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ABSTRACT Renal dysfunction, which is associated with bad clinical outcomes, is one of the most common
complications of heart failure (HF). Timely prediction of renal dysfunction can help medical staffs intervene
early to avoid catastrophic consequences. In this paper, we proposed a multi-task deep and wide neural
network (MT-DWNN) for predicting fatal complications during hospitalization. The algorithm was tested
on a dataset collected from Chinese PLA General Hospital, which contains 35,101 hospitalizations with
HF diagnosis during the last 18 years, and 2,478 hospitalizations with a diagnosis of renal dysfunction. For
the renal dysfunction task, the AUC of the proposed method is 0.9393, which is a significant improvement
(p < 0.01) compared to that of conventional methods, while that of single task deep neural networks is
0.9370, that of random forest is 0.9360, and that of logistic regression is 0.9233. The experimental results
show that the proposed MT-DWNN model achieves better prediction performance on renal dysfunction in
HF patients than conventional models.

INDEX TERMS Heart failure, renal dysfunction, deep and wide neural network, multi-task.

I. INTRODUCTION
Heart failure (HF), also known as chronic heart failure (CHF),
is a clinical syndrome caused by ventricular dysfunction.
Heart failure is a serious manifestation or late stage of var-
ious heart diseases. Generally, heart failure would result in
insufficient cardiac ejection. Heart failure is a disease with
high mortality rate and high medical costs. According to
the guidelines of European Society of Cardiology (ESC),
there are about 26 million adults living with heart failure
worldwide. The 5-year survival rate of HF is even worse than
that of several kinds of cancer [1], [2]. HF was responsible
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for an estimated health expenditure of around $31 billion in
the United States, which is equivalent to more than 10% of
the total health expenditure for cardiovascular diseases [3].

As mentioned above, the immediate symptom of heart fail-
ure is insufficient blood ejection from the heart. Insufficient
blood supply can cause diseases in other organs, such as
kidney.Many previous researches have reached the same con-
clusion that renal dysfunction has a great adverse impact the
prognosis of patients withHF [4], [5]. Bibbins-Domingo et al.
showed that renal insufficiency was a major predictor of
mortality among women with HF [6]. Forman et al. found
that worsening renal function occurs frequently among hospi-
talized HF patients and is associated with significantly worse
outcomes [7]. Hillege concluded that impaired renal function
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is independently associated with heightened risk for death,
cardiovascular death, and hospitalization for heart failure in
patients with chronic HF with both preserved as well as
reduced left ventricular ejection fraction [8]. Damman et al.
found that worsening renal function predicts substantially
higher rates of mortality and hospitalization in patients with
HF [9]. Tobias et al. showed that worsening renal function
was common in patients with acute decompensated heart
failure and was linked to significantly worse outcomes. How-
ever, the clinical parameters failed to adequately predict its
occurrence [10]. Cole et al. found that worsening renal func-
tion in heart failure is the result of a complex, multifactorial
process [11].

These studies have found that worsening renal function
is significantly associated with adverse outcomes in patients
with heart failure. Take our dataset as an example: patients
with renal dysfunction suffer higher risk of mortality. The
hospital mortality rate of HF patients with renal dysfunction
is 22.72%, compared to that of all theHF patient being 6.30%.
Timely prediction of the renal dysfunction can help medical
staff intervene early to avoid catastrophic consequences.

The remainder of this paper is organized as follows.
Section II reviews related work on this topic.Section III
introduces the dataset and the proposed model in detail.
Section IV presents the experimental results on the dataset,
comparison results of different neural networks and con-
ventional machine learning models. Section V discusses the
experimental results. Finally, Section VI gives conclusions
and discusses future work.

II. RELATED WORKS
A. HEART FAILURE OUTCOMES PREDICTION
In the past few decades, many works have been dedicated
to outcomes prediction of HF patients using machine learn-
ing (ML) algorithms. Guidi et al. presented a clinical decision
support system (CDSS) for the analysis of heart failure (HF)
patients, providing various outputs such as an HF severity
evaluation, HF-type prediction, as well as a management
interface that compares different patients’ follow-ups. Com-
pared to neural network (NN), support vector machine, fuzzy
rules, and classification and regression tree, random forest
obtained the best performance [12]. Masetic and Subasi com-
pared many ML algorithms (decision tree, k-nearest neigh-
bor, support vector machine, artificial neural networks, and
random forest) on the task of detecting HF from ECG, and RF
gives the best performance [13]. Rahimi et al. reviewed the
literature for death and hospitalization risk prediction models
in patients with HF [14]. Miao et al. proposed an improved
random survival forest to predeict inhospital mortality [15].
Acharya et al. proposed a deep convolutional neural network
for the automated diagnosis of congestive heart failure using
ECG signals [16]. Nirschl et al. developed a CNN classifier
to detect HF from hematoxylin and eosin (H&E) stained
whole-slide images [17]. Researchers also gave some other
comprehensive surveys, which focus on applying machine

