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ABSTRACT This paper presents robust observers for active roll control. Generally, active roll control adopts
feedback control structure with roll angle and roll rate signals which should be measured with a sensor. For
active roll control, it is necessary to estimate the roll angle with roll rate measurement using an observer
because the roll angle is difficult to measure, compared to the roll rate. However, an observer designed with
fixed parameters can give poor estimation performance since there are large uncertainty in parameters of real
vehicles. A robust observer is designed to cope with the parameter uncertainty. In this paper, a dual Kalman
filter and Kalman filter with constant velocity model are adopted as a robust observer. The performance of
the proposed algorithm has been investigated via computer simulations and vehicle tests.

INDEX TERMS Active roll control, parameter uncertainty, robust observer, dual Kalman filter, Kalman
filter with constant velocity model.

NOMENCLATURE
g gravitational acceleration (9.81 m/s2)
hs height of C.G. from a roll center (m)
Ixx roll moment of inertia about roll axis (kg·m2)
ms sprung mass of a vehicle (kg)
Ts sampling period (sec)
φ roll angle (rad)
φ̇ roll rate (rad/s)
xs state vector of the state estimators (dual KF,

KFCVM)
xp state vector of the parameter estimator (dual KF)

I. INTRODUCTION
Two major factors generating the vehicle roll motion are the
lateral acceleration and the road profile. Generally, road pro-
file and lateral acceleration, as a disturbance, can generate the
vehicle roll motion with the frequency below and over 1Hz,
respectively. Active roll control (ARC) is developed to con-
trol the vehicle roll motion against these disturbances. There
are two objectives in ARC. The first is to reduce the roll
angle and the roll rate for ride comfort, and the second is to
reduce the suspension stroke and tire deflection to prevent
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vehicle rollover. These objectives can be represented as a dis-
turbance attenuation problem [1]. Active suspension, semi-
active suspension and active anti-roll bar (AARB) have been
used as an actuator for ARC [2]. An active suspension can
control the vertical, roll and pitch motion of sprung mas of
a vehicle. On the other hand, an AARB can control only the
roll motion of a vehicle. In this paper, an AARB is adopted
as an actuator for ARC.

There have been several researches for ARC [3]–[8]. These
include the discrete-time LQR [3], [4], the PD control [5],
LQG-LTR control [6], H∞ control [3], [4], [7], [9], and
sliding mode control [3], [4], [8], [10], etc. Most of active roll
controllers in these researches have adopted feedback control
structure with measured signals of roll angle and roll rate.
In real vehicles, it is too difficult tomeasure the roll anglewith
a sensor, and a roll angle sensor is so expensive. Compared to
the roll angle, it is relatively easy to measure the roll rate with
commercial gyro sensors. Up to date, several roll rate sensors
have been commercialized at a reasonable price [11]–[13].
For the reason, a Kalman filter (KF), as a state observer, has
been adopted to estimate the roll angle using measured roll
rate signal for feedback control [4], [6], [11]. This is called an
observer-based controller or output feedback controller. The
schematic diagram of observer-based active roll controller is
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FIGURE 1. Schematic diagrams of observer-based active roll controller
with state estimator.

shown in Fig. 1. In this paper, the roll angle is estimated using
a KF with roll rate measurement.

In real vehicles, vehicle parameters are uncertain and vary
over time. In view of ARC, there are parameter uncertainties
in the roll damping, the roll stiffness, the moment of inertia
and the height of C.G. Moreover, there are nonlinearities in
roll dynamics of vehicles. To estimate states under parameter
uncertainties and nonlinearities, it is necessary to design an
observer robust against the parameter uncertainty and nonlin-
earity. For the purpose, there have been two schemes: robust
and parameter estimation.

In case of robust estimation scheme, an observer is
designed with robust control methodology with norm-
bounded uncertainty model so as to be robust against the
parameter variation [9], [14]. Another method for robust
estimation scheme is to include the nonlinear and time-
varying effects in the dynamic model. In the previous work,
the vehicle speed was considered as a time-varying term for
ARC [7]. Recently, a nonlinear observer with neural net-
works and H∞ filtering have been proposed for roll angle
estimation [15], [16]. To incorporate the nonlinear effect
of vehicle dynamics, Takagi-Sugeno(T-S) fuzzy model was
adopted to design an observer when estimating the roll angle
and the roll rate [17]–[19]. This scheme has been known to
be effective in coping with parameter variations. However,
the design procedure is complicated.

In case of parameter estimation scheme, time-varying or
uncertain parameters are estimated by parameter adaptation
methods such as least-mean-square (LMS) and recursive-
least-square (RLS) algorithms [20]–[23]. For roll angle esti-
mation, RLS was used to estimate the height of center of
gravity [20]. Roll dynamics was identified with RLS for slid-
ing mode state observer [21]. Compared to robust estimation
schemes, this is simple to design and easy to implement.
So, this paper adopts parameter estimation scheme, espe-
cially, RLS. RLS can be represented with KF. With the idea,
a dual extended KF have been adopted for simultaneous
estimation of state and parameter in vehicle control [24], [25].
Following the idea of parameter estimation with KF, the dual
KF is adopted as a robust observer when estimating states and
parameters simultaneously for ARC. The schematic diagram
of observer-based active roll controller with state and param-
eter estimators is shown in Fig. 2.

