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ABSTRACT In existing visual representation learning tasks, deep convolutional neural networks (CNNs) are
often trained on images annotated with single tag, such as ImageNet. However, single tag annotation cannot
describe all important contents of one image, and some useful visual information may be wasted during
training. In this work, we propose to train CNNs from images annotated with multiple tags, to enhance the
quality of visual representation of the trained CNN model. To this end, we build a large-scale multi-label
image database with 18M images and 11K categories, dubbed Tencent ML-Images. We efficiently train the
ResNet-101 model with multi-label outputs on Tencent ML-Images, taking 90 hours for 60 epochs, based on
a large-scale distributed deep learning framework, i.e., TFplus. The good quality of the visual representation
of the Tencent ML-Images checkpoint is verified through three transfer learning tasks, including single-label
image classification on ImageNet and Caltech-256, object detection on PASCAL VOC 2007, and semantic
segmentation on PASCAL VOC 2012. The Tencent ML-Images database, the checkpoints of ResNet-101,
and all the training codes have been released at https://github.com/Tencent/tencent-ml-images. It is expected
to promote other vision tasks in the research and industry community.

INDEX TERMS Visual representation learning, multi-label, image database.

I. INTRODUCTION
This work presents the large-scale visual representation learn-
ing on a newly built multi-label image database, dubbed
Tencent ML-Images. We start from the discussions of the
following two questions.

• Whywe need large-scale image database?Deep learning
had been in a long trough, until 2012 when AlexNet [1]
shows surprising results on the single-label image clas-
sification task of ILSVRC2012 challenge [2]. The
excellent potential of deep neural networks is released
through the large-scale image database ImageNet [2].
Besides, the cost of acquiring training data for many
visual tasks, such as object detection and semantic seg-
mentation is very high. Due to the insufficient training
data, they usually need certain pre-trained model with
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good visual presentation on other large-scale database
(e.g., single-label image classification model trained on
ImageNet) as initialization.

• Why we need multi-label image database? As there are
multiple objects in most natural images, single-label
annotation may miss some useful information and mis-
lead the training of CNNs. For example, two visually
similar images that include both cow and grass may be
annotated as cow and grass separately. The reasonable
approach is ‘‘telling’’ the CNN model that these two
images contain both cow and grass.

The above discussions explain why we need large-scale
multi-label image database for visual representation learn-
ing with deep neural networks. However, annotating one
image with multiple tags is much more time-consuming than
annotating one image with single tag, and it is difficult to
control the annotation quality. To the best of our knowl-
edge, the largest public multi-label image database is Open
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Images [3], [4], which includes about 9 million images.
Recently, Sun et al. [5] fine-tuned a ResNet-101 model [6]
that pre-trained on JFT-300M (a multi-label image database
with 300 million images), leading to 79.2% top-1 accuracy
on the validation set of ImageNet. In contrast, the ResNet-
101 model trained on ImageNet from scratch only gives
77.5% top-1 accuracy. However, the training on JFT-300M
takes 2 months for 4 epochs, as the training size of JFT-
300M is 200 times more than that of ImageNet. Besides,
JFT-300M and its checkpoint are not publicly available.

In this work, we build a new large-scale multi-label image
database, dubbed Tencent ML-Images. Instead of collect-
ing new images from Google search or Flickr as did in
other databases, we collect images from existing image
databases, i.e., Open Images [3] and ImageNet [2]. Specif-
ically, we merge their class vocabularies into one unified
vocabulary. We further remove rare and redundant categories
as well as the corresponding images, and obtain about 18 mil-
lion images with 11,166 categories. We then build semantic
hierarchy of the unified vocabulary, according to semantic
information extracted from WordNet [7]. We also derive the
class co-occurrence among categories, which are then used
together with the constructed semantic hierarchy to augment
the annotations, based on the original annotations from Open
Images and ImageNet.

To verify the quality of the built Tencent ML-Images,
we conduct large-scale visual representation learning with
the popular deep neural network ResNet-101. There are
two main difficulties in the large-scale representation learn-
ing using the multi-label image database, including the
severe class imbalance and the long training process. To
alleviate the side-effect of class imbalance, we design a
novel loss function that simultaneously considers weighted
cross entropy, adaptive loss weight along the training pro-
cess and down-sampling of negative training images in
each mini-batch. To accelerate the training process, we uti-
lize the large-scale distributed deep learning framework,
i.e., TFplus, with Message Passing Interface (MPI) and
NVIDIA Collective Communications Library (NCCL) [8].
Consequently, the whole training process takes 90 hours
of 60 epochs, using 128 GPUs. Furthermore, to verify the
quality of visual representation of the ResNet-101 model
pre-trained on Tencent ML-Images, we conduct transfer
learning on three other vision tasks, including single-label
image classification, object detection and semantic seg-
mentation. We compare with the transfer learning using
the checkpoints pre-trained on JFT-300M and ImageNet,
respectively. The better transfer learning results using the
checkpoint pre-trained on Tencent ML-Images demonstrate
the good quality of Tencent ML-Images and the trained
checkpoints.

The main contributions of this work are four-fold.
• We build a multi-label image database with 18M
images and 11K categories, dubbed TencentML-Images,
which is the largest publicly available multi-label image
database until now.

• We efficiently train the ResNet-101 model on Ten-
cent ML-Images, utilizing a large-scale distributed deep
learning framework. Besides, we design a novel loss
function to alleviate the side-effect of the severe class-
imbalance in large-scale multi-label database.

