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ABSTRACT Evolutionary game dynamics is a combination of game theory and dynamical systems. Using
dynamical theory, we investigate chaotic behavior in asymmetric Rock-Paper-Scissors games under imitative
dynamics with two different populations. Our theoretical analysis and numerical simulations demonstrate
that the dynamical system can give rise to chaotic behavior in zero-sum and positive-sum asymmetric games.
However, chaos cannot occur in a negative-sum asymmetric game. In particular, the numerical simulations
show that there is a limit cycle in a negative-sum asymmetric game.

INDEX TERMS Evolutionary game, imitative dynamics, chaos, rock-paper-scissors.

I. INTRODUCTION
The game Rock-Paper-Scissors(RPS) describes cyclic
dominance among three competing species in social
networks [1]–[5], economics [6], [7] and biological sys-
tems [8], [9]. It is a famous three-strategy game, in which
rock crushes scissors, scissors cut paper, and paper wraps
rock. There are many classical examples in reality, such as
the mating strategies of side-blotched lizards [10], bacteri-
ocin producing bacteria [11] and the overgrowth of marine
sessile organisms [12]. Evolutionary game dynamics such
as replicator dynamics [13], imitative dynamics [14], [15],
best-response dynamics [16] can describe the evolution of
the frequency of strategy in a population. At the same
time, some complex dynamical behaviors such as stability,
limit cycle and chaos are observed in evolutionary game
dynamics [17], [18].

Many researchers have studied the RPS game by using
the replicator equation, which was first proposed by Taylor
in 1978 [19]. The RPS game has been studied under repli-
cator dynamics in various differential equations including
delayed equations [20] and mutational equations [21], [22].
To the best of our knowledge, imitative dynamics is a
generalization of replicator dynamics and can be used in

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

various fields. Wang et al. [23] investigated the cooperative
promotion among imitative contributing players, in which
players selected one of their neighbors to imitate according to
their contribution. Hu et al. [24] discussed imitative dynamics
with discrete delay and obtained two sufficient conditions for
stability in imitative dynamics. The emphasis in these litera-
tures is on the effects of delays and mutations on evolutionary
dynamics. In reality, asymmetry is another relevant factor in
the study of dynamical behaviors in evolutionary dynamics.

As asymmetry is a common phenomenon in social net-
works [25], [26], sports and biological systems [27]–[30],
many researchers have studied asymmetric situations in
evolutionary dynamics. In the area of social networks,
Du et al. [31] considered the effects of asymmetric cost
in complex networks and proved that asymmetric cost can
promote cooperative behavior in evolutionary games. In the
area of biological systems, He et al. [32] analyzed asym-
metric game dynamics based on individuals’ own volition
and showed that asymmetric mechanisms could lead to
more complex dynamics than occur in symmetric situation.
In the field of sports, Misirlisory and Haggard [33] discussed
the asymmetric predictability of football penalty shootouts,
the results of this study could help teams better prepare
for penalty shootouts. Recently, Hauert et al. [28] investi-
gated asymmetric individuals with environmental feedback
and found that asymmetric interactions could alter social
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FIGURE 1. The Lyapunov Exponent of system (2) for different sign of γ1 + γ2 at (0.45,0.01,0.45,0.24).

FIGURE 2. Bifurcation diagrams for system (2) against variation of γ1 + γ2.

FIGURE 3. The chaotic behavior of of 3-dimension in each population when γ1 = 0.5, γ2 = −0.5.

dilemmas and promote persistent periodicity in evolutionary
games. The results of these studies clearly illustrate that
asymmetry may change dynamical behaviors, and even leads
to chaos.

Chaos is a type of quasistochastic behavior in deter-
ministic nonlinear systems, and is an important natural
phenomenon [34]–[40]. The presence of chaos is signif-
icant in evolutionary games. In 1988, Skyrms [41] gave
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FIGURE 4. The chaotic behavior of of 2-dimension in each population when γ1 = 0.5, γ2 = −0.5.