FIGURE 2. Schematic diagram of observer-based active roll controller
with state and parameter estimators.

Most of Kalman filters that have been adopted as a state
estimator use a system model. This is called a model-based
observer. In case of a model-based observer, there are
more likely to be give poor estimation performance if
there are uncertainties in model parameters. So, an observer
can be robust against parameter uncertainty if it is inde-
pendent of system parameters. Typical example of the
parameter independent KF is a KF with constant velocity
model (KFCVM) [26]–[28]. KFCVM can be used as a state
estimator and noise filter. If a roll rate signal is fed into
KFCVM, the filtered roll rate and the estimated roll angle are
obtained from it. In this paper, KFCVM is adopted as a robust
observer.

In this paper, the observer-based controller is designed.
Three feedback controllers, i.e., discrete-time LQR, H∞ and
sliding mode controller(SMC), are adopted as an active roll
controller. Second, two KFs, i.e., dual KF and KFCVM are
designed as a robust observer. The contribution of this paper
is to validate the robustness of three KFs, i.e., KF with fixed
parameters (KFFP), dual KF and KFCVM, against parame-
ter uncertainties and nonlinearities through simulation on a
vehicle simulation software, CarSim, and experiments on a
real vehicle. For the purpose, the simulation and experiment
are done on observer-based controllers, which combine three
active roll controllers and three KFs with a large number
of sets of model parameters randomly generated from given
ranges.

This paper consists of the following parts. Three active
roll controllers are designed with a 1-DOF roll model in
section 2. In section 3, discrete-time Kalman filter, dual KF,
and KFCVM are designed. In section 4, the designed
robust observers are validated via simulation on CarSim and
by experiment on a test vehicle. Finally, conclusions are
provided in Section 5.

II. DESIGN OF ACTIVE ROLL CONTROLLERS
A. VEHICLE MODEL AND DISCRETE-TIME STATE-SPACE
EQUATION
In this paper, a 1-DOF linear model is used in designing
active roll controllers and KFs [3], [10]. Fig. 3 shows the
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FIGURE 3. 1-DOF roll model.

1-DOF roll model. From the model, the equation of the
motion is derived as (1). In the model, the control input
and the disturbance are the control roll moment Mφ and
the lateral acceleration ay, respectively. Cφ and Kφ are the
roll damping coefficient and the roll stiffness, respectively.
Using the state vector (2), the continuous-time state-space
equation is derived as (3). With the sampling time of Ts,
the discrete-time state-space equation is obtained as (4) by
discretizing (3) [3], [4].

Ixx φ̈ (t)+ Cφ φ̇ (t)+ Kφφ (t) = Mφ (t)+ mshsay (t) (1)

x (t) ≡
[
φ (t) φ̇ (t)

]T (2)

ẋ (t) = Ax (t)+B1ay (t)+B2Mφ (t)

=

[
0 1
−
Kφ
Ixx
−
Cφ
Ixx

]
x (t)+

[
0

mshs
Ixx

]
ay (t)+

[
0
1
Ixx

]
Mφ (t)

(3)

x (k + 1) = 8x (k)+ 0ay (k)+�Mφ (k) (4)

B. CONTROLLER DESIGN FOR ARC
Based on the linear model (4), three active roll controllers–
discrete-time LQR, H∞ and sliding mode controllers–were
designed following the previous work [3], [4]. In the
observer-based active roll controller, these controllers are
used for ARC, as shown in Fig. 2. Generally, an active roll
controller consists of two parts: feedback and feedforward
ones. In this paper, only feedback is adopted for ARC. The
stability of these controllers is guaranteed through design
methodology of LQR, H∞ and sliding mode controllers,
as given in the previous work [3]. The feedback controller
uses the state (2). So, the roll angle and the roll rate should
be measured. However, it is hard to measure the roll angle.
So, a state observer or Kalman filter is designed to estimate
the roll angle with roll rate measurement.

III. DESIGN OF ROBUST OBSERVERS
A. KALMAN FILTER
The system and output equations of a discrete-time
state-space model driven by white noises are given in (5).
In (5), M(k) and N(k) are the covariance matrices of the
system and sensor noises, µ(k) and η(k), respectively. The
equations of Kalman filter are given in (6) and (7), which rep-
resent the time- and measurement-updates, respectively [29].
For Kalman filter design, the systemmatricesF,G andH, and
the covariance matrices of system and measurement noises,

M and N, should be determined.{
x (k + 1) = Fx (k)+Gw (k)+Hu (k)+ µ (k)
y (k) = Cx (k)+ η (k) (5)

M (k) = E
{
µ (k)µT (k)

}
, N (k) = E

{
η (k) ηT (k)