• We demonstrate that the good quality of Tencent
ML-Images and its pre-trained checkpoint through the
transfer learning on three different vision tasks.

• We release the Tencent ML-Images database, the trained
ResNet-101 checkpoints, as well as the complete codes
of data preperation, pre-training and fine-tuning, at the
GitHub address https://github.com/Tencent/tencent-ml-
images. It is expected to promote other vision tasks for
the research and industry community.

The organization of this manuscript is as follows. Related
work is reviewed in section II. The built multi-label image
database is introduced in section III, including the image
source, class vocabulary, semantic hierarchy, tag augmen-
tation and statistic informations. The visual representation
learning on Tencent ML-Images is presented in section IV.
Transfer learning to single-label image classification, object
detection, and semanic segmentation are presented in section
V, followed by the conclusion in section VI.

II. RELATED WORK
In this section, we review the image databases that are used
for visual representation learning. They can be generally
partitioned into two categories. One category is the single-
label image database, where each image is annotated with
only one tag. The other category is the multi-label image
database, where each image is annotated with multiple tags.

Widely used single-label image databases include
CIFAR-10 [9], Caltech-256 [10], MNIST [11], ImageNet [2],
WebVision [12], SUN [13] and Places [14], etc. Before
the deep learning era, the scales of most image databases
are not very large. CIFAR-10 [9] includes 60K small-sized
natural images with 10 categories. Caltech-256 [10] includes
30,607 images with 256 object categories. MNIST [11]
includes 70K images of handwritten digits, from ‘‘0’’ to
‘‘9’’. In the deep learning era (from 2012), ImageNet [2]
is the most popular database. Its first version that was used
for ILSVRC 2012 includes 1.28M images and 1000 object
categories. And now it has been expanded to 14M images.
Many deep learning models (e.g., AlexNet [1], VGG [15] and
ResNet [6]) are trained and evaluated on ImageNet to demon-
strate their performance, and the checkpoints pre-trained on
ImageNet are widely used to help other vision tasks, such
as image annotation, object detection, etc. WebVision [12]
includes 2.4M images, with the same 1,000 object categories
in ImageNet. The main difference between WebVision and
ImageNet is that the annotations of WebVision are noisy,
while the annotations of ImageNet are accurate. However,
the authors of WebVision have experimentally demonstrated
that the AlexNet trained on sufficient images with noisy
labels has comparable or even better performance in visual
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representation than those trained on ImageNet. In addition
to above image databases of object categories, there are two
popular databases of scene categories, including SUN and
Places. SUN [13] includes 108,754 images, with 397 scene
semantic categories. Places [14] includes 10M images, with
434 scene semantic categories. However, scene categories
describe higher level information than object categories. The
visual representation of the deep model trained on scene
databases may not be suitable for other vision tasks like
object recognition or detection. However, as mentioned in
section I, the main contents of one image cannot be well
described by a single label. Visual representation learning on
single-label images will waste useful information of training
images, and may bring in confusion to deep models, as two
visually similar images could be annotated with two different
categories.

There are also many multi-label image databases. Before
the deep learning era, most multi-label image databases
are used to evaluate multi-label models or image annota-
tion methods. Some widely used databases include Corel 5k
[16] (including 4,999 images with 260 object categories),
ESP Game [17] (including 20,770 images with 268 cat-
egories), IAPRTC-12 [18] (including 19,627 images with
291 categories), NUSWIDE [19] (including 270K images
with 81 categories), MS COCO [20] (including 330K images
with 80 categories), and PASCAL VOC 2007 [21] (includ-
ing 9,963 images with 2.47 averaged annotated tags per
image). However, they are rarely used to train deep models
for visual representation learning. Their scales are not big
enough to train good parameters of popular deep models,
such as VGG or ResNet. Besides, their small-scale cate-
gory vocabularies are not diverse enough to train models
with good generalization to other vision tasks. In contrast,
there are also large-scale multi-label image databases. For
example, Open Images-v1 [3] includes 9M image with 6K
categories. JFT-300M is an ‘‘internal dataset’’ in Google,
including 300M images and 18,291 categories, as well as
1.25 averaged annotated tags per image. Sun et al. [5] trained
the ResNet-101 model on JFT-300M, and transferred the
trained checkpoint to other vision tasks, including single-
label image classification on ImageNet, object detection on
MS-COCO and PASCAL VOC 2007, semantic segmenta-
tion on PASCAL VOC 2012, and human pose estimation on
MS-COCO. Specifically, the checkpoint of ResNet-101 pre-
trained on JFT-300M is fine-tuned on ImageNet, leading to
79.2% top-1 accuracy on the validation set of ImageNet.
In contrast, the ResNet-101 model trained on ImageNet
from scratch gives 77.5% top-1 accuracy. This improvement
demonstrates that JFT-300M is helpful for learning more
generalized visual representation. However, it is notable that
the scale of JFT-300M is more than 200 times of ImageNet.
Training ResNet-101 on 300M images with 18,291 categories
is very costly. As reported in [5], their training process
takes 2 months for 4 epochs, using ‘‘asynchronous gradient
descent training on 50 NVIDIA K80 GPUs and 17 parameter
servers’’. Moreover, JFT-300M and its checkpoints have not

been published. They cannot be utilized by the research com-
munity to help other vision tasks. In contrast, the built Tencent
ML-Images is publicly available, and our training based on
distributed training framework is much more efficient.