FIGURE 5. The solution trajectory of RI ,PI ,RII ,SII when γ1 = 0.5, γ2 = −0.5.

examples of chaotic dynamics with four strategies to show
that chaos could exist in a four-strategy game. In 2002,
Sato et al. [42] investigated the chaotic behavior of RPS
games in replicator dynamics and demonstrated the exis-
tence of Hamiltonian chaos in a zero-sum game. Then the
author used game dynamics to describe collective behavior
by using a discrete-time stochastic model and drew some
relevant conclusion concerning stability and diversity in col-
lective adaptation [43]. Subsequently, Aguiar and Castro [44]
studied robust complex behavior in RPS games and pro-
vided analytical proof for the existence of chaotic switch-
ing and relative asymptotic stability. In addition, there has
been some research on chaos in discrete time [45], [46].
In 2011, Salvetti et al. [45] analyzed chaotic behavior on a
discrete-time version of replicator equation and discovered

the uncertainty of the population caused by sensitivity to
initial conditions.

Motivated by previous research, we aim to discuss the com-
plex dynamics in asymmetric RPS under imitative dynamics.
The major contributions of this paper can be summarized as
follows: (i) there is a heterogeneous cycle on the boundary of
a simplex; (ii) chaotic behavior is exhibited inside of the sim-
plex in zero-sum and positive-sum asymmetric RPS games;
and (iii) chaotic behavior cannot occur in negative-sum asym-
metric RPS games.

The rest of this paper is organized as follows. Section 2
presents the imitative dynamics model and analyzes the sta-
bility of equilibria. Section 3 provides the dynamical analysis
and describes the chaos in the imitative dynamics model.
Section 4 offers conclusions and a discussions.
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II. ASYMMETRIC ROCK-PAPER-SCISSORS GAME
A. DERIVATION
Let G = {N , S,U} denote an asymmetric Rock-Paper-
Scissors game, where N represents the players, S represents
the strategy set, and U represents the payoff. Suppose that
two populations (I and II ) of agents are matched to play
this game, and let their payoffs be denoted as UI and UII ,
respectively.

UI :


RII PII SII

RI γ1 −1 1
PI 1 γ1 −1
SI −1 1 γ1

,

UII :


RI PI SI

RII γ2 −1 1
PII 1 γ2 −1
SII −1 1 γ2

, (−1<γ1, γ2 < 1).

In population I , the payoff matrix indicates that each strategy
receives a payoff γ1 when there is a tie; otherwise, the loser
receives a payoff −1, while the winner receives a payoff
of 1. In population II , the payoff matrix indicates that each
strategy receives a payoff γ2 when there is a tie; otherwise,
the loser receives a payoff −1, while the winner receives a
payoff of 1. The RPS game is an asymmetric game if γ1 6=
γ2. An asymmetric RPS game is called a zero-sum game if
γ1 + γ2 = 0, a positive-sum game if γ1 + γ2 > 0, and a
negative-sum game if γ1 + γ2 < 0.

Let (x, y) = (x1, x2, x3, y1, y2, y3) be the frequency
of (RI ,PI , SI ,RII ,PII , SII ) and (f1, f2, f3, g1, g2, g3) be the
expected payoff of (RI ,PI , SI ,RII ,PII , SII ) with

3∑
i=1

xi = 1, fi(x) =
3∑
j=1

yjaij,

3∑
i=1

yi = 1, gi(y) =
3∑
j=1

xjbij, (i, j = 1, 2, 3).

Here aij denotes the payoff of a Si-individual plays
against a Sj-individual in population I and bij denotes the
payoff of a Si-individual plays against a Sj-individual in
population II .
The imitative dynamics of the asymmetric RPS game can

be governed as follows,
ẋi = xi

∑
j 6=i

xj[Fij(x)− Fji(x)],

ẏi = yi
∑
j 6=i

xj[Gij(y)− Gji(y)],
(i, j = 1, 2, 3) (1)

where

Fij(x) =
fi(x)− fj(x)

3∑
i=1

fi(x)

, Gij(x) =
gi(y)− gj(y)

3∑
i=1

gi(y)

.