}
{
x̂− (k) = Fx̂ (k − 1)+Gw (k − 1)+Hu (k − 1)
P̄ (k) =M (k)+ FP (k − 1)FT

(6)
Ke = P̄ (k)CT

[
N (k)+ CP̄ (k)CT

]
x̂ (k) = x̂− (k)+Ke

[
y (k)− Cx̂− (k)

]
P (k) = (I−KeC) P̄ (k)

(7)

B. KALMAN FILTER FOR STATE ESTIMATION
For state estimation with KF, the matrices in (5) should be set
as given in (9) with the state definition (8) from the discrete-
time state-space model (4). The sensor output used for state
estimation is the roll rate. So, the output matrixC is set as (9).

xs =
[
φ φ̇

]T (8)

F = 8, G = 0, H = �, C =
[
0 1

]
(9)

The continuous-time observability of [A,C] from (3)
and (9) can be checked with the rank of observability matrix.
With [A,C], the observability matrixMO is calculated as (10).
The necessary condition for observability is that the rank of
MO should be 2. This is always guaranteed if Kφ and Cφ
are positive, as shown in (10). Therefore, the observer-based
control system is globally stable with LQR,H∞, slidingmode
controllers and a KF in terms of the separation principle.

MO =
[
CT ATCT

]
=

1
Ixx

[
0 −Kφ
Ixx −Cφ

]
(10)

C. KALMAN FILTER FOR PARAMETER ESTIMATION
Besides KF for state estimation, it can be used for parameter
estimation. In RLS, the definitions on output and error are
given from (11) and (12). In (11),φ(k) and θ (k) are the vectors
ofmeasurements and the unknown parameters to be estimated
at time instant k , respectively. RLS as a parameter estimator
has been combined with KF as a state estimator [20]–[23].
RLS can be represented by KF [24], [25]. Following the
previous works, a KF, which is equivalent to RLS, is used
as a parameter estimator in this paper.

y (k) = φT (k) θ (k)+ e (k) (11)

e (k + 1) = y (k)− φT (k + 1) θ̂ (k) (12)

The discrete-time state-space model equations driven by
white noise processes µ2(k) and η2(k) is given in (13). The
output equation (11) can be converted into (13). In (13),
xp(k) the vector of parameters to be estimated, and φT (k)
is the output vector as defined from (14) to (17). As shown
from (14) to (17), the parameters to be estimated should be
selected. The gain calculation, the parameter update, and the
covariance matrix update of RLS are identical to those of
KF [24], [25]. In order to estimate the parameters, Kφ , Cφ ,
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Ixx and hs, the matrices in (5) should be set as given in (18).{
xp (k + 1) = xp (k)+ µ2 (k)
y (k) = φT (k) xp (k)+ η2 (k)

(13)

M2 (k) = E
{
µ2 (k)µ

T
2 (k)

}
, N2 (k) = E

{
η2 (k) η

T
2 (k)

}
{
xp (k) =

[
Kφ Cφ

]T
, φT (k) =

[
φ̂ (k) ˆ̇φ (k)

]
y (k) = −Ixxφ (k)+Mφ (k)+ mshsay (k)

(14)
xp (k) =

[
Kφ Cφ Ixx

]T
,

φT (k) =
[
φ̂ (k) ˆ̇φ (k) ˆ̈φ (k)

]
y (k) = Mφ (k)+ mshsay (k)

(15)


xp (k) =

[
Kφ Cφ hs

]T
,

φT (k) =
[
φ̂ (k) ˆ̇φ (k) msay (k)

]
y (k) = −Ixxφ (k)+Mφ (k)

(16)


xp (k) =

[
Kφ Cφ Ixx hs

]T
φT (k) =

[
φ̂ (k) ˆ̇φ (k) ˆ̈φ (k) msay (k)

]
y (k) = Mφ (k)

(17)

F = I, G = 0, H = 0, C = φT (k) ,

M =M2, N = N2 (18)

D. DUAL KALMAN FILTER FOR STATE AND PARAMETER
ESTIMATION
By combining two Kalman filters, as given in (9) and (18),
the state, i.e., the roll angle, and the parameters are esti-
mated simultaneously. This is called a dual KF [24], [25].
Fig. 2 shows the overall structure of observer-based active roll
controller with a dual KF. Fig. 4 shows the block diagram of
the dual KF, which enlarges the dual KF in Fig. 2. In Fig. 4,
x̂s is the vector of estimated states as given in (8), and x̂p is
the vector of estimated parameters as given in (14). As shown
in Fig. 4, the output of the time update of the state estimator is
fed into the measurement update of the parameter estimator,
and the output of the time update of the parameter estimator
is fed into that of state estimator. By virtue of the parame-
ter estimator, the dual KF can be robust against parameter
uncertainties.

FIGURE 4. Dual Kalman filter for state and parameter estimation in ARC.

The values of parameters in the parameter estimators
from (14) to (17) are bounded between upper and lower
limits. For example, the parameters in (17) are always
positive. With these limits and (10), the observer-based con-
trol system with LQR,H∞, sliding mode controllers and dual
KF is guaranteed to be globally stable.