learning to all aspects of the management of heart failure
[2], [18]. However, most of these works focused on mortality
or readmission prediction, with few focusing on compli-
cations of heart failure. Wosiak et al. proposed a multi-
label classification technique for comorbidities identification,
which is a general model for all kinds of diseases [19].
Xiang et al. proposed a multi-task framework that can jointly
predict the risk of multiple related diseases, and the method
was tested on patients with Congestive Heart Failure and
Chronic Obstructive Pulmonary Disease [20].

B. DEEP LEARNING AND ITS APPLICATION IN
HEALTHCARE
Deep learning (DL) is one of the most advanced machine
learning models. In recent years, DL outperforms traditional
machine learning methods with a significant margin in image
recognition, speech recognition and natural language pro-
cessing [21]. DL is also applied to solve many problems in
healthcare [22]–[26]. Miotto et al. proposed an unsupervised
representation of patient from the EHRs (Electronic Health
Records), named Deep Patient, which is a three-layer stacked
denoising autoencoders [27]. Cheng et al. represented the
EHRs for every patient as a temporal matrix with time on one
dimension and event on the other dimension. Then they built
a four-layer convolutional neural network model to extract
phenotypes and perform chronic diseases prediction [28].
Choi et al. used recurrent neural network models for early
detection of heart failure onset [29]. Reference [22] and [30]
for more works on applying DL to EHR data analysis.

In this paper, inspired by the wide & deep networks [31],
we propose a novel deep and wide neural network, and apply
it to predict renal dysfunction in HF patients with EHR data.
The main contributions of the paper include:
• Applying deep learning to predict complication of HF
patients.

• Proposing a novel deep and wide neural network archi-
tecture.

• Adding auxiliary task to improve the prediction perfor-
mance.

• Validating the proposed model on a real world dataset.

III. MATERIALS AND METHODS
The immediate symptom of HF is insufficient blood ejec-
tion from the heart, which is prone to complications. Some
serious complications, such as renal dysfunction are fatal.
Timely prediction of the fatal complications can enable early
intervention to avoid catastrophic consequences. Few works
have been done on this topic. In this paper, we proposed a
multi-task deep neural networks with novel architecture to
improve prediction performance for renal dysfunction with
electronic health records (EHRs). We also compared the pro-
posed model with conventional machine learning methods.

A. DATASET AND PREPROCESSING
The dataset was extracted from Chinese PLA General
Hospital (PLAGH), which contained Electronic Health
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Records (EHR) data from January 2001 to August 2018.
Based on the Hospital Information System (HIS) of PLAGH,
which contained electronically available data from multiple
institutional information systems contributing to the EHR,
including demographic information, claims-based diagno-
sis and procedure information, laboratory values, and med-
ication lists for all the patients hospitalized in PLGAH,
a HF database was established. In the present study, patients
were eligible for inclusion if they were: aged 18 years and
above with a clinical diagnosis of HF according to the
2016 ESC guidelines for the diagnosis and treatment of
acute and chronic heart failure [1]. Patients were excluded if
they decided to terminate in-hospital treatment, or were dis-
charged/transferred to another short-term hospital or hospice.
The final dataset included 35,101 records of 25,514 patients,
including 15,694 males and 9,820 females. The average age
of patients is 62.6(±16.1) years old.

Among the 35,101 hospitalizations, 2,478 hospitalizations
have a diagnosis of renal dysfunction, which are the pos-
itive samples for the renal dysfunction task. In addition,
2,211 patients died during hospitalization, resulting in the in-
hospital mortality rate of 6.30%.

The study complies with the Declaration of Helsinki and
has been approved by the Ethics Committee of the Chinese
People’s Liberation Army General Hospital.

A total of 89 features were adopted for prediction,
including 4 basic indicators (gender, age, height, weight),
74 laboratory indicators (from blood gas, blood general form,
carbohydrates and related substances, enzymes and other
related substances, general urine test, lipids and their related
substances, low molecular nitrogen compounds, pigments
and related substances, protein and gelatin reaction and the
electrolyte), 11 indicators from examination reports (Elec-
trocardiogram (ECG) reports, Echocardiography reports ect.,
each indicates whether a patient has a certain type of symp-
toms, e.g., atrial fibrillation).

