub-band pass filter is fist designed to capture those frequency components that can characterize the dynamic
behavior of the data, and the so-called power spectrum is extracted as the EEG features; 2) together with a
sliding-window technique, an automatic ‘segment-to-segment’ analysis of EEG signal, is developed with a
null hypothesis testing for decision making. In particular, the main challenge of the proposed method is to
design an appropriate distance metric that is compatible with our considered data/problem. To achieve this
end, we first collect a variety of metrics from other areas that would be potentially available for our problem,
and then compare them for the considered EEG change point detection. Experiments are conducted on two
different data sets. Results show the Bhattacharyya distance achieves the best detection result among all
investigated metrics. Meanwhile, comparison with state-of-the-arts demonstrates the effectiveness of the
method in real applications.

INDEX TERMS Change detection, distance metric, EEGmonitoring, similarity metric, time series analysis.

I. INTRODUCTION
Electroencephalogram (EEG) is a powerful and effective tool
to record and comprehend complex activities of the brain [1].
Recent advances in sensing, communication, computation,
visualization, etc., provide the ability to acquire large streams
of EEG signals, offering an unprecedented opportunity to
detect change-points of EEG signals at an early stage [2]–[4]
and substantially improve health assessment as well as many
other neurological diseases related health-care and surgery
problems [5]–[7].

With such a motivation, pattern recognition techniques and
rule-based inferences have been proposedwith an assumption
of the availability of massive histories of ‘irregular’ EEG
recordings [8], [9]. In real-life scenarios, however the irreg-
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ular patterns do not occur frequently and furthermore are
individual-specific, which leads to the difficulty of collection
of sufficient histories for such data [10].

Some previous researches have treated the problem as a
novelty detection task [11], [12]. Novelty detection recog-
nizes new EEG inputs that differ in some way from those
that are usual under normal status. This paradigm overcomes
one important limitation of competing pattern recognition
and rule-based methods, i.e., the need for a pre-collection and
labeling of irregular EEG data histories [13]. However, there
are still some important issues that should be considered in
such novelty detection methods. For example, some methods
are quite heuristic and require manual selection of parame-
ters, and meanwhile, the optimisation of a pre-defined num-
ber of parameters that define the structure of themodel should
be optimized [14], [15]. Therefore, further development and
commercialization of this method is presently inhibited in
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their real implementation. In this regard, continuous efforts
have been devoted with various enhancements of this kind of
methods until the present day [12], [16].

Along the line of ongoing research on novelty detection
of EEG signals, this paper presents a new method based on
structural time-series analysis. The flowchart of the method
is shown in Fig. 1. Its execution procedure is given as fol-
lows. For a given EEG signal, a sub-band pass filter is first
designed based on domain knowledge, in order to capture
the frequency components that can characterize the dynamic
behavior of the EEG data. Power spectrum is then extracted
as the feature for EEG data representation. Using the sliding-
window technique, the similarity of current segment with
respect to the past EEG histories is measured/quantified.
Change decision is finally made by testing a null hypothe-
sis. The method is operated continuously and periodically,
such that the collected EEG signal can be monitored and
checked with an online and realtime manner. With respect
to existing methods [9], [11], [17], the proposed approach
presents the following advantages: 1) it is computationally
efficient enough to be used for online monitoring since no
data modeling as well as parameter estimation is needed; 2) it
is self-conducted and unsupervised since any prior training of
a classifier or detector is not required.

The proposed method is validated on two data sets: one
with data from the public Bern-Barcelona EEG database and
another with data collected using our system setup. Compre-
hensive experimental results indicate good potentials of the
proposed method in real applications.