E. KALMAN FILTER WITH CONSTANT VELOCITY MODEL
In this paper, Kalman filter with constant velocity
model (KFCVM) is adopted as a state observer. Eq. (19)
shows the simple kinematic relationship between the roll
angle and the roll rate obtained by neglecting the pitch and
yaw motions. With the state vector definition (20), the con-
stant velocity model for roll motion is given as (21) with the
state-space form in the continuous-time domain. As shown
in (21), the sensor output is the roll rate. In (21), µ3(k)
and η3(k) are the vectors of the system and measurement
noise processes, respectively. The discrete-time state-space
equation (22) is obtained by discretizing (21) with the sam-
pling time of Ts. The covariance matrices of the system and
measurement noise processes are given in (23). For state
estimation, the matrices in (5) should be set as given in (24)
from the discrete-time state-space equation (22). As given
in (23), the tuning parameters of KFCVM are the variances
σ 2
q and σ 2

r of the system and measurement noise processes,
respectively.

As shown in the output equation of (22), the measurement
is the roll rate. So, the roll angle can be estimated with
the KF (24) from the roll rate measurement. In case of this,
KFCVM is a simple integration method used to estimate the
roll angle from roll rate measurement. If the output matrix
in (22) is set as C = [1 0] and the sensor output is the roll
rate, then the roll angular acceleration can be obtained from
KFCVM. In case of this, KFCVM is a simple differentiation
method used to estimate the roll angular acceleration from
roll rate measurement. When using (15) and (17), the roll
angular acceleration is estimated by KFCVM with roll rate
measurement. This is the idea of the previous work [28].
By virtue of the simple integration on the roll rate signal,
the KFCVM is independent of the parameters of the roll
model (3). So, KFCVM is expected to be robust against
parameter uncertainties.

KFCVM has two functions: state estimation and noise
filtering [26], [27]. In the previous work, KFCVM was used
as a noise filter [4]. In this paper, KFCVM is used for noise
filtering on measured roll rate and lateral acceleration.

φ (t) =
∫ t

0
φ̇ (t)⇔ φ̇ (t) =

dφ (t)
dt

(19)

xv (t) =
[
φ (t) φ̇ (t)

]T (20) ẋv (t) =
[
0 1
0 0

]
xv (t)+ µ3 (t)

y (t) =
[
0 1

]
xv (t)+ η3 (t)

(21)

 xv (k + 1) =
[
1 Ts
0 1

]
xv (k)+ µ3 (k)

y (k) =
[
0 1

]
xv (k)+ η3 (k)

(22)
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M3 (k) = E
{
µ3 (k)µ

T
3 (k)

}
= σ 2

q

[
T 3
s
/
3
T 2
s
/
2

T 2
s
/
2 Ts

]
N3 (k) = E

{
η3 (k) η

T
3 (k)

}
= σ 2

r

(23)

F =
[
1 Ts
0 1

]
, G = 0, H = 0, C =

[
0 1

]
,

M =M3, N = N3 (24)

IV. SIMULATION AND EXPERIMENT
In this section, the observer-based active roll control system
with three controllers and the designed KFs is validated
through simulation on the vehicle simulation software,
CarSim, and experiment on a test vehicle. The structure of the
observer-based active roll control system is given in Fig. 2.

A. SIMULATION ON CARSIM
In this subsection, the estimation performance of KFs under
parameter uncertainties is evaluated through simulation con-
ducted on CarSim. As given in the Section II, LQR, H∞
control and SMC have been designed in the observer-based
active roll control system. The weights in LQ objective func-
tion and the sliding surface were set as given in the previous
work [3]. The covariance matrices of system and measure-
ment noises for KFs are given in Table 1. The sampling times
of the measurement and the controllers were set to 10ms. The
observer-based active roll control system was implemented
on MATLAB/Simulink.

TABLE 1. Variances of system and measurement noises.

The driving scenario for simulation was a closed-loop
steering on the moose test track with the driver model given
in CarSim [3], [4], [10]. Fig. 5 shows the moose test track
used for simulation [30]. The initial vehicle speed was set
to be 80km/h, and the tire-road friction was set to be 0.6.
For generation of control roll moment, AARB was adopted
as an actuator. AARB was modeled as the first-order system
with the time constant of 0.05. For a lateral stability under
ARC, the unified chassis control with ESC and AFS has keep
activated [30]. The AARBwas implemented to be an actuator
for ARC.

FIGURE 5. Moose test track representing double lane change maneuver.

The parameters to be estimated are the roll stiffness and
the roll damping, as shown in (14). To validate the estimation
performance of the designed KFs, the sets of parameters of
the 1-DOF roll model were randomly generated from the
following ranges: 200 ≤ Ixx ≤ 2, 000, 700 ≤ ms ≤ 2, 000,
0.2 ≤ hs ≤ 1.2, 1, 000 ≤ Cφ ≤ 20, 000, 2, 000 ≤ Kφ ≤
150, 000. For a realistic simulation, a band-limited white
noise was added to the roll rate signal from CarSim. This
reflects the fact that the measured roll rate signal from cheap
sensors are noisy. The noisy roll rate signals can generate the
fluctuation in the control roll moment although it is filtered
from KFs. The KFCVMwas applied to the roll rate signal for
noise filtering and to obtain the roll angular acceleration.