Each hospitalization is represented by 89 features extracted
and preprocessed by the following steps:
• First measurement extraction. The aim of this step
is to predict renal dysfunction at the very beginning of
hospitalization, so only the first value of each item is
used. If there are multiple duplicate values, the first one
is selected. Some examinations in the outpatient clinic
before hospitalization are taken into consideration if the
gap between examination and hospitalization is less than
7 days. For example, single hospitalization may include
6 blood test results in total, but only the first result is
taken. If there is a blood test three days prior to the
hospitalization, we would take that one, instead of the
first one during hospitalization.

• Handling missing value. For the missing features,
a value of 0 was given to get the best performance after
comparing several commonly used methods.

• Normalization. All the features are normalized by

xij =
xij − x̄i
std(xi)

(1)

FIGURE 1. Overall architecture of MT-DWNN.

where xij is the value of the ith feature of the jth sample,
xi is the vector composed by ith feature of all the sam-
ples, x̄i is the mean value of xi, std(xi) is the standard
deviation of xi.

B. DWNN
In this paper, we present a novel architecture for deep neural
networks named deep and wide neural networks (DWNN).
Like other deep neural networks, DWNN is an end-to-end
deep neural networkmodel. Figure 1 presents the architecture
of the whole Multi-task DWNN. The main improvement of
DWNN focuses on the shared layer in the figure. The features
extracted from EHR are fed into the DWNN as the input.
As shown in the figure, the architecture is different from the
conventional DNN. Similar to the conventional DNN, there
are 4 hidden layers (labeled as hl,h2,h3,h4) in the DWNN.
The main difference is that all the neurons in the input layer
and all the hidden layers are concatenated in the wide layer.
The wide layer is the input of the subsequent fully connected
layers. The fully connected layers and output layer is similar
to the conventional DNN.

As shown in Figure 1, compared to conventional DNN,
we add a wide layer containing all the information in the
input layer and all the hidden layers. Through the wide
layer, direct connections (shortcuts) between all the hidden
layers and fully connected layers are built (marked in orange
in Figure 1).
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Such direct connections shorten the distance between the
output layer and all the intermediate layers. Take h2 for exam-
ple, without the shortcuts, the only pathway from h2 to output
is h2-h3-h4-full-output, which takes 4 steps. Shortcuts lead to
2 shortened pathways from h2 to output: one is h2-full-output;
the other is h2-h3-full-output, which take 2 and 3 steps,
respectively. The shortcuts tend to alleviate the vanishing-
gradient problem, strengthen information propagation in both
feed forward and back propagation procedure of the whole
neural network.

In the training phase, the shortcuts could enhance the
gradient back propagation. In the test phase, the wide layer
contains information of all the forward layers with different
depths (input, h1, h2, h3, h4). That is why the architecture
adjustment is capable of improving the performance of con-
ventional DNN.

C. MULTITASK NEURAL NETWORKS
With a focus on the prediction of renal dysfunction, this paper
is aimed at the main task of predicting the occurrence of renal
dysfunction during hospitalization. Although the prediction
of only one complication is included, prediction of mortality
and intubation have been adopted as auxiliary tasks (AT) to
improve the performance, as they are the most commonly
used outcomes of HF patient in hospitals.

The architecture of multi-task networks is shown
in Figure 1. The input layer and all the hidden layers are
shared layers, while the output layer is a specific layer for
different tasks.

For multi-task neural networks, the whole network is
trained simultaneously. As we know, the training procedure
is supervised learning, so multi-task training leads to more
supervision, which leads to more general representation of
the data. Generally speaking, multi-task mechanism results
in better performance and improves generalization ability.

D. MULTITASK DWNN AND ITS IMPLEMENTATION
DETAILS
In this paper, to build a model for renal dysfunction predic-
tion, the DWNN was modified for multi-task learning.

The input layer, hidden layers, the wide layer, and the fully
connected layer of DWNN are all shared layers. Specifically,
the input layer includes 89 neurons, each corresponding to
1 feature. The 4 hidden layers are with dense connections,
and each layer includes 512 neurons. Each hidden layer is
composed of dense connections, batch normalization, ‘relu’
activation, and dropouts. The dropout rate was set to 0.65.
In the wide layer, the input layer and all the hidden layers
are concatenated together and fed into the fully connected
layers. The fully connected layer including 1024 neurons
with the dropout rate of 0.65, but the activation is changed
to ‘sigmoid’.

The output layer of DWNN is changed to 3 independent
softmax layers, corresponding to one main prediction task:
renal dysfunction, and 2 auxiliary tasks: morality and
intubation. For example, for the renal dysfunction task,

the result should be positive if the patient was diagnosed
with renal dysfunction during hospitalization. Conversely,
the result should be negative if the patient was not diag-
nosed with renal dysfunction during the hospitalization.
The codes of building the neural networks are available at
https://github.com/yzjba/dwnn.

The network is trained using Adam, an efficient stochastic
gradient-based optimizer [32]. The batch size is set to 1024.