To summarize, our main contributions in this paper are
described as follows.
1) A new scheme for early change detection in EEG signals

based on structural time series analysis (Section III). It is
the first and essential step to characterize the dynamical
behavior of time series in order to produce reliable and
accurate change detection result. Current methods using
global statistics such as mean, root mean square (RMS),
Kurtosis, etc., are not well positioned to effectively
abstract information from EEG signals with highly noise
and artifact [18], [19]. And those methods based on sup-
port vector machine (SVM) and genetic algorithm (GA)
require large amount of data and consume large time
to train [20], [21]. In comparison, our method relies on
a specific metric time-sequentially comparing two con-
secutive data segments and periodically analyzing their
similarities for making final result. Thus, the proposed
method has obvious advantages such as more robustness
to noise and a lower computational complexity, that is
O(n log n) where n denotes the number of data points in
a given EEG signal.

2) Evaluation of a variety of metrics for EEG similarity
quantification (Section III-B). Designing an appropriate
similarity metric, that is compatible with the considered
data, is an important aspect to design such change detec-
tion systems. However, it is impossible to apply existing
metrics directly to the EEG signals due to the domain

specificity. That is to say, the metric used for EEG signal
processing still needs to be clarified. To achieve this end,
a variety of most popular and state-of-the-art metrics are
taken from other areas, and modified/extended if neces-
sary to incorporate themwith the EEG change detection.
Impacts of different metrics on change detection results
are evaluated and investigated, where the Bhattacharyya
Distance (BD) is demonstrated outperforming perfor-
mances than other competitors.

The rest of this paper is organized as follows. Section II
describes the feature extraction. Section III formulates the
EEG change detection problem and investigates several
potentially-available similaritymetrics. The algorithm of pro-
posed framework is shown in Section IV, followed by exper-
imental validation in Section V. Section VI finally concludes
this paper with some remarking points and shows the future
work.

II. FEATURE EXTRACTION
EEG signals are normaly considered as complex and non-
stationary, and meanwhile data redundant. Thus it has been
a common practice in EEG signal analysis to extract accurate
and reliable features from raw EEG data. The most popularly
usedmethodology is the time-frequency features as discussed
extensively in many previous works, e.g., [22]–[24]. A well-
established mechanism of time-frequency analysis is to first
confirm a specific sub-band based on domain knowledge,
and subsequently calculates its statistics to extract features.
Effective and accurate feature extraction provides a precise
understanding of the dynamic behavior of EEG time series,
supporting a successful detection of possible changes. If there
is a change happening, the extracted features will change in
comparison to normal EEG status in a determined way.

In this section, we introduce the employed feature extrac-
tion method, which includes: 1) pre-determination of sub-
bands, and 2) power spectrum calculation. Here, it is noted
that, our proposed method can also be applied to other fea-
tures as long as the extracted feature can reflect the dynamic
characteristics of monitored EEG data. However, since the
focus of this paper is on the detection mechanism, we do
not provide additional discussion on feature extraction. The
interested reader can refer to [25], [26] for this issue.

A. PRE-DETERMINATION OF SUB-BANDS
The happening of neurogenic disorder is a phenomena that
can be interpreted as a change from normal EEG status to
another. The main frequency components of indication of
a neurogenic disorder happening are: δ, θ , α, β, γ [27].
That is, if a neurogenic disorder happens, the amplitudes of
these frequencies change accordingly. Actually, although the
majority of existing works (e.g., [28], [29]) are focusing on
the frequency components from 0.1-30Hz that covers δ, θ ,
α, β, there is also an interest on frequency above 30Hz in
EEG signal analysis [30]. Since the aim of this study is to
explore a unify framework to detect the change point of EEG
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FIGURE 1. The flowchart of the proposed method.

signals, we do not make additional discussion on frequency
selection, and alternatively set the monitoring frequency by a
sub-band pass filter of [0.1, 70]Hz in the following of this
paper. Here, it is also noted that, the effectiveness of the
proposed method does not rely on the setting of monitoring
frequency, interested readers can use the proposed method
with respect to monitoring frequencies in their studies.

Fig. 2 illustrates the filtering process. The raw EEG data is
filtered using the pre-determined sub-band pass filter. A notch
filter is also used to remove the power line interference which
is around 50Hz. As such, the resulting data can only contain
frequency components from 0.1 Hz to 70 Hz.