FIGURE 6. State and parameter estimation results without filtering on the
roll rate for each KF.

Figs. 6 and 7 show the estimation results of three KFs
without and with filtering on the roll rate, respectively. These
results were obtained with a single set of randomly generated
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FIGURE 7. State estimation results with filtering on the roll rate
for each KF.

parameters, selected among 100 sets. In order to obtain the
simulation results, LQR was used as an active roll controller,
and the dual KF was used as state and parameter estimators.
In Figs. 6 and 7, the legend KFFP represents the Kalman
filter with fixed parameters. As shown in Figs. 6 and 7,
the dual KF and KFCVM have almost identical performance
in estimating the roll angle. However, KFFP shows worse
performance compared to the dual KF and KFCVM. This is
due to the fact that the differences between the fixed and esti-
mated parameters of KFFP and dual KF are large, as shown
in Fig. 6-(c), -(d), Fig. 7-(c) and -(d). In Fig. 6-(c) and -(d),
the differences between the fixed and estimated values of the
roll stiffness and the roll damping are about 80,000 and 3,000,
respectively.

To investigate the robustness of three KFs, simulation was
conducted with 100 sets of randomly generated parameters
of 1-DOF roll model. The estimated parameters in the model

FIGURE 8. Estimation results for three KFs and three active roll
controllers in terms of the maximum absolute error.

are the roll stiffness and the roll damping, as given in (14).
Figs. 8 and 9 shows the histograms of the maximum absolute
and the root mean square(RMS) values of the roll angle errors
in the case of with and without filtering on the roll rate
for three active roll controllers and three KFs, respectively.
As shown in Figs. 8 and 9, the dual KF is more robust than
KFFP for all active roll controllers regardless of the noise
filtering on the roll rate. As expected, KFCVM is the most
robust observer among KFs because it is independent of the
model parameters, i.e., the roll stiffness and the roll damping.

Figs. 8 and 9 show the effects of noise filtering of KFCVM.
In the case of KFFP, the noise filtering on the roll rate
gave larger variance than no filtering case in terms of the
maximum absolute errors. This is caused by the time delay
in filtering with KFCVM. The maximum absolute errors of
dual KF and KFCVM were also increased due to the time
delay. H∞ control and SMC show larger variance than LQR
because the high gain of them amplifies roll angle errors.

VOLUME 7, 2019 173039
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FIGURE 9. Estimation results for three KFs and three active roll
controllers in terms of RMS error.

On the other hand, the noise filtering has slight effect on
the estimation performance for dual KF and KFCVM due
to the parameter estimation of dual KF and the parameter
independency of KFCVM. Moreover, the filtering on the roll
rate has little effect on the estimation performance of three
KFs in terms of the RMS errors.

B. EXPERIMENT ON A REAL VEHICLE
In real experiments, it is hard for one to implement an
actuator for ARC because it costs a lot of money and is
time-consuming [8]. So, the estimation performance and
robustness of the designed KFs, i.e., KFFP, dual KF and
KFCVM, without active roll controllers is checked with
experiment in this subsection.

Experiment scenario was a double lane change by a real
driver. The vehicle used for experiment was a small-sized
SUV, as shown in Fig. 10. The speed of the vehicle in exper-
iment was set to be 60km/h and maintained to be constant.
For comparison, the accurate roll angle is measured by

FIGURE 10. The small-sized SUV used for experiment.

RT 3000 and its base station of Oxford Technical Solu-
tions Ltd [31]. The accuracy of roll and pitch angles mea-
sured by RT3000 is 0.05◦ 1σ . The roll rate and lateral
acceleration used for KFs were measured with HG1120 of
Honeywell AeroSpace [13]. Three KFs were implemented
with MATLAB/Simulink and run on dSpace MicroAutoBox.
So, the data from the sensors and the output of KFs were
saved using dSpaceMicroAutoBox [32]. To check the estima-
tion performance and the robustness of three KFs, the outputs
of KFs, i.e., the estimated roll angles, are compared to the
accurate one obtained from RT3000.

FIGURE 11. Measured signals with HG1120 from experiment.