III. THE TENCENT ML-IMAGES DATABASE
A. IMAGE SOURCE AND CLASS VOCABULARY
The images and class vocabulary of Tencent ML-Images
are collected from ImageNet [2] and Open Images [3]. In
the following we introduce the construction of training set,
validation set and class vocabulary, respectively.

Firstly, we extract image URLs from ImageNet-11k.1 It
is a subset of the whole database of ImageNet, collected by
MXNet. It originally includes 11,797,630 training images,
covering 11,221 categories. However, 1,989 categories out
of 11,221 categories are very abstract in visual domain,
such as event and summer. We think the images annotated
with such abstract categories is helpless for visual represen-
tation learning. Thus, we remove these abstract categories
and their corresponding images, with 10,322,935 images
of 9,232 categories left. Moreover, according to the seman-
tic relationship among categories, we add other 800 finer-
grained categories from the whole vocabulary of ImageNet.
For example, if dog is included in the above 9,232 cate-
gories, we also add Husky into the vocabulary of Tencent
ML-Images, as well as the corresponding images from Ima-
geNet. Consequently, we obtain 10,756,941 images, cover-
ing 10,032 categories from ImageNet. We randomly select
50,000 images as validation set, while ensuring that the
number of selected images of each category is no larger
than 5. On the other hand, the Open Images-v1 contains
about 9M images and 6K categories. We filter all images
of Open Images using a per-category criteria. If one cat-
egory occurs in less than 650 images, then we remove
this category. We also remove some abstract categories in
visual domain as did above. Besides, as some categories
from Open Images are similar to or synonyms of the above
10,032 categories, we merge these redundant categories into
unique ones. If all tags of one image are removed, then this
image is also abandoned. Consequently, 6,902,811 training
images and 38,739 validation images are remained, cover-
ing 1,134 unique categories. Finally, we merge the selected
images and categories from ImageNet and Open Images to
construct the Tencent ML-Images database, which includes
17,609,752 training and 88,739 validation images, covering
11,166 categories.

B. TAG AUGMENTATION OF IMAGES
Note that each image from ImageNet-11K is originally anno-
tated by a single tag. As analyzed above, there usually exists
multiple contents in one nature image. Single tag annotation
may not cover the whole content in each image, and thus
misses some helpful information. Meanwhile, as the size of
class vocabulary is very large, there may also exist missing

1Downloaded from http://data.mxnet.io/models/imagenet-11k/
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tags for multi-label annotations in Open Images. Due to the
large scale of images and class vocabulary, it is challenging
and time-consuming to manually augment the tags for each
image. We thus propose to augment the tags of these images
by utilizing the semantic hierarchy and the co-occurrence
among categories as follows.

We firstly map the categories of Tencent ML-Images to the
WordIDs in WordNet. According to the WordIDs, we con-
struct the semantic hierarchy among these 11,166 categories.
It include 4 independent trees, of which the root nodes are
thing, matter, physical object and atmospheric phenomenon,
respectively. The length of the longest semantic path from
root to leaf nodes is 16, and the average length is 7.47.
The constructed semantic hierarchy captures the semantic
relations among different categories and is used for tag aug-
mentation. Specifically, according to the semantic hierarchy,
all ancestor categories of the original tag are also annotated
as positive tags of the same image. For example, if one image
is originally annotated as ‘‘dog’’, we also label is as ‘‘ani-
mal’’. Secondly, we compute the co-occurrence matrix CO
between categories from ImageNet-11k and categories from
Open Images. Specifically, we train a ResNet-101model with
1,134 outputs, based on Open Images. Using this trained
model, we predict the labels among these 1,134 categories
for the images from ImageNet-11k. If the posterior proba-
bility with respect to one category of one image is larger
than 0.95, then we set this category as the positive tag of
this image. Then, we compute the co-occurrence matrix as
follows: for category i from ImageNet-11k and category j
from Open Images, we denote the number of positive images
of category i in ImageNet-11k as ni, amongwhich the number
of images also annotated as category j is denoted as ni,j, then
CO(i, j) = ni,j/ni ∈ [0, 1]. If CO(i, j) > 0.5 and there is no
semantic relationship between category i and j (i.e., there is
no path from i to j or reverse in the semantic hierarchy), then
we determine that category i and j is a strongly co-occurrent
pair of categories. Then, we augment the tags of images from
ImageNet-11k as follows: if one image is originally annotated
as i, then we also label it as category j. For example, if an
image is originally annotated as ‘‘sea snake’’, then we also
label it as ‘‘sea’’.

C. DATA STATISTICS
1) DISTRIBUTION OF ANNOTATIONS
The number of images per category is shown in Fig. 1.
Specifically, the maximum number of images per category is
13,217,523, corresponding to the category ‘‘object, physical
object’’; the minimum number is 0; the average number is
13,843. The distributions of different categories are extremely
imbalanced. Some categories are frequent, while many others
are very rare. It is referred to as the imbalance among cate-
gories [22]. There are 10,505 trainable categories, of which
the numbers of images are larger than 100. The statistics
of the numbers of annotated tags of all training images are
shown in Fig. 2. Specifically, the numbers of annotated tags

FIGURE 1. Number of images (log2) per category in Tencent ML-Images.
The green line indicates the average number of images of all categories.