FIGURE 2. The sub-band filtering for raw EEG data.

B. POWER SPECTRUM CALCULATION
A commonly used methodology to analyse predetermined
sub-bands is performing power spectrum analysis based
on short-time Fourier transform (STFT) [31], [32]. Let us
assume that the observed value of filtered EEG signal at
time t has been denoted as d(t). We may review the STFT
calculation. The integral formulation is given as,

F(f , τ ) =
∫ t

0
d(t)ω(t − τ )e−j2π f τdt (1)

whereF(f , τ ) is the output of the transform at frequency f and
at time τ . The proper window ω, also called the weighting
function, can be selected according to the characteristic of
processed signals with considering the amplitude resolution,
frequency resolution, time resolution, etc. This size of the
window is a compromise between two requirements: (a) it
should not be sensitive to noise and (b) it should be able to
accurately concentrate the detect in the window where the
change is significant. If the size of the window is too narrow,

the method will be very sensitive to noise. On the other hand,
too wide window would not allow us to accurately localise
the point where the change is evident. The size of the window
used in this work is 0.2 seconds as a compromise of these two
goals.

Second, let us consider the discrete situation where the
transform is discrete in both time and frequency domains.
When both the sampling frequency fs and window length T
are fixed, those related parameters are calculated accordingly
as given in Table 1. The spectrum can be computed at discrete
frequencies, i.e., f0 = k ∗1f = k ∗1/T , where k is an integer
and 0 ≤ k < Tfs/2. Thus, the discrete form of F(f , τ ) can be
given as,

F(k,m) =
N−1∑
n=0

d[n]w[n− m]e−jk1fn (2)

where N is the number of frequency components,m indicates
the time index. Subsequently, the power spectrum P̂(k,m) can
be estimated using the periodogram method by,

P̂(k,m)=
1
N
|F(k,m)|2=

1
N
|

N−1∑
n=0

d[n]w[n− m]e−jk1fn|2 (3)

An example is shown in Fig. 3. One can see that, the testing
EEG signal includes a change that indicates a transit from nor-
mal to abnormal (see Fig. 3(a)). However, as seen in Fig. 3(c),
the signal may has similar power spectrums in normal and
abnormal status. This implies, although the power spectrum
can be used as feature for EEG data representation, further
analysis is still needed to detect the change-point. In the
following, an analysis of EEG signals by means of statistical
time-series analysis will be presented.

III. METHODOLOGY
This section first provides a common scheme for continu-
ous monitoring of EEG signal based on the sliding-window
technique, and then formulates the problem that needs to be
considered.

A. PROBLEM FORMULATION
Using the feature extraction given above, the given monitor-
ing EEG data stream D (up to the inspection time t) has been
represented by a sequence of spectrums based on a sliding-
window, i.e.,P = {p1, p2, ..., pt }where pi indicates the power
spectrum extracted at time i.
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TABLE 1. Parameters for STFT calculation.

FIGURE 3. An example of STFT calculation where (a) a testing EEG signal including a change from normal to abnormal, (b) the computed power
spectrum, and (c) power spectrums of several EEG data segments.

The problem of EEG change detection can be formulated
as finding the change time that implies a transit from one data
distribution D1 to another D2. This task is accomplished by a
sliding window strategy including three steps given as below.
1) For an inspection time i, two candidate distributions

are formed using the data within the sliding win-
dow, i.e., D1 : {di−L , di−L+1, . . . , di} and D2 :

{di, di+1, . . . , di+L};
2) The STFT is used to calculated the power spectrum of

the candidate data distribution with the predetermined
sub-bands, i.e., D1 → P1 : {p11, p

1
2, . . . , p

1
n} and D2 →

P2 : {p21, p
2
2, . . . , p

2
n}

3) We can check the similarity of these two distributions
with a specific score for the inspection time, which is
denoted by L(P1,P2|i).