Fig. 11 shows the lateral acceleration and roll rate mea-
sured with HG1120 from experiment. As shown in Fig. 11,
the measured lateral acceleration is noisy, compared to the
roll rate. The measured roll rate is also noisy. So, it is
necessary to apply KFCVM as a filter in order to reduce the
fluctuations in the control roll moment. Fig. 12 shows the
estimation results of three KFs obtained from experiment.
In Fig. 12, the legend Real means the accurate roll angle
measured with RT3000. Similar to the simulation results,
the dual KF and KFCVM have nearly identical performance
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FIGURE 12. Estimation results of three KFs from experiment.

in estimating the roll angle. On the other hand, KFFP shows
worse performance compared to dual KF and KFCVM in
terms of the roll angle error. As shown in Fig. 11-(c) and -(d),
the differences between the fixed and estimated values of
the roll stiffness and the roll damping are quite large. As a
result, it caused the difference of roll angle error between
KFFP and dual KF. Moreover, the estimated values of the
roll stiffness and the roll damping are similar to those of
simulation. In other words, as shown in Fig. 6-(c), -(d),
Fig. 7-(c), -(d), Fig. 12-(c), and -(d), the estimated values of
the roll stiffness and the roll damping converged to nearly
identical ones, respectively.

To evaluate the parameter estimation performance of dual
KF for the parameter sets, (14), (15), (16) and (17), simulation
was conducted with the experimental data, i.e., the measured
lateral acceleration and roll rate from HG1120 as shown
in Fig. 11. Let CASE1, CASE2, CASE3 and CASE4 denote
the sets of parameters in (14), (15), (16) and (17),

FIGURE 13. Estimation results of dual KF for each case.

respectively. For each case, the estimated roll angles of three
KFs are compared with accurate one measured with RT3000.

Fig. 13 shows the estimation results of dual KF for each
set of parameters. As shown in Fig. 13-(a), there are small
differences in roll angle error for each case. In other words,
it is enough for on to use the dual KF with the parameter
set, (14), for state and parameter estimation. This means that
adaptation mechanism of the parameter estimator or dual KF
for the roll stiffness and the roll damping, (14), can reflect the
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uncertainties or variations in the roll moment of inertia and
the height of center of gravity. It is notable that the estimated
values of the roll damping, the roll moment of inertia and the
height of center of gravity converged to the corresponding
lower limits except the roll stiffness. This means that the roll
stiffness is the most important among the model parameters
in terms of parameter estimation, and that it is desirable to set
the initial values of the parameters as small as possible.

To check the robustness of three KFs, simulation was
conducted with experimental data, i.e., the measured lateral
acceleration and roll rate from HG1120 as shown in Fig. 11.
Three KFs were run with 300 sets of randomly generated
parameters of the 1-DOF roll model. The ranges of the param-
eters are identical to those in the previous subsection. The
roll stiffness and the roll damping, as given in (14), were
selected for parameter estimation. KFCMV was used to filter
the measured roll rate and lateral acceleration.

Fig. 14 shows the histograms of the maximum absolute and
RMS values of the estimation errors obtained from three KFs

FIGURE 14. Estimation results of three KFs from experiment.

and experimental data. As shown in Fig. 14, the dual KF is
more robust compared to KFFP in terms of the maximum
absolute and RMS estimation errors. In other words, the vari-
ance of estimation errors of KFFP is larger than that of the
dual KF. However, the estimation performance of dual KF in
terms of the maximum absolute error is not as notable as the
simulation results of the previous subsection. In other words,
the maximum absolute errors of dual KF in Fig. 14-(a) was
not notably improved, compared to Fig. 8-(a) and Fig. 9-(a).
On the other hand, the RMS values of estimation error of Dual
KF got better than those of KFFP, as shown in Fig. 14-(b).
As expected, KFCVM is the most robust observer among
three KFs.

As shown in Fig. 14-(a), the noise filtering on the roll rate
and the lateral acceleration deteriorates the estimation perfor-
mance of three KFs in terms of the maximum absolute error.
This is caused by the time delay from the filter, i.e., KFCVM.
On the other hand, the noise filtering has little effect on the
RMS errors, as shown in Fig. 14-(b). This is identical to the
simulation results of the previous subsection.

V. CONCLUSION
In this paper, the observer-based active roll control system
was designed. The dual KF and KFCVM were adopted as a
robust observer in order to cope with the parameter uncer-
tainty and nonlinearity in the vehicle model. Notable feature
of the dual KF is that it has parameter estimation function
against the parameter variation and the nonlinearity. KFCVM
was expected to be robust against the parameter uncertainty
because it is independent of model parameters. The KF with
fixed parameter was used for comparison. To check the per-
formance of observer-based active roll control system, three
active roll controllers – LQR,H∞ and slidingmode controller
– and three KFs were designed. The estimation performance
and robustness of three KFs were checked through simula-
tion on CarSim and vehicle tests. From the simulation and
experiment, it had been shown from both simulations and
vehicle tests that the dual KF is more robust than KF with
fixed parameters. As expected, KFCVM is quite robust due
to the parameter independency of model parameters. Another
conclusion is that it is desirable for one to set initial values
of parameters for KFs be set as small as possible for good
estimation performance.

REFERENCES
[1] A. Sorniotti, A. Morgando, and M. Velardocchia, ‘‘Active roll control:

System design and hardware-in-the-loop test bench,’’ Vehicle Syst. Dyn.,
vol. 44, no. 1, pp. 489–505, 2006.