IV. RESULTS
A. MEASUREMENTS
Tomeasure the performance of the proposedmethod for com-
plications prediction, sensitivity (Sen), specificity (Spec),
Detection Rate (DR), False Alarm Rate (FAR) and accu-
racy (Acc) are calculated, which are defined as:

Sen = TP/(TP+ FN ), (2)

Spec = TN/(TN + FP), (3)

DR = Sen, (4)

FAR = 1− Spec, (5)

Acc = (TP+ TN )/(TP+ FN + TN + FP), (6)

in which TP (True Positive) is the number of positive samples
that are recognized as positive; FN (False Negative) is the
number of positive samples that are recognized as negative;
TN (True Negative) is the number of negative samples that
are recognized as negative; FP (False Positive) is the number
of negative samples that are recognized as positive. In gen-
eral, a good detection method will minimize the FAR while
maximize all the other 4 performance metrics.

B. REFERENCE MODELS
For comparison, we also tested Logistic Regression (LR),
Random Forest (RF), Multi-task DNN (MT-DNN), and Sin-
gle task DWNN (ST-DWNN) on the same dataset. LR is the
most commonly used statistical analysis model in medical
community. RF is one of the most commonly used machine
learning models. MT-DNN is adopted as reference model to
show the effectiveness of the proposed DWNN architecture.
ST-DWNN is adopted as reference model to show the effec-
tiveness of multi-task learning.

In the MT-DNN, the wide layer and the direct connections
are removed. The input layer, hidden layers, fully connected
layer, and output layer are the same as MT-DWNN. The hid-
den layer h4 is directly connected to the first fully connected
layer. The output tasks are renal dysfunction and auxiliary
task prediction, respectively.

In the ST-DWNN, the input layer, hidden layers, wide
layer, and fully connected layer are the same as MT-DWNN.
No auxiliary task was added. The only task is renal dysfunc-
tion prediction.

C. PARAMETER SETTING
The dataset was segmented into training set and testing
set. Data from 2001 to 2013 were used as training set
(21,104 admissions) and data from 2014 to 2018 were
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FIGURE 2. Comparison of different widths.

FIGURE 3. Comparison of different dropout rate.

used as testing set (13,997 admissions). All the parame-
ters were determined by 3-fold cross-validation on train-
ing dataset. And the performance was tested on testing
dataset.

All the experiments were run on a desktop with 4-core
Intel(R) Core(TM) processor of 3.20 GHz, 8GBRAM. Train-
ing on 21,104 samples took 148.95s. Testing on 13,997
samples took 2.14s.

There are two important parameters in MT-DWNN. The
first one is width (number of neurons per hidden layer) of the
hidden layers and the second one is dropout rate.Differdent
values have been tried for the two parameters.

A quantitative measurement of detection model is Area
Under Curve (AUC), which is defined as ratio of area under
the Receiver Operating Characteristic (ROC) curve. Gener-
ally, the larger the AUC is, the better performance the detector
gets.

Figure 2 lists the AUCs of MT-DWNN with different
width, where dropout rate is fixed to 0.65. As shown in the
table, DenseDNNwith 512 neurons per hidden layer perform
the best. The median AUC is 0.9455. Figure 3 lists AUCs
of MT-DWNN with different dropout rates, with width being
fixed to 512. It can be found that MT-DWNN with a dropout
rate of 0.65 gives the highest AUC of 0.9457. In the following
tests, 512 is selected as the width, and 0.65 is selected as the
dropout rate.

FIGURE 4. Renal dysfunction prediction performance of MT-DWNN and
ST-DWNN.

D. MT-DWNN VS ST-DWNN
To show the effectiveness of multi-task learning, we compare
MT-DWNN with single task networks (ST-DWNN).

ROC curves of MT-DWNN, ST-DWNN for renal dysfunc-
tion prediction are given in Figure 4. To facilitate the com-
parison, only the top-left part (the most important part) of the
ROCs was shown. For each curve, with the increasing false
alarm rate, the detect rate of the detectors rises up. It is found
that, for most cases, the ROC curve of MT-DWNN is higher
than that of the ST-DWNN, with a significant margin. As
shown in Figure 4, the AUC of MT-DWNN is 0.9393 while
the AUC of ST-DWNN is 0.9370. Repeated statistics of AUC
shows that there is a significant difference between the groups
of MT-DWNN and ST-DWNN (p<0.001, shown in Table 1).

According to the ROC curves and their AUCs, we
concluded that, for the renal dysfunction prediction,
the multi-task learning improves the performance signifi-
cantly. Multi-task learning mechanism is very helpful for the
complication prediction task.