Since xi, yi(i = 1, 2, 3) are the frequencies of the three
strategies, the region of interest is the three-dimensional sim-
plex 1I , 1II in R3:

1I ≡ {(x1, x2, x3) ∈ R3 :
3∑
i=1

xi=1, xi ≥ 0, (i=1, 2, 3)},

1II ≡ {(y1, y2, y3) ∈ R3 :
3∑
j=1

yj=1, yj ≥ 0, (i=1, 2, 3)}.

Based on game theory, we know that the simplexes 1I ,1II
are invariant sets. Furthermore, both the interior and the
boundary of the simplex are invariant sets. We can eliminate
x3 (y3) by x3 = 1− x1 − x2 (y3 = 1− y1 − y2), which gives
the projection of

∑
into the 1I ×1II plane:

S ≡ {(x1, x2), (y1, y2) ∈ R2 : (x1, x2, 1− x1 − x2),

(y1, y2, 1− y1 − y2) ∈
∑
}.

In this case, equations (1) can be written as:

ẋ1
x1
= [1+

1
γ1
− (1+

3
γ1

)y1 − 2y2] · x2

+[2y1 + (1−
3
γ1

)y2 +
1
γ1
− 1] · (1− x1),

ẋ2
x2
= [1−

1
γ1
−2y1 + (

3
γ1
− 1)y2] · x1

+[(1+
3
γ1

)y1+2y2 −
1
γ1
− 1] · (1− x2),

ẏ1
y1
= [1+

1
γ2
− (1+

3
γ2

)x1 − 2x2] · y2

+[2x1 + (1−
3
γ2

)x2 +
1
γ2
− 1] · (1− y1),

ẏ2
y2
= [1−

1
γ2
−2x1 + (

3
γ2
− 1)x2] · y1

+[(1+
3
γ2

)x1+2x2 −
1
γ2
− 1] · (1− y2).

(2)

B. STABILITY OF EQUILIBRIA
In this subsection, we first formulate the equilibria in
the imitative equation. Equations (2) shows the existence
of 16 equilibria, which can be obtained as follows:

(i) At the vertices of the simplex: (9 equilibria)

{(1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0),

(0, 0, 1, 0), (1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)};

(ii) On the boundary of the simplex: (6 equilibria){
(
1+ γ2
3+ γ2

, 0, 0,
1− γ1
3− γ1

), (
2

3+ γ2
,
1+ γ2
3+ γ2

,
2

3− γ1
, 0),

(0,
2

3+ γ2
,
1− γ1
3− γ1

,
2

3− γ1
), (0,

1− γ2
3− γ2

,
1+ γ1
3+ γ1

, 0),

(
1− γ2
3− γ2

,
2

3− γ2
, 0,

2
3+γ1

), (
2

3−γ2
, 0,

2
3+γ1

,
1+γ1
3+γ1

)
}
;

and (iii) In the interior of the simplex: (1 equilibrium)

(x∗, y∗) =
{
1
3
,
1
3
,
1
3
,
1
3

}
.
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FIGURE 6. The periodic orbit of 3-dimension in each population when γ1 = −0.1, γ2 = 0.05.

FIGURE 7. The periodic orbit of 2-dimension in each population when γ1 = −0.1, γ2 = 0.05.

III. MAIN RESULTS
In this section, we analysis the dynamical behavior of imita-
tive dynamics (2).

A. LINEAR ANALYSIS
To discuss the stability of these equilibria, we linearize equa-
tions (2). As a result, we can analyze the stability of each
equilibrium through the eigenvalues of the Jacobian matrix.
The eigenvalues of these equilibria are calculated in Table 1.

From Table 1, we can easily see