[2] Y. Mizuta, M. Suzumura, and S. Matsumoto, ‘‘Ride comfort enhancement
and energy efficiency using electric active stabiliser system,’’ Vehicle Syst.
Dyn., vol. 48, no. 11, pp. 1305–1323, 2010.

[3] S. Yim, ‘‘Design of preview controllers for active roll stabilization,’’
J. Mech. Sci. Technol., vol. 32, no. 4, pp. 1805–1813, 2018.

[4] J. Nah and S. Yim, ‘‘Observer-based active roll preview control with V2V
communication,’’ IEEE Access, vol. 7, pp. 44831–44839, 2019.

[5] R. C. Lin, D. Cebon, and D. J. Cole, ‘‘Active roll control of articulated
vehicles,’’ Vehicle Syst. Dyn., vol. 26, no. 1, pp. 17–43, 1996.

[6] D. J. M. Sampson and D. Cebon, ‘‘Active roll control of single unit heavy
road vehicles,’’ Vehicle Syst. Dyn., vol. 40, no. 4, pp. 229–270, 2003.

173042 VOLUME 7, 2019



M. Park, S. Yim: Design of Robust Observers for ARC

[7] H. J. Kim and Y. P. Park, ‘‘Investigation of robust roll motion control
considering varying speed and actuator dynamics,’’Mechatronics, vol. 14,
pp. 35–54, Feb. 2004.

[8] K. Jeon, H. Hwang, S. Choi, J. Kim, K. Jang, and K. Yi, ‘‘Development of
an electric active rollcontrol (ARC) algorithm for a SUV,’’ Int. J. Automot.
Technol., vol. 13, no. 2, pp. 247–253, 2012.

[9] Y. Ohta, H. Kato, D. Yamada, K. Sato, T. Fukino, E. Nobuyama, and
S. Buma, ‘‘Development of an electric active stabilizer system based on
robust design,’’ SAE Tech. Paper 2006-01-0758, 2006.

[10] S. Yim and K. Yi, ‘‘Design of an active roll control system for hybrid
four-wheel-drive vehicles,’’ Proc. Inst. Mech. Eng., D, J. Automobile Eng.,
vol. 227, no. 2, pp. 151–163, 2013.

[11] J. G. Guzman, L. P. Gonzalez, J. P. Redondo, S. S. Sanchez, and
B. L. Boada, ‘‘Design of low-cost vehicle roll angle estimator based on
Kalman filters and an IoT architecture,’’ Sensors, vol. 18, no. 6, p. 1800,
2018.

[12] VBOX Automotive, VBOX 3i, 100 Hz Data Logger.
Accessed: 2019. [Online]. Available: https://www.vboxautomotive.co.uk/
index.php/ko/products/data-loggers/vbox-3i

[13] Honeywell Aerospace. HG1120 MEMS Inertial Measurement Unit.
Accessed: 2018. [Online]. Available: https://aerospace.honeywell.com/en/
~/media/aerospace/files/brochures/n61-1524-000-004-hg1120-mems-
inertial-measurement-unit-bro.pdf

[14] W. Kerstens, ‘‘Robust observer roll rate sensor fault detection,’’ SAE Tech.
Paper 2017-01-1572, 2017.

[15] B. L. Boada, M. J. L. Boada, L. Vargas-Melendez, and V. Diaz, ‘‘A robust
observer based on H filtering with parameter uncertainties combined with
neural networks for estimation of vehicle roll angle,’’ Mech. Syst. Signal
Process., vol. 99, pp. 611–623, Jan. 2018.

[16] M. Jalali, E. Hashemi, A. Khajepour, S.-K. Chen, and B. Litkouhi, ‘‘Model
predictive control of vehicle roll-over with experimental verification,’’
Control Eng. Pract., vol. 77, pp. 95–108, Aug. 2018.

[17] H. Dahmani, O. Pagès, A. El Hajjaji, and N. Daraoui, ‘‘Observer-based
robust control of vehicle dynamics for rollover mitigation in critical sit-
uations,’’ IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 274–284,
Sep. 2014.

[18] A.-T. Nguyen, C. Sentouh, and J.-C. Popieul, ‘‘Fuzzy steering control for
autonomous vehicles under actuator saturation: Design and experiments,’’
J. Franklin Inst., vol. 355, no. 18, pp. 9374–9395, Dec. 2018.

[19] Z. Wang, Y. Qin, C. Hu, M. Dong, and F. Li, ‘‘Fuzzy observer-based
prescribed performance control of vehicle roll behavior via controllable
damper,’’ IEEE Access, vol. 7, pp. 19471–19487, 2019.

[20] R. Rajamani, D. Piyabongkarn, V. Tsourapas, and J. Y. Lew, ‘‘Parameter
and state estimation in vehicle roll dynamics,’’ IEEE Trans. Intell. Transp.
Syst., vol. 12, no. 4, pp. 1558–1567, Sep. 2011.