E. MT-DWNN VS MT-DNN
To show the effectiveness of the DWNN architecture,
we compared MT-DWNN with MT-DNN. As mentioned
above, MT-DNN is a commonly used multi-task deep neural
network.

ROC curves of MT-DWNN, and MT-DNN for renal dys-
function prediction are given in Figure 5. It is found that,
for most cases, the ROC curve of MT-DWNN is higher
than that of MT-DNN with a significant margin. The AUC
of MT-DWNN for renal dysfunction prediction is 0.9393,
while the AUC of MT-DNN is 0.9343. Repeated statistics
of AUC shows that there is a significant difference between
the groups of MT-DWNN and MT-DNN (p<0.001, shown
in Table 1).
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TABLE 1. Prediction performance of different models for renal dysfunction.

FIGURE 5. Renal dysfunction prediction performance of MT-DWNN and
MT-DNN.

According to the ROC curves and their AUCs, we conclude
that, for renal prediction, the DWNN architecture improves
the performance. Adding direct connections improves the
complication prediction performance.

F. MT-DWNN VS CONVENTIONAL METHODS
To further show the effectiveness of the MT-DWNN archi-
tecture, we compared MT-DWNN with two conventional
machine learning methods, LR and RF. Both are the most
commonly used machine learning models in the medical
community.

ROC curves of MT-DWNN, LR, and RF for renal dysfunc-
tion prediction are given in Figure 6. We find that, the ROC
curve of MT-DWNN is always higher than that of LR and
RF. The AUC of MT-DWNN for renal dysfunction prediction
is 0.9393, the AUC of RF is 0.9360, while the AUC of LR
is 0.9233. Repeated statistics of AUC shows that there was
a significant difference between the groups of MT-DWNN
and LR, and that of MT-DWNN and RF (p<0.001, shown
in Table 1).

According to the ROC curves and their AUCs, we
concluded that, for renal dysfunction prediction, the
MT-DWNN architecture improves the performance sig-
nificantly than conventional machine learning methods.
The proposed model improves the complication prediction
performance.

FIGURE 6. Renal dysfunction prediction performance of MT-DWNN and
conventional models.

The Spec, Sen, and AUCs of all the models for renal
dysfunction prediction are listed in Table 1. 5 specificity
values are selected as reference, which are 0.95, 0.90,0.85,
0.80, and 0.75. We can figure out that the proposed
MT-DWNN achieves the largest sensitivity on 3 specificities
and ST-DWNN and RF get 1 largest specificity. The AUC
of MT-DWNN is 0.9393, which is larger than that of all the
other models. The comparison shows that the proposed MT-
DWNN is capable of predicting renal dysfunction in heart
failure patients more effectively.

G. AUXILIARY TASK ANALYSIS
To check the contributions of the auxiliary tasks, we train the
DWNN with different auxiliary tasks. The AUCs of different
models are listed in Table 2. As shown in the table, the fol-
lowing conclusions can be reached:

Models with auxiliary tasks perform better than model
without auxiliary tasks. The AUCs of DWNN with any kind
and number outperform that of DWNNwithout auxiliary task
significantly (p < 0.01 or p < 0.01).
Compared to the results of model with one auxiliary task,

we find that the model with mortality as auxiliary task per-
forms similar to the model with intubation as auxiliary task.
Through checking the relationship between the main task and
both ATs, it is found 22.72% patients with renal dysfunction
died in hospital, and 17.55% received intubation treatment.
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TABLE 2. AUCs of DWNN with different auxiliary tasks.

The correlation between renal dysfunction and mortality is
similar to that between renal dysfunction and intubation.

Model with both auxiliary tasks obtians the best perfor-
mance, which is significantly better than DWNN without AT
(p < 0.05), but not significant compared to DWNN with one
AT (p > 0.05). Generally, model with more auxiliary tasks
means more information is fed into the training procedure,
hance resulting in better performance.

V. DISCUSSIONS
As shown in Figure 4, MT-DWNN outperforms ST-DWNN,
the single-task baseline, on the prediction task. From Table 1,
we can also figure out that, multi-task models, regardless
of the type (mortality or intubation) and number (one or
two) of auxiliary tasks, outperform ST-DWNN. Furthermore,
auxiliary task selection is important for multi-task learning.
The auxiliary task more relevant to the main task tends to get
improved performance than the auxiliary task less relevant to
the main task. Multi-task neural networks are a natural fit for
complication risk prediction [20], [33]. Auxiliary tasks would
be helpful even though the main aim is single task prediction.
Herein, the training procedure of MT-DWNN takes all the
information from all the 3 tasks (renal dysfunction, mortality,
and intubation) into consideration, which leads to improved
performance and better generalization ability.