FIGURE 2. The statistics of the numbers of annotated tags of all training
images in Tencent ML-Images.

of all training images range from 1 to 91, and the average
number is 8.72. Considering the size of the label vocabulary
(i.e., 11K), the number of annotated tags per image is very
small. In other words, the number of positive tags of each
image is much smaller than the number of negative tags. It
is referred to as the imbalance between positive and negative
tags per image [22]. Above two types of imbalance bring in
difficulty to model training. They will be considered during
the training process of our model, as shown in section IV.

2) NOISY AND MISSING TAGS
Noisy tag indicates the incorrectly annotated tag. And miss-
ing tag [23]–[27]means that one class occurs in the image, but
it is not annotated. As demonstrated in [3], the annotated tags
for most images in Open Images are generated by machine,
while the annotations of only a few fraction of images are
verified by humans. The noisy annotations are unavoidable
and they are also included in Tencent ML-Images. Most
missing tags occur in images from ImageNet-11K, as they
are originally annotated by single tag. As demonstrated in
section III-B, we augment the tags of these single-label anno-
tations by the category co-occurrence and semantic hierarchy.
Compared to automatically generating tags bymachine as did
in Open Images, our augmentation is rather conservative. Our
concern is that it is difficult to control the noise proportion of
the machine-generated annotations, and we believe that the
negative influence of noisy tags is larger than that of missing
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ones. Some works (e.g., [5], [28]) have demonstrated that
learning from massive noisy labeled images is still able to
show good visual representation. But they have not studied
the trade-off between noisy and missing annotations, as the
accurate proportions of both types of annotations are costly
to calculate on large-scale databases. In this work, we choose
the setting of more missing but less noisy annotations.

IV. VISUAL REPRESENTATION LEARNING ON TENCENT
ML-IMAGES
A. TRAINING RESNET-101 WITH MULTI-LABEL OUTPUTS
ON TENCENT ML-IMAGES
1) MODEL AND LOSS FUNCTION
For visual representation learning on Tencent ML-Images
databse, we implement the popular ResNet-101 model.
As our task is multi-label classification, the outputs of
ResNet-101 are the activations of m independent Sigmoid
functions, with m being the size of the class vocabulary. To
alleviate the imbalance problems described in section III-C,
we propose a novel weighted cross entropy loss function. For
clarity, in the following, we present the loss function with
respect to one training image xi:

LW (xi, yi)=
1
m

m∑
j

r
yij
t

[
− ηyij log(pij)−(1−yij) log(1−pij)

]
,

(1)

where pij = fW(xi, j) ∈ [0, 1] denotes the posterior proba-
bility with respect to category j, with W being the trainable
parameters. yi = [yi1, . . . , yij, . . . , yim] ∈ {0, 1}m indicates
the ground-truth label vector of image xi.
• Due to the highly imbalance of Tencent ML-Images, for
many categories, the number of positive images is far
less than that of negative ones. The cost parameter η > 1
is thus introduced to set a larger cost on positive labels
than negative labels, to alleviate the imbalance between
positive and negative images in each category, which is
a common strategy in imbalance learning [29]. In our
experiments, η is set to 12.

• r
yij
t denotes an adaptive weight during the training pro-
cess. It is formulated as follows:

r
yij
t =


max{0.01, log10(

10
0.01+t

)}∈ [0.01, 1), ifyij=1;

max{0.01, log10(
10
8+t

)}∈ [0.01, 0.1), ifyij=0.

(2)

For category j, if all training images in one mini-batch
are negative, then we record the status as 0; if at least
one training image in this mini-batch is positive, then
we record the status as 1. Consequently, we record a
status vector like (. . . , 0, 1, 1, 1, 0, 0, 1, 0, . . .). Then,
t is defined as follows: if the status of the current
mini-batch is different with that of the previous mini-
batch, i.e., 01 or 10, then t = 1; if the current status
is same with the previous status, then t = t + 1.

FIGURE 3. The curve of the log2 training loss of pre-training the
ResNet-101 model on Tencent ML-Images.

With r
yij
t , if the parameters corresponding to category j

are positively or negatively updated in sequential mini-
batches, the weight of the corresponding loss is decayed.
It helps to alleviate the imbalance between frequent
and rare categories. Besides, as the positive sequential
mini-batches is less frequent than the negative sequential
mini-batches, we set r1t > r0t to alleviate the imbalance
between positive and negative labels.

2) IMAGE PRE-PROCESSING
For image pre-processing, data augmentation and normaliza-
tion are widely adopted in image classification to improve the
generalization [1], [6], [30]. Following [30], our image pre-
processing consists of the following six sequential steps.

1) Random crop a bounding box from input image, for
which the box area is within [0.05, 1.0] of the whole
image area, and the aspect ratio between its width and
height is within [ 34 ,

4
3 ].

2) Resize the cropped box to 224× 224.
3) Random flip the cropped box horizontally with proba-

bility of 0.5.
4) Random rotate the cropped box with probability of

0.25, and the rotation degree is evenly sampled from
[−45, 45].

5) Random shift the color with probability of 0.5.
6) Linearly rescale pixel value to [−1, 1].

Besides, we use a relatively small value (i.e., 0.05) for the
lower bound of box area ratio in step-1 to include more small
patches. We also add a random rotation (i.e., step-4) for data
augmentation. The range of rotation degree is set to [-45,45]
experimentally.