[21] R. Tafner, M. Reichhartinger, and M. Horn, ‘‘Robust vehicle roll dynamics
identification based on roll rate measurements,’’ IFAC Proc. Volumes,
vol. 45, no. 30, pp. 72–78, 2012.

[22] K. Nam, S. Oh, H. Fujimoto, and Y. Hori, ‘‘Estimation of sideslip and
roll angles of electric vehicles using lateral tire force sensors through RLS
and Kalman filter approaches,’’ IEEE Trans. Ind. Electron., vol. 60, no. 3,
pp. 988–1000, Mar. 2013.

[23] K. Jiang, A. C. Victorino, and A. Charara, ‘‘Adaptive estimation of vehicle
dynamics through RLS and Kalman filter approaches,’’ in Proc. 18th
IEEE Int. Conf. Intell. Transp. Syst., Canary Islands, Spain, Sep. 2015,
pp. 1741–1746.

[24] T. A. Wenzel, K. J. Burnham, M. V. Blundell, and R. A. Williams, ‘‘Dual
extended Kalman filter for vehicle state and parameter estimation,’’Vehicle
Syst. Dyn., vol. 44, no. 2, pp. 153–171, 2006.

[25] D. Hu, C. Zong, and X. Na, ‘‘Combined estimation of vehicle states and
road friction coefficients using dual extended Kalman filter,’’ in Proc.
AVEC, 2010, pp. 309–314.

[26] L. Hong, ‘‘Discrete constant-velocity-equivalent multirate models for tar-
get tracking,’’ Math. Comput. Model., vol. 28, no. 11, pp. 7–18, 1998.

[27] X. Tian, G. Chen, E. Blasch, K. Pham, and Y. Bar-shalom, ‘‘Comparison
of three approximate kinematic models for space object tracking,’’ in Proc.
Int. Conf. Inf. Fusion, Jul. 2013, pp. 1005–1012.

[28] A. Hac, D. Nichols, and D. Sygnarowicz, ‘‘Estimation of vehicle roll angle
and side slip for crash sensing,’’ SAE Tech. Paper 2010-01-0529, 2010.

[29] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Hoboken, NJ, USA: Wiley, 2006.

[30] S. Yim, ‘‘Unified chassis control with electronic stability control and active
front steering for under-steer prevention,’’ Int. J. Automot. Technol., vol. 16,
no. 5, pp. 775–782, 2015.

[31] Oxford Technical Solutions. RT3000, High performance GNSS/INS
for Dynamic Applications. Accessed: 2019. [Online]. Available:
https://www.oxts.com/products/rt3000/

[32] dSpace. MicroAutoBox II. Accessed: 2019. [Online]. Available: https://
www.dspace.com/en/inc/home/medien/product_info/prodinf_mabx.cfm

MANBOK PARK received the B.S. degree in
mechanical engineering from Inha university,
South Korea, the M.S. degree in mechanical engi-
neering from the Korea Advanced Institute of
Science and Technology (KAIST), South Korea,
in 2002, and the Ph.D. degree from the Graduate
School of Convergence Science and Technology,
Seoul National University, South Korea, in 2014.

He had been worked for 15 years with Mando
Corporation, automotive part company. He is cur-

rently an Assistant Professor of electrical engineering with the Korea
National University of Transportation. His research interests are autonomous
vehicle, SLAM, precision map, risk assessment, and artificial intelligence.

SEONGJIN YIM received the B.S. degree in
mechanical engineering from Yonsei University,
South Korea, in 1995, and the M.S. and Ph.D.
degrees in mechanical engineering from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST), in 1997 and 2007, respectively.

From 2008 to 2010, he was a Postdoctoral
Researcher with BK21 School for Creative Engi-
neering Design of Next Generation Mechanical
and Aerospace Systems, Seoul National Univer-

sity. From 2011 to 2013, he was a Research Professor with the Advanced
Institutes of Convergence Technology, Seoul National University. Since
2013, he has been an Assistant Professor with the Department of Mechanical
and Automotive Engineering, Seoul National University of Science and
Technology, South Korea. His research interests include integrated chassis
control systems with V2V communication, cloud computing-based vehicle
control, electric power steering, and steer-by-wire systems.

VOLUME 7, 2019 173043


	INTRODUCTION
	DESIGN OF ACTIVE ROLL CONTROLLERS
	VEHICLE MODEL AND DISCRETE-TIME STATE-SPACE EQUATION
	CONTROLLER DESIGN FOR ARC

	DESIGN OF ROBUST OBSERVERS
	KALMAN FILTER
	KALMAN FILTER FOR STATE ESTIMATION
	KALMAN FILTER FOR PARAMETER ESTIMATION
	DUAL KALMAN FILTER FOR STATE AND PARAMETER ESTIMATION
	KALMAN FILTER WITH CONSTANT VELOCITY MODEL

	SIMULATION AND EXPERIMENT
	SIMULATION ON CARSIM
	EXPERIMENT ON A REAL VEHICLE

	CONCLUSION
	REFERENCES
	Biographies
	MANBOK PARK
	SEONGJIN YIM