Figure 5 and Table 1 showed that MT-DWNN achieved
improved prediction performance compared to MT-DNN,
thus proving the benefits of the DWNN architecture. The
proposed DWNN jointly learns from information across all
the layers. The shortcuts across the hidden and wide layers
strengthen information propagation in both feed forward and
back propagation procedures of the whole neural network,
making the training and predicting procedure more effective.

In summary, it is found that the multi-task learning
mechanism and the DWNN network architecture improve
the performance for renal dysfunction prediction. But the
improvement is limited. The main disadvantage is that,
the architecture cannot capture the dynamically changing
trend of the items in EHR. Further work would include
readjusting the architecture of DWNN and changing the data
representation for hospitalizations to capture the changing
trend of items in EHR.

VI. CONCLUSION
In this paper, we proposed a multi-task deep and wide neural
network to predict renal dysfunction in HF patients. It pro-
vides a basis for clinicians to timely individualize the risk
of the renal function worsening in patients with HF so as
to intervene early to avoid catastrophic consequences. The
main task is to predict the occurrence of renal dysfunction

during hospitalization. Themodel was tested on a dataset con-
taining 25,514 heart failure patients during January 2001 to
August 2018. The experimental results show that the pro-
posed MT-DWNN model achieves better prediction perfor-
mance than conventional models. By analyzing the results,
it is found that the multi-task learning mechanism and the
DWNN network architecture improve the performance for
renal dysfunction prediction. Moreover, it is also found that
the auxiliary task tends to obtain improved performance if it
is more relevant to the main task. Future work will include
incorporating more information in EHR into our framework
and improving the architecture of the DNN, aiming to further
improve the prediction performance.

ACKNOWLEDGMENT
(Binhua Wang and Yongyi Bai contributed equally to this
work.)

REFERENCES
[1] P. Ponikowski et al., ‘‘2016 ESC guidelines for the diagnosis and treatment

of acute and chronic heart failure,’’ Eur. J. Heart Failure, vol. 18, no. 8,
pp. 891–975, 2016.

[2] E. E. Tripoliti, T. G. Papadopoulos, G. S. Karanasiou, K. K. Naka, and
D. I. Fotiadis, ‘‘Heart failure: Diagnosis, severity estimation and prediction
of adverse events through machine learning techniques,’’ Comput. Struct.
Biotechnol. J., vol. 15, pp. 26–47, Nov. 2017.

[3] G. Savarese and L. H. Lund, ‘‘Global public health burden of heart failure,’’
Cardiac Failure Rev., vol. 3, no. 1, pp. 7–11, 2017.

[4] S. S. Gottlieb, W. Abraham, J. Butler, D. E. Forman, E. Loh,
B.M.Massie, C.M.O’Connor,M.W. Rich, L.W. Stevenson, and J. Young,
‘‘The prognostic importance of different definitions of worsening renal
function in congestive heart failure,’’ J. Cardiac Failure, vol. 8, no. 3,
pp. 136–141, 2002.

[5] G. L. Smith, J. H. Lichtman, M. B. Bracken, M. G. Shlipak, C. O. Phillips,
P. DiCapua, and H. M. Krumholz, ‘‘Renal impairment and outcomes in
heart failure: Systematic review and meta-analysis,’’ J. Amer. College
Cardiol., vol. 47, no. 10, pp. 1987–1996, 2006.

[6] K. Bibbins-Domingo, F. Lin, E. Vittinghoff, E. Barrett-Connor, D. Grady,
and M. G. Shlipak, ‘‘Renal insufficiency as an independent predictor of
mortality among women with heart failure,’’ J. Amer. College Cardiol.,
vol. 44, no. 8, pp. 1593–1600, 2004.

[7] D. E. Forman, J. Butler, Y. Wang, W. T. Abraham, C. M. O’Connor,
S. S. Gottlieb, E. Loh, B. M. Massie, M. W. Rich, and
L. W. Stevenson, ‘‘Incidence, predictors at admission, and impact of
worsening renal function among patients hospitalized with heart failure,’’
J. Amer. College Cardiol., vol. 43, no. 1, pp. 61–67, 2004.

[8] H. L. Hillege, D. Nitsch, M. A. Pfeffer, K. Swedberg, J. J. Mcmurray,
S. Yusuf, C. B. Granger, E. L. Michelson, J. Ostergren, and J. H. Cornel,
‘‘Renal function as a predictor of outcome in a broad spectrum of patients
with heart failure,’’ Circulation, vol. 114, no. 6, pp. 671–678, 2006.

[9] K. Damman, G. Navis, A. A. Voors, F. W. Asselbergs, T. D. Smilde,
J. G. Cleland, D. J. van Veldhuisen, and H. L. Hillege, ‘‘Worsening renal
function and prognosis in heart failure: Systematic review and meta-
analysis,’’ J. Cardiac Failure, vol. 13, no. 8, pp. 599–608, 2007.