3) TRAINING ALGORITHM AND HYPER-PARAMETERS
We adopt stochastic gradient descent (SGD) with momentum
and back-propagation [31] to train the ResNet-101 model.
There are 17,609,752 training images. To speed up the
training process, we follow the ‘‘large minibatch SGD’’
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FIGURE 4. Throughout of distributed training based on MPI+NCCL and
gRPC.

and ‘‘linear scaling rule’’ proposed by [32]. Specifically,
our batch-size is set to 4,096, and each epoch includes
4,300 steps. According to the ‘‘linear scaling rule’’, when
the batch-size is multiplied by k, the learning rate should be
multiplied by k. In our implementation, we adopt a reference
learning rate of 0.01 for batch-size 512, and the learning rate
is 0.08 for our large batch-size 4,096.Moreover, as the ‘‘linear
scaling rule’’ may not hold in early epochs when the network
is changing rapidly, warm-up strategy is proposed by [32].
The key idea of warm-up is to use less aggressive learning
rates at the start of training. We adopt the gradual warm-up
strategy in [32] that gradually ramps up the learning from a
small (which is 0.01 in our implementation) to a desired value
(which is 0.08 in our implementation). Our warm-up phase
contains 8 epochs, and the learning rate increasing factor dur-
ing warm-up is 1.297. After the warm-up phase, the learning
rate reaches 0.08, and we go back to original learning rate
decay schedule. That is, the learning rate decays with factor
0.1 in every 25 epochs. The maximal epoch number is 60.
The momentum is 0.9. For the updating of the parameters
of BatchNorm, the decay factor of moving average is 0.9,
and the constant ε is set to 0.001 to avoid the 0 value of the
variance. The weight decay is 0.0001.

In each batch, for many categories, due to the highly imbal-
ance between positive and negative images, most training
images are negative. For category i, if there are no positive
images in the current batch, the model parameters corre-
sponding to category i will only be updated with a probability
of 0.1; if there are positive images for category i, we will
down-sample negative images with the number of 5 times
of positive images, then the model parameters are updated
according to positive and down-sampled negative images.
Besides, we set the cost parameter η to 12, i.e., a higher cost
for positive labels than negative ones. It helps to alleviate
the negative influence of the imbalance between positive and
negative images. The curve of the log2 training loss is shown
in Fig. 3.

4) ACCELERATION BY DISTRIBUTED TRAINING
The training of Resnet-101 model with 11K categories and
18M images requires lots of computation. It will take a
few dozen days if using one single GPU. In this work,

FIGURE 5. Scaling efficiency of each GPU in distributed training based on
MPI+NCCL and gRPC.

all training experiments are conducted on a large-scale dis-
tributed deep learning framework, i.e., TFplus, which is
built upon Tensorflowwith several communication optimized
techniques. We replace the original gRPC implementation
with Message Passing Interface (MPI) and NVIDIA Collec-
tive Communications Library (NCCL) [8]. NCCL provides a
highly optimized version of routines, such as all-gather, all-
reduce, broadcast, reduce, reduce-scatter, and the integrated
bandwidth-optimal ring all-reduce algorithm [33], to achieve
high bandwidth over PCIe on NVIDIA GPU. In order to
scale from one GPU to multiple nodes and multiple GPUs,
we implement several APIs for communication: 1) a broad-
cast operation to synchronize parameters among all GPUs at
the initialization stage or the recovery from the checkpoint; 2)
a distributed optimizer wrapper for synchronization update of
parameters; 3) some operations for data partition and barrier,
etc. Since both MPI and NCCL support the remote direct
memory access (RDMA), we run all distributed training
jobs over a 40-GbE RDMA-capable networking. We achieve
about 2× speed up compared with the original gRPC based
distributed implementation on a cluster of 16 nodes and each
node with 8 NVIDIA M40 GPUs, as shown in Fig. 4. Specif-
ically, when training with 128 GPUs, the throughout (i.e.,
the number of processed images per second) of MPI+NCCL
is up to 11077, while the throughout of gRPC is 5551.
Besides, the distributed training jobs based on MPI+NCCL
achieve 86% scaling efficiency from 8 to 128 GPUs, while
those based on gRPC are only 46%, as shown in Fig. 5. The
whole training process on TencentML-Images takes 90 hours
for 60 epochs with 128 GPUs, i.e., 1.5 hours per epoch.

B. EVALUATIONS AND RESULTS
To evaluate the performance of the trained ResNet-101model
with multi-label outputs, we adopt the widely used instance-
level metrics in multi-label learning, including instance-level
precision, recall and F1 score [34]. As the output for each
category is the posterior probability, we need to transform
the continuous predictions to binary predictions to calculate
abovemetrics. Specifically, for image i, we determine the cat-
egories corresponding to top-k largest posterior probabilities
as positive labels (i.e., 1), while all other categories are neg-
ative labels (i.e., 0). We obtain a binary prediction vector
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TABLE 1. Results (%) of the ResNet-101 with multi-label outputs,
evaluated on the validation set of Tencent ML-Images.

ŷki ∈ {0, 1}
m. Then, the evaluation metrics are calculated as

follows [34]:

Pk =
1
n

n∑
i

Pi,k =
1
n

n∑
i

yi ∗ ŷki
k

, (3)

Rk =
1
n

n∑
i

Ri,k =
1
n

n∑
i

yi ∗ ŷki
1> ∗ yi

, (4)

F1k =
1
n

n∑
i

2Pi,k ∗ Ri,k
Pi,k + Ri,k

. (5)

We present results of top-5 and top-10 predictions
in Table 1. The evaluation values are not very high.
As demonstrated in section III-A, the size of the validation
set is only about 1

200 of the size of the training set. And
there should be many missing labels for validation images.
Thus, the evaluation scores on this small validation set are not
reliable enough to measure the visual representation perfor-
mance of the model trained on Tencent ML-Images. Instead,
its performance could be evaluated through transfer learning
to some other visual tasks, as follows.