Time-sequentially performing the similarity inspection
with an overlapping sliding window, we can obtain a time
series similarity scores up to the time i, i.e., {L1,L2, . . . ,Li}.
Then, the commonly used 3σ control chart with an assump-
tion of Gaussian distribution is performed to make final result
by testing a null hypothesis as,

H0 :| Li − Li−1 | < 3σ ′;

H1 :| Li − Li−1 | ≥ 3σ ′; (4)

where H0 means that no change occurs on the time i as long
as | Li −Li−1 |< 3σ ′, and H1 indicates that a change occurs
when | Li−Li−1 |≥ 3σ ′. Here,Li−1 and σ ′ are the mean and
standard deviation of the Gaussian distribution respectively,
and calculated by,

Li−1 =
1

i− 1

i−1∑
j=1

Lj, (5)

σ ′ =

√√√√√ 1
i− 1

i−1∑
j=1

(Lj − Li−1)2. (6)

Here, it is worth mentioning that, there exist other alter-
natives such as Gaussian Mixed Model (GMM) [33] and
other non-Gaussian assumptions [34] for change detection.
However, since the focus of this paper is on the modeling,
we do not investigate these alternatives in this study.

The above-given idea relies on an appropriate similarity
score i.e. L, to quantify the distance between two candidate
data distributions. More specifically, when the difference
between two data distributions is large, the value of employed
distance will be large which implies a high probability that
a change occurs, but when the difference between two data
distributions is small, the value of measurement distance will
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be small which implies a low probability that a change occurs.
Considering the diversity of existing metrics, a specific sim-
ilarity metric can only be feasible for certain domains due to
the domain specificity as extensively discussed in the litera-
ture, e.g., [35]. In other words, it would be impossible to apply
them directly to different types of data in other domains.

Hence, in this paper, we consider a variety of typical simi-
larity metrics taken from other areas that would be potentially
available for our usage, and modify/extend them if necessary
to incorporate to our problem. The details will be given in the
following section.

B. SIMILARITY METRIC
The similarity metric L is essential to report an accurate and
reliable detection result and its construction normally relies
on a specific distance metric, i.e., a greater value of distance
indicates a smaller level of similarity. More importantly, for
two given feature sequences of EEG recordings P̂1 and P̂2,
the employed distance metric needs to satisfy several funda-
mental properties:

• Non-negativity, i.e., L{P̂1, P̂2} > 0;
• Identity, i.e., L{P̂1, P̂2} = 0 if and only if P̂1 = P̂2;
• Symmetry, i.e., L{P̂1, P̂2} = L{P̂2, P̂1};
• Triangle inquality, i.e., L{P̂1, P̂2} 6 L{P̂1, P̂3} +
L{P̂3, P̂2}, where P̂3 is a third EEG recording that is not
equivalent to both P̂1 and P̂2.

Here, one can note that, the distance metric for similarity
quantification is not necessary to meet all of these properties
especially the triangle inequality, under which such kinds of
distance are called as non-metric distances [36].

Based on the above definition of distance metric, the sim-
ilarity metric can also be confirmed as L ∈ [0, 1] with
value of 1 if two compared EEG recordings are identical
and 0 if nonidentical at all. In the following, we identified
some typical similarity metrics with potentials to solving our
problem by careful reviewing the relevant literature. In par-
ticular, during the identification, two following issues were
considered.

• The metric should satisfy three properties of scalability,
sensitivity and coverage;

• Among various metrics, we only pay attention to the
ones which only calculate the similarity between two
sequences with equal lengths.

Given two time series P1 = {p1(k)}, k = 1, 2, . . . ,K , and
P2 = {p2(k)}, k = 1, 2, . . . ,K , we introduce and consider
the following distance metrics to quantify their similarity.