[10] B. Tobias, S. Thenral, N. Markus, K. Theresia, H. Corinna, R. Tobias,
P. Mihael, N. Albina, T. Christopher, and A. Nisha, ‘‘Effect and clinical
prediction of worsening renal function in acute decompensated heart fail-
ure,’’ Amer. J. Cardiol., vol. 107, no. 5, pp. 730–735, 2011.

178398 VOLUME 7, 2019



B. Wang et al.: Multi-Task NN Architecture for Renal Dysfunction Prediction in HF Patients With EHRs

[11] R. T. Cole, A. Masoumi, F. Triposkiadis, G. Giamouzis, V. Georgiopoulou,
A. Kalogeropoulos, and J. Butler, ‘‘Renal dysfunction in heart failure,’’
Med. Clinics North Amer., vol. 96, no. 5, pp. 955–974, 2012.

[12] G. Guidi, M. C. Pettenati, P. Melillo, and E. Iadanza, ‘‘A machine learning
system to improve heart failure patient assistance,’’ IEEE J. Biomed. Health
Inform., vol. 18, no. 6, pp. 1750–1756, Nov. 2014.

[13] Z. Mašetic and A. Subasi, ‘‘Congestive heart failure detection using ran-
dom forest classifier,’’ Comput. Methods Programs Biomed., vol. 130,
pp. 54–64, Jul. 2016.

[14] K. Rahimi, D. Bennett, N. Conrad, T. M. Williams, J. Basu, J. Dwight,
M.Woodward, A. Patel, J. Mcmurray, and S. Macmahon, ‘‘Risk prediction
in patients with heart failure: A systematic review and analysis,’’ JACC
Heart Failure, vol. 2, no. 5, pp. 440–446, 2014.

[15] F. Miao, Y.-P. Cai, Y.-X. Zhang, X.-M. Fan, and Y. Li, ‘‘Predictive mod-
eling of hospital mortality for patients with heart failure by using an
improved random survival forest,’’ IEEE Access, vol. 6, pp. 7244–7253,
2018.

[16] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, and
R. S. Tan, ‘‘Deep convolutional neural network for the automated diagnosis
of congestive heart failure using ECG signals,’’ Appl. Intell., vol. 49, no. 1,
pp. 16–27, 2019.

[17] J. J. Nirschl, A. Janowczyk, E. G. Peyster, R. Frank, K. B. Margulies,
M. D. Feldman, and A. Madabhushi, ‘‘A deep-learning classifier identi-
fies patients with clinical heart failure using whole-slide images of H&E
tissue,’’ PLoS One, vol. 13, no. 4, pp. 1–16, 2018.

[18] S. E. Awan, F. Sohel, F. M. Sanfilippo, M. Bennamoun, and G. Dwivedi,
‘‘Machine learning in heart failure: Ready for prime time,’’ Current Opin-
ion Cardiol., vol. 33, no. 2, p. 1, 2018.

[19] A. Wosiak, K. Glinka, and D. Zakrzewska, ‘‘Multi-label classification
methods for improving comorbidities identification,’’ Comput. Biol. Med.,
vol. 100, pp. 279–288, Sep. 2018.

[20] W. Xiang, W. Fei, and J. Hu, ‘‘A multi-task learning framework for joint
disease risk prediction and comorbidity discovery,’’ inProc. 22nd Int. Conf.
Pattern Recognit., 2014, pp. 220–225.

[21] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[22] Y. Zhen-Jie, B. Jie, and C. Yi-Xin, ‘‘Applying deep learning to individual
and community health monitoring data: A survey,’’ Int. J. Autom. Comput.,
vol. 15, no. 6, pp. 643–655, 2018.

[23] J. Ker, L.Wang, J. Rao, and T. Lim, ‘‘Deep learning applications inmedical
image analysis,’’ IEEE Access, vol. 6, pp. 9375–9389, 2018.

[24] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and
S. Thrun, ‘‘Dermatologist-level classification of skin cancer with deep
neural networks,’’ Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[25] Z. Yao, Z. Zhu, and Y. Chen, ‘‘Atrial fibrillation detection by multi-scale
convolutional neural networks,’’ in Proc. Int. Conf. Inf. Fusion, 2017,
pp. 1–6.

[26] Z. Yao and Y. Chen, ‘‘Arrhythmia classification from single lead ecg by
multi-scale convolutional neural networks,’’ in Proc. Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc., Jul. 2018, pp. 344–347.

[27] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, ‘‘Deep patient:
An unsupervised representation to predict the future of patients
from the electronic health records,’’ Sci. Rep., vol. 6, May 2016,
Art. no. 26094.