V. TRANSFER LEARNING
A. TRANSFER LEARNING TO SINGLE-LABEL IMAGE
CLASSIFICATION ON IMAGENET
To verify the quality of the visual representation of the
ResNet-101 model pre-trained on Tencent ML-Images,
we conduct transfer learning to image classification on
the benchmark single-label image database, i.e., ImageNet.
Specifically, we utilize the ResNet-101 model pre-trained on
Tencent ML-Images as the initial checkpoint, and replace
the output layer with 1,000 output nodes, as well as the loss
with standard softmax loss. Then, we fine-tune the model on
ImageNet. Experimental results are given below.

1) FINE-TUNING APPROACHES
a: LEARNING RATE
Note that there are significant differences between Ten-
cent ML-Images and ImageNet. First, the distributions of
visual features and class vocabulary are different. Second,
images in Tencent ML-Images are annotated with multi-
ple tags, while images in ImageNet are annotated with sin-
gle label. Last, the annotations of Tencent ML-Images are
noisy, while the annotations of ImageNet are clean. Consid-
ering these significant differences, one cannot expect that
the ResNet-101 model pre-trained on Tencent ML-Images
show good classification performance on ImageNet, if with-
out fine-tuning of the parameters. The standard fine-tuning
approach adopts one consistent learning rate of all layers.

TABLE 2. Hyper-parameters of different checkpoints in transfer learning
to ImageNet. ‘‘ckpt’’ denotes our ResNet-101 checkpoint. ckpt-1 means
the checkpoint trained on ImageNet from scratch; ckpt-2 indicates the
checkpoint pre-trained on Tencent ML-Images and fine-tuned on
ImageNet with layer-wise consistent learning rates; ckpt-3/4/5 represent
three checkpoints pre-trained on Tencent ML-Images and fine-tuned on
ImageNet with layer-wise adaptive learning rates, and they are different
at the image size in fine-tuning. ‘‘LR’’ denotes learning rate.
ResNet-101 consists of 4 stages of residual blocks, and top2-stages
indicates the two stages close to the output layer, while bottom2-stages
represents those close to the input layer. Note that if there is only one
value in a row, then it means that the checkpoints of different columns
are trained with the same value of the corresponding hyper-parameter.

It is referred to as fine-tuning with layer-wise consistent
learning rates. However, as verified in later experiments,
the ResNet-101 model with the above fine-tuning approach
even shows worse performance than the ImageNet baseline.
It reveals that the useful information contained in the Tencent
ML-Images checkpoint has not been well utilized, due to
the aforementioned three differences. To tackle this issue,
we adopt the fine-tuning approach with layer-wise adaptive
learning rates. Specifically, we set larger learning rates on
top layers, while smaller learning rates on bottom layers. The
rationale behind this setting is that the parameters of top-
layers are more dependent on training images and labels,
while the parameters in bottom layers represent low-level
visual features. To alleviate the negative influence of the
significant differences between TencentML-Images and Ima-
geNet, the top-layers’ parameters should be changed to be
further from the initialized parameters from the checkpoint,
compared to the bottom layers’ parameters.

b: IMAGE SIZE
As demonstrated in [35], the image size in training and testing
has a significant influence to the results. Further, YOLO9000
[36] proposes to adjust the image size during training, which
is proved to be helpful for the detection performance. Besides,
we note that the image size of pre-training, fine-tuning and
evaluation used in [5] is 299×299, while the image size in our
pre-training is 224× 224. To conduct a fair comparison with
the JFT-300M, and also to explore the influence of image size
to image classification, we design three fine-tuning settings
with different image sizes, including: 1) the image size is
kept at 224× 224; 2) the image size in early epochs is set as
224× 224, while 299× 299 in late epochs; 3) the image size
is kept at 299× 299.
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2) COMPARISONS AND HYPER-PARAMETERS
To verify the quality of visual representation of the Tencent
ML-Images checkpoint, we compare five ResNet-101 check-
points with different fine-tuning approaches. The hyper-
parameters of training these checkpoints are summarized
in Table 2. Besides, we also present the reported results of
others’ implementations, including: the MSRA checkpoint of
training on ImageNet from scratch; the Google’s checkpoint
of training on ImageNet from scratch [5]; the checkpoint of
pre-training on JFT-300M and fine-tuning on ImageNet [5].
Please refer to Table 3.