1) EUCLIDEAN DISTANCE (ED)
Euclidean Distance is the most common metric that refers to
the real distance between two points in space [37]. It can be
calculated by

d (ED) =

√√√√ n∑
k=1

(p1(k)− p2(k))2. (7)

Taking into account the characteristics of similarity metric
described above, we use the reciprocal of d (ED) to represent
the similarity as

L(ED)
=

1
d (ED)

. (8)

2) PEARSON CORRELATION COEFFICIENT DISTANCE
(PCCD)
Pearson Correlation Coefficient Distance was proposed by
Pearson. It is a statistic used to reflect the degree of linear
correlation between two series, with values between -1 and
1. The larger the value of it, the stronger the correlation of
the two series [38]. It can be calculated by

d (PCCD) =

∑K
k=1(p1(k)− p1)(p2(k)− p2)√∑K

k=1(p1(k)− p1)2
√∑K

k=1(p2(k)− p2)2
. (9)

So the similarity defined by PCCD is then calculated by

L(PCCD)
= |d (PCCD)|. (10)

3) SYMMETRIC KULLBACK-LEIBLER DIVERGENCE (SKLD)
The Kullback-Leibler Divergence can be used to measure
the difference between two probability distributions, widely
used in information retrieval and data science [39]. It can be
calculated by,

D(P1 ‖ P2) =
K∑
k=1

(p1(k) log(
p1(k)
p2(k)

)), (11)

D(P2 ‖ P1) =
K∑
k=1

(p2(k)) log(
p2(k)
p1(k)

)), (12)

but it is not strictly a distance measure, because of the asym-
metry, which means that if P1 is not equal to P2, then D(P1 ‖
P2) is not equal to D(P2 ‖ P1). In order to solve the problem,
symmetric Kullback-Leibler divergence is very popular in
various statistical distance metrics [40] and is calculated by

d (SKLD) =
D(P1 ‖ P2)+ D(P2 ‖ P1))

2
. (13)

Then the similarity can be obtained as

L(SKLD)
=

1
d (SKLD)

. (14)

4) HELLINGER DISTANCE (HD)
The Hellinger Distance was first proposed by Hellinger
in [41]. Hellinger Distance is used in probability and statistics
to measure the similarity between two probability distribu-
tions, which belongs to f -divergence [41]. It can be calculated
by

d (HD) =
1
√
2
‖

√
P1 −

√
P2‖2 (15)

Thus, the similarity based on HD can be calculated as

L(HD)
=

1
d (HD)

. (16)
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5) KOLMOGOROV DISTANCE (KD)
The Kolmogorov Distance was introduced by Kol-
mogorov [42]. The statistical distance plays an important
role in probability theory and hypothesis testing [43], and
it is widely used to measure the difference between two
probability distributions [44]. It can be calculated by

d (KD) = ‖P1 − P2‖∞ (17)

Thus, the similarity based on KD can be calculated as

L(KD)
=

1
d (KD)

. (18)

6) BHATTACHARYYA DISTANCE (BD)
In the statistics, the Bhattacharyya Distance [45], that is
similar to but different from the Hellinger Distance, mea-
sures the similarity of two discrete or continuous probability
distributions. It is closely related to the Bhattacharyya coef-
ficient, which measures the overlap between two statistical
samples or populations [46]. The Bhattacharyya coefficient
can be used to determine the separability of the classification
used in the measurement of two samples that are considered
relatively close, and is defined as

L(BD)
= − ln(BC(P1,P2)), (19)

where BC(X ,Y ) is the Bhattacharyya coefficient

BC(P1,P2) =
K∑
k=1

(
√
p1(k)p2(k)), (20)

IV. ALGORITHM OF PROPOSED FRAMEWORK FOR
EARLY CHANGE DETECTION IN EEG SIGNAL
Based on the methodologies described in previous sections,
the algorithm of proposed EEG early change detection system
includes the following five steps:

1) Collect EEG signal in a continuous manner;
2) Divide the streaming data into individual segments with

a non-overlapping window;
3) Perform feature extraction for each EEG signal seg-

ment;
4) Measure the similarity between two neighboring EEG

segments, and test a null hypothesis for decision mak-
ing;

5) Output the result if a change is detected; otherwise,
go to Step 2 to continue.

V. EXPERIMENTAL VALIDATION
In this section, we will first investigate the impacts of dif-
ferent similarity metrics on EEG change detection by the
proposed method, and then compare our method with state-
of-the-art methods.