[28] Y. Cheng, F. Wang, P. Zhang, and J. Hu, ‘‘Risk prediction with electronic
health records: A deep learning approach,’’ in Proc. SIAM Int. Conf. Data
Mining, 2016, pp. 432–440.

[29] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, ‘‘Using recurrent neural
network models for early detection of heart failure onset,’’ J. Amer. Med.
Inform. Assoc., vol. 24, no. 2, p. 361, 2017.

[30] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi, ‘‘Deep EHR:
A survey of recent advances in deep learning techniques for electronic
health record (EHR) analysis,’’ IEEE J. Biomed. Health Inform., vol. 22,
no. 5, pp. 1589–1604, Sep. 2018.

[31] H. T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado,W. Chai, andM. Ispir, ‘‘Wide& deep learning for
recommender systems,’’ in Proc. 1st Workshop Deep Learn. Recommender
Syst., 2016, pp. 7–10.

[32] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[33] S. Ruder, ‘‘An overview of multi-task learning in deep neural net-
works,’’ 2017, arXiv:1706.05098. [Online]. Available: https://arxiv.
org/abs/1706.05098

BINHUA WANG received the Ph.D. degree in
biomedical engineering from Shandong Univer-
sity. His research interests include smart instru-
ment development, medical data mining analysis,
and artificial intelligence.

YONGYI BAI received the Ph.D. degree. He is currently a Deputy Chief
Physician. His research interests include diagnosis and management of car-
diovascular diseases, such as hypertension, coronary heart disease, and heart
failure.

ZHENJIE YAO received the B.S. degree in instru-
ment science from Zhejiang University, China,
in 2007, and the Ph.D. degree in communica-
tion engineering from the University of Chinese
Academy of Sciences, in 2012. In 2012, he was a
Researcher with the China Mobile Research Insti-
tute, China. He is currently a Data Scientist with
Rhinotech LLC, Beijing, China. He has published
about 20 refereed journal articles and conference
papers. He holds 20 patents. His research interests

include machine learning, mHealth, and signal processing.

JIANGONG LI received the M.S. degree from
Tianjin University, in 2006. He was the Leader of
the e-health Direction of China Unicom Research
Institute. His research interests include the Internet
of Things, cloud computing, big data, and artificial
intelligence in the medical and health industry.

WEI DONG received the Ph.D. degree. She is currently a Chief Physician.
Her research interests include diagnosis and treatment of chronic heart fail-
ure, cardiomyopathy, hypertension, hyperlipidemia, diagnosis of cardiomy-
opathy by cardiac NMR, and precise adjustment of cardiovascular drugs.

YANHUI TU received the B.S. degree in computer
science from Beihang University, Beijing, China,
in 2002. His research interests include cloud com-
puting, big data, data mining, machine learning,
and artificial intelligence.

WANGUO XUE is currently a Senior Engineer. His research interests include
information system in hospital, system integration, and medical data mining.

YAPING TIAN received the Ph.D. degree. He is currently a Professor. His
research interests include early laboratory diagnosis of major diseases, such
as tumors, cardiovascular, and cerebrovascular diseases.

VOLUME 7, 2019 178399



B. Wang et al.: Multi-Task NN Architecture for Renal Dysfunction Prediction in HF Patients With EHRs

YIFEI WANG received the B.S. andM.Sc. degrees
in biomedical engineering from Xi’an Jiaotong
University, Xi’an, China, in 2013 and 2018,
respectively. Her research interests include medi-
cal data mining and biomedical signal processing.

KUNLUN HE received the Ph.D. degree. He is currently a Chief Physician
and a Professor. His research interests include diagnosis and treatment of car-
diovascular diseases, such as hypertension, coronary heart disease, ischemic
cardiomyopathy and heart failure, and translational medicine.

178400 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	HEART FAILURE OUTCOMES PREDICTION
	DEEP LEARNING AND ITS APPLICATION IN HEALTHCARE

	MATERIALS AND METHODS
	DATASET AND PREPROCESSING
	DWNN
	MULTITASK NEURAL NETWORKS
	MULTITASK DWNN AND ITS IMPLEMENTATION DETAILS

	RESULTS
	MEASUREMENTS
	REFERENCE MODELS
	PARAMETER SETTING
	MT-DWNN VS ST-DWNN
	MT-DWNN VS MT-DNN
	MT-DWNN VS CONVENTIONAL METHODS
	AUXILIARY TASK ANALYSIS

	DISCUSSIONS
	CONCLUSION
	REFERENCES
	Biographies
	BINHUA WANG
	YONGYI BAI
	ZHENJIE YAO
	JIANGONG LI
	WEI DONG
	YANHUI TU
	WANGUO XUE
	YAPING TIAN
	YIFEI WANG
	KUNLUN HE