3) RESULTS
All compared results are shown in Table 3. (1) In terms of
the baseline (i.e., train on ImageNet from scratch), our ckpt-
1 is higher than both MSRA ckpt [6] and Google ckpt-1 [5].
Our implementation and MSRA implementation are same at
the model architecture and the size of the input image (i.e.,
224 × 224). The main difference is the pre-processing of
the input image (see section IV-A.2) and hyper-parameters,
which should be the main reasons of different performance
of this two baselines. In contrast, the details of the model
architecture and the image pre-processing are not demon-
strated in [5], and the image size is 299 × 299. But our
ckpt-1 still performs better than Google ckpt-1 on the eval-
uation with the size of 299 × 299. It demonstrates the good
quality of our implementation of the baseline. (2) Moreover,
the comparison between our baseline checkpoint (i.e., our
ckpt-1 in Table 3) and our fine-tuning checkpoints (i.e., our
ckpt-2/3/4/5 in Table 3) demonstrate two points. The accuracy
of our ckpt-2 is much lower than that of our ckpt-1. As ana-
lyzed in section V-A.1, the significant difference between
TencentML-Images and ImageNet, as well as the label noises
in Tencent ML-Images, could bring in negative influence to
the model performance. In contrast, our ckpt-3 with the layer-
wise adaptive fine-tuning learning rate shows the improve-
ments of 1.0% at top-1 accuracy and 0.6% at top-5 accuracy
under validation size of 224 × 224. This demonstrates that
the fine-tuning with layer-wise adaptive learning rate can
not only utilize the good visual representation encoded in
bottom layers of the Tencent ML-Images checkpoint, but
also alleviate the significant difference between these two
databases. It reveals that the Tencent ML-Images checkpoint
includes good visual representation, but it should be carefully
fine-tuned to help other vision tasks. We also evaluate the
checkpoints of different epochs using top-1 accuracy on the
validation set of ImageNet, as shown in Fig. 6. (3) The results
of Google ckpt-2 are 79.2% top-1 accuracy and 94.7% top-
5 accuracy. The improvements over Google ckpt-1 are 1.7%
at top-1 accuracy and 0.8% at top-5 accuracy. It demon-
strates the good quality of the initial checkpoint pre-trained
on JFT-300M. In contrast, all of our ckpt-3/4/5 show higher
top-1 accuracies than Google ckpt-2 when the image size of
validation set is set to 299× 299. And, our ckpt-4 with adap-
tive image sizes in fine-tuning achieves the highest 80.73%

FIGURE 6. The curves of top-1 accuracy of different checkpoints on the
validation set of ImageNet.

top-1 and 95.5% top-5 accuracy, and the improvements over
our ckpt-1 are 1.73% at top-1 and 1% at top-5 accuracy. Our
checkpoints exceed Google ckpt-2 on both the accuracy and
the accuracy improvement over baseline. Considering that the
size of JFT-300M is about 17 times of Tencent ML-Images,
these verify the high quality of Tencent ML-Images and our
training and fine-tuning.

B. TRANSFER LEARNING TO CALTECH-256
We also conduct transfer learning to another small-scale
single-label image database, i.e., Caltech-256 [10], which
includes 30,607 images with 256 object categories. We uti-
lize a pre-trained checkpoint of the ResNet-101 model to
extract features for each image of Caltech-256. Specifi-
cally, we adopt the output of the global average pooling
in ResNet-101 as the feature vector (2,048 dimensions).
Then we train a multi-category SVM classifier to predict the
labels for each image. We compare with three checkpoints,
including: training on ImageNet from scratch; training on
Tencent ML-Images from scratch; pre-training on Tencent
ML-Images, and fine-tuning on ImageNet with layer-wise
adaptive learning rate. The results of different checkpoints
are shown in Table 4. The result of the ImageNet checkpoint
is higher than that of the Tencent ML-Images checkpoint.
It again demonstrates that the significant difference of distri-
bution between Tencent ML-Images and single-label image
databases. The checkpoint of adaptive fine-tuning from Ten-
cent ML-Images gives 86.5% accuracy, which is higher than
86% accuracy of the ImageNet checkpoint. It also verifies
that the good generalization of visual representation of the
Tencent ML-Images could be well explored through adaptive
fine-tuning.

C. TRANSFER LEARNING TO OBJECT DETECTION
We conduct transfer learning to object detection on the
benchmark PASCAL VOC database [21], [37], including
20 categories. To fairly compare with [5], we also adopt
the ‘‘trainval’’ images from both PASCAL VOC 2007 and
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TABLE 3. Results (%) of single-label image classification on the validation set of ImageNet, using single model and single crop inference. In the column
of ‘‘Train and fine-tune settings’’, ‘‘224’’ indicates that the size of training image is 224× 224, while ‘‘299’’ indicating 299× 299; ‘‘224 to 299’’ means that
the size of training image in early epochs is 224× 224, and that in later epochs is 299× 299. For Our ckpt-3/4/5, we adopt the layer-wise adaptive
learning rate in fine-tuning.

TABLE 4. Classification accuracy (%) of transfer learning to Caltech-256.
Checkpoints 1 to 3 respectively indicate: training on ImageNet from
scratch; training on Tencent ML-Images from scratch; pre-training on
Tencent ML-Images, and fine-tuning on ImageNet with a layer-wise
adaptive learning rate.

2012 as the training set, including 16,551 training images.
All models are evaluated on the testing set of PASCAL
VOC 2007, including 4,952 images. We use mean average
precision at 50% IOU threshold (mAP@.5) for performance
evaluation.

1) COMPARISONS
We compare with the transfer learning did in [5], includ-
ing their baseline checkpoint pre-trained on ImageNet,
and their checkpoints pre-trained on JFT-300M and
JFT-300M+ImageNet. Our first checkpoint (i.e., our ckpt-
1) is also pre-trained on ImageNet from scratch, then fine-
tuned on VOC. Our second checkpoint (i.e., our ckpt-2) is
firstly pre-trained on Tencent ML-Images, then fine-tuned
on ImageNet (using the same setting with ‘‘Our ckpt-3’’
in Table 3), and further fine-tuned on VOC.