Two different data sets are used in this section, described
as below.

• The first EEG data set is taken from the public Bern-
Barcelona EEG data set [47]. The original data are

recorded with a sampling rate of 1,024 Hz. They ran-
domly select 3,750 pairs of simultaneously recorded
signals from the pool of all signals measured at focal
and non-focal EEG channels respectively, which means
that there are 3750 pieces of data collected from focal
area and 3750 pieces of data collected from non-focal
area. Then divide the recordings into fragments of length
10000, about 9.8 seconds. The testing dataset used in this
experiment contains 350 signals which are formed by
concatenating a non-focal signal record and a focal sig-
nal record, such that at least one change can be contained
in each data stream. Therefore, the length of each piece
of signal is about 19.5 seconds, among which 4 seconds
data is used for training and initialization.

• The second EEG data set is collected from the Depart-
ment of Neurology, Second Hospital of Shandong Uni-
versity. The system is shown in Fig. 4. It is used to mon-
itor epilepsy patient in night sleeping. The EEG record
data and corresponding surveillance video frames, are
collected simultaneously from the monitored individual.
The raw EEG signals are recorded with a sampling
rate of 1,024 Hz, and downsampled to 512 Hz prior to
further analysis. Then it will be sent to PC for analysis.
The testing data in this section is taken from channel
C4 lasting 30 minutes where the data for 1 minute at
the beginning are used as training and initialization data.
The neurologist first check the collected data including
the EEG and the video, and then label the changes in the
data. With this, we can get a number of change points to
evaluate the performance of proposed method.1

We can use three statistical indicators: Precision, Recall
and comprehensive indicator Fscore, to evaluate the detection
performance, which are defined respectively as below.

Precision =
N1

N2
(21)

Recall =
N ′1
N

(22)

Fscore =
2 · Precision · Recall
Precision+ Recall

(23)

where N1 is the number of detected points that are true
changes, N2 is the number of all detected points, N ′1 is the
number of changes that are detected, and N is the number
of changes in real situations. An example is given in Fig. 5.
There are totally five points that are detected as changes, how-
ever, only two of them are in the abnormal status. Since the
proposed framework starts with the normal EEG status, that is
we use the EEG data under normal status as the ‘regular’ data,
the detected change points that are in normal EEG status will
be considered as ‘wrong’; in comparison, the detected change
points that are in abnormal EEG status will be considered as
‘right’. As a result, the statistical indicators are obtained as
N1 = 2,N2 = 5,N ′1 = 1,N = 2, and the Precision is 0.4,
the Recall is 0.5, and the Fscore is 0.44, accordingly

1The interested reader can contact the corresponding author for acquiring
the testing data.
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FIGURE 4. The system setup for night sleep monitoring.

FIGURE 5. The example to explain the statistical indicators where all
detected changes are labeled by red circles.

Apparently, a high value of Precision means a high detec-
tion accuracy, and a high value of Recall indicates a high
sensitivity of detection, the indicator Fscore gives a compre-
hensive evaluation of a detection method. Here, it is worth
mentioning that, in the following experiment, once a change
is detected, the proposed method continues until the whole
testing data is checked. The detected change points are used to
calculate the performance indicators where the detected point
in abnormal status is as true alarm and the detected point in
normal status is as false alarms as the detection process begins
with a normal status. The points that are detected as normal
is used to update the parameters in Gaussian model in Eq.4.

A. DETECTION PERFORMANCE BY INVESTIGATED
METRICS
In this experiment, six metrics introduced in Section III-B are
investigated.
• Bern-Barcelona EEG data set: First, we show three
examples of detected result in Fig. 6. It can be seen that,
ED and SKLD seems to be ineffective for the testing
data as they did not detect changes accurately. PCCD
and KD can detect these changes but with a number

of false alarms. HD detected the changes of all testing
data but having false alarms for the detection of third
testing data. BD performs the best as it can detect the
changes accurately for all three testing data. Quantitative
comparison is then given in Table 2 for all testing data
in the data set. More clearly, it can be seen that, BD and
HD perform better than the others. Based on thee results,
the investigated metrics can be ranked as BD > HD >

PCCD > KD > SKLD > ED.
• Our testing data set: Second, for the testing data col-
lected by our system setup, we show the detailed detec-
tion results in Fig. 7. For metrics of ED, PCCD, SKLD,
KD, many false alarms are generated. Similar to the
observation in results on Bern-Barcelona EEG data set,
the metrics of HD and BD performs the best, although
there are some false alarms in HD. A quantitative com-
parison of all methods is given in the Table 3. Clearly
one can see that, BD achieves the best for all terms
of Precision, Recall and Fscore, i.e., all three indicators
achieve 1. The performance of HD is second only to BD.
Therefore, all investigated metrics can be ranked as BD
> HD > PCCD > KD > SKLD > ED for our testing
data set.

B. COMPARISON WITH STATE-OF-THE-ARTS
To investigate the priority of our method, state-of-the-art
methods including Mean, Root Mean Square (RMS), Kur-
tosis, Skewness, STFT, Empirical Mode Decomposition
(EMD), Continuous Wavelet Transform (CWT), Discrete
Wavelet Transformation (DWT),method of combining power
spectrum and center frequency (CF), method of combining
power spectrum and frequency variance (FV) were used to
compare. We use them to calculate the anomaly score for the
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FIGURE 6. Three examples of detected result for testing data. (1): original EEG data, (2)-(7): detected results by ED, PCCD, SKLD, HD, KD and BD,
respectively. For each of them, from the left to right are the results for the first testing data, the second testing data and the third testing data.

TABLE 2. Comprehensive comparison in Bern-Barcelona data set. The bold font is used to emerge the best result.

TABLE 3. Comprehensive comparison in our testing data set. The bold font is used to emerge the best result.

testing EEG signals and detect the change also by testing the
null hypothesis described in Section III for a fair comparison.
Moreover, since the BD metric has been demonstrated the
priority than others in the above experiment, we directly use
it in this experiment.
• Bern-Barcelona EEG data set: First, we also show the
detection results for three examples used in Fig.8. It can
be seen that our method can detect all the changes in
three testing data. While, the method usingMean did not
detect all the change points, and meanwhile it has a large

detection delay even for a successful detection. RMS did
not detect the change for the first testing data. Kurtosis
and Skewness can detect all changes accurately in the
three testing data but there is a large detection delay
in the result of Kurtosis. The methods of STFT, EMD,
CWT and DWT has a very similar detection perfor-
mance, that is, they can keep stable in normal EEG status
but changes greatly after a change occurs. But the main
disadvantage of them is the false detection, i.e., they
produce more false alarms than our method. CF and
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FIGURE 7. Detected results of our testing data. (1): original EEG data, (2)-(7): detected results by ED, PCCD, SKLD, HD, KD and BD, respectively.

FV seems ineffective for all testing data. Comprehensive
comparison for all testing data is provided in Table 4
where it can be clearly seen that the proposed method
achieves the best performance Fscore although it has a
little lower Precision than Skewness and CWT and a
little lower Recall than EMD.

• Our testing data set: Second, the detailed detection
results for the testing data collected by our system setup
are shown in Fig. 9. It is obvious that our method
accurately detects all change points. RMS, STFT, EMD,
DWT and FV also detect all change points but mean-
while having a number of false alarms. Comprehensive
comparison of all methods is shown in Table 5. It can
be seen that the proposed method achieves the best
performance among all compared method, revealing the
effectiveness of great potential of our method in real
applications.