2) IMPLEMENTATION DETAILS
Our implementation is based on the TensorFlow implementa-
tion of the Faster RCNN framework [38], [39]. Specifically,
we use stochastic gradient descent with the momentum of 0.9
for training; the initial learning rate is set to 8 × 10−4 and
decays by 0.1 at every 80k steps; the batch size is set to 256;
the model is trained for 180k steps; the weight decay is set
to 10−3. The input image is resized such that the short side is
fixed to 600-pixels, while maintaining the aspect ratio.

3) RESULTS
The results are summarized in Table 5. In comparison of
the baseline checkpoints, our ckpt-1 achieves 80.1%, while
Google ckpt-1 gives 76.3%. With the same databases and
models, it demonstrates that our implementation quality is
much better than Google’s implementation. Our ckpt-2 shows
the improvement of 1.4% than our ckpt-1. This verifies

TABLE 5. Results of object detection on the testing set of PASCAL VOC
2007. Note that ‘‘VOC’’ in ‘‘fine-tune on VOC’’ indicates the combined
training set of PASCAL VOC 2007 and 2012.

the good visual representation of the checkpoint pre-trained
on Tencent ML-Images. In contrast, Google ckpt-2 and
ckpt-3 show 81.4% and 81.3%, respectively, which are
slightly lower than our ckpt-2. It demonstrates that the check-
point pre-trained on Tencent ML-Images and fine-tuned on
ImageNet has similar generalizationwith those pre-trained on
JFT-300M and JFT-300M+ImageNet. Considering that JFT-
300M is about 17 times larger than our Tencent ML-Images,
we could claim that Tencent ML-Images is a high-quality
database. We also tried the checkpoint that is pre-trained
on Tencent ML-Images, then fine-tuned on VOC. But the
performance is not as good as other checkpoints, thus we
didn’t report its results here. We think the reason is that the
big gap of the data distributions and tasks, between Tencent
ML-Images and VOC.

D. TRANSFER LEARNING TO SEMANTIC SEGMENTATION
We conduct transfer learning to semantic segmentation on
the benchmark PASCAL VOC 2012 database [37], includ-
ing 20 foreground categories and 1 background category.
To fairly compare with [5], we also adopt the augmented
training set of PASCAL VOC 2012 as the training set of
fine-tuning, which includes 10,582 training images. All mod-
els are evaluated on the validation set of PASCAL VOC
2012, including 1,149 images, using the mean itersection-
over-union (mIOU) metric.

1) COMPARISONS
We adopt the same setting of checkpoints as did in the above
object detection experiments (see section V-C). Thus, here we
didn’t repeat it to keep clarity.
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TABLE 6. Results of semantic segmentation on the validation set of
PASCAL VOC 2012. Note that ‘‘VOC’’ in ‘‘fine-tune on VOC’’ indicates the
augmented training set of PASCAL VOC 2012.

2) IMPLEMENTATION DETAILS
Our implementation is based on the semantic segmentation
architecture of DeepLab [40]. For fair comparison, our imple-
mentation also adopts DeepLab-ASPP-L structure that has
four branches after the Conv5 block of ResNet-101 model.
All ASPP branchs use 3× 3 kernels but with different atrous
rates (i.e., {6, 12, 18, 24}). During training, we use the ‘‘poly’’
learning rate policy (with power= 0.9) and the initial learning
rate is set to 3 × 10−3. The weight decay is set to 5 × 10−4.
The model is trained for 50k steps using the stocastic gradient
descent with momentum of 0.9. The batch size is set to 6, and
the input image is resized to 513× 513.

3) RESULTS
The results are summarized in Table 6. We could obtain the
similar observations with the transfer learning to object detec-
tion (see section V-C and Table 5). 1) Our implementation of
the baseline checkpoint is better than that of Google, i.e., our
ckpt-1 74.0% vs. Google ckpt-1 73.6%. 2) Our ckpt-2 shows
the improvement up to 2.3% over our ckpt-1, which verifies
the good visual representation of the checkpoint pre-trained
on Tencent ML-Images. 3) Google ckpt-2 shows 75.3% and
Google ckpt-3 gives 76.5%. It demonstrates that the check-
point pre-trained on Tencent ML-Images and fine-tuned on
ImageNet has better generalization than that pre-trained on
JFT-300M, while is similar with the checkpoint pre-trained
on JFT-300M+ImageNet.

VI. CONCLUSION
In this work, we built a large-scale multi-label image
database, dubbed Tencent ML-Images, including about 18M
images and 11K categories. It is the largest-scale public
multi-label image database until now. We presented the lage-
scale visual presentation learning of deep convolutional neu-
ral networks on Tencent ML-Images, employing a distributed
training framework with MPI and NCCL. A novel loss
function was carefully designed to alleviate the side-effect
of the severe class imbalance in the large-scale multi-
label database. Extensive experiments of transfer learning
to other visual tasks, including single-label image classi-
fication, object detection and semantic segmentation, veri-
fied that Tencent ML-Images is of very high quality and
the pre-trained checkpoint has very good visual represen-
tation. We hope that this work could promote other visual
tasks in the research and industry community. The Tencent

ML-Images database, the complete code of data prepara-
tion, pre-training and fine-tuning, and the pre-trained and
fine-tuned checkpoints of the ResNet-101 model have been
released at https://github.com/Tencent/tencent-ml-images.
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