C. RESULT SUMMARY
Combining the results in two above experiments, we found
that,

1) The metrics of BD and HD outperform other alterna-
tives, i.e., these two metrics are more appropriate for
EEG change detection. However, it is hard to determine
which of them is better because their calculations are
based on the same transformations of the Bhattacharyya
coefficient BC(P,Q), i.e.,

s(HD) = 1− BC(P,Q),

s(BD) = − ln(BC(P,Q)). (24)

In this regard, HD and BD can be thought of as an
approximately equivalent measurement of two statistical
samples. The difference between them is the sensitivity
to noise as discussed in [48]. Thus, we recommend the
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FIGURE 8. Detection results for three examples of testing data where all detected changes are labeled by red or brown circles. (1)-(7) are the
original EEG data, the detection results by our proposed method, Mean and RMS, Kurtosis and Skewness, STFT and EMD, CWT and DWT, CF and FV.
For each of them, from the left to right are the results for the first testing data, the second testing data and the third testing data.

TABLE 4. Comprehensive comparison in Bern-Barcelona data set. The bold font is used to emerge the best result.

TABLE 5. Comprehensive comparison in our testing data set. The bold font is used to emerge the best result.

use of BD or HD in the real implementation of our
method in real applications.

2) The main challenge of EEG signal analysis is mostly
due to the high noise. The proposed method shows
a higher ability to absorb data fluctuations caused by
noise, as such it can achieve the best detection per-
formance than state-of-the-arts. We should note that
the time-frequency methods including STFT, EMD,
CWT and DWT can also show a high robustness to

noise (see their detection results in Fig.8), however
they have a number of false alarms (for example, see
the detection results for the first and third testing data
by EMD, CWT). In this regard, these time-frequency
methods can improve their detection results using appro-
priate post-processing technique to remove these false
alarms. Meanwhile, comparison results with CF and
FV demonstrate the superiority of the proposed method
to them.
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FIGURE 9. Detection results of our testing data. (1)-(7) are the original EEG data, the detection results by our proposed method, Mean and RMS,
Kurtosis and Skewness, STFT and EMD, CWT and DWT, CF and FV.

The framework we propose is ideal for real-time moni-
toring of changes in EEG signals. This is mainly because
this method compares the spectral similarity of adjacent seg-
ment signals, and can effectively detect the changes of EEG
signals at various frequencies. The other compared methods
only show the time domain, frequency domain, and time-
frequency domain characteristics of the EEG signal, and do
not separately calculate the feature changes. Correspond-
ingly, this framework uses the similarity measure to calculate
the degree of change, so it is more suitable for change detec-
tion for EEG signals. Our proposed framework has achieved
good results using BD as the similarity metric, which can
prove that, The effect of BD is the best, which shows that

BD is the most suitable metric for measuring the similarity of
EEG signals in the framework of our method.

It should be noticed that the most commonly used ED did
not achieve good results, which means that it is not feasible to
simply measure the similarity from the perspective of ampli-
tude. In addition, HD is the best indicator of performance
other than BD. The main reason is that both BD and HD
are obtained by certain transformations of the Bhattacharyya
coefficient BC(P,Q) as Eq. 24. In this regard, HD and BD
are thought of as an approximately equivalent measurement
of two statistical samples. The difference between them is the
sensitivity to noise as discussed in [48]. And the results prove
that the sensitivity of BD is more suitable for EEG signal.
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In addition, the effect of PCCD is also good, but the other
three indicators are very poor.

Therefore, our proposed method based on BD can monitor
the state of EEG signals in real time, and can detect changes
in an accurate and timely manner.

VI. CONCLUSION
This paper has presented a new method to detect the change
in EEG signals based on structural time-series analysis.
The method uses a non-overlapping sliding window strategy
quantifying the temporal similarity of considered EEG data
and detects the change by testing a null hypothesis. The main
challenge of this idea is to design an appropriate distance
metric that is compatible with our considered data/problem.
To achieve this end, we collect a variety of metrics from other
areas and investigate them for the problem of EEG change
detection. Based on comprehensive experiments conducted
on two data sets, it is concluded that, 1) the metric of BD
and HD are more appropriate for EEG signal processing; 2)
the proposed method outperforms state-of-the-art methods.
In future work, we will explore post-processing method to
remove false alarms.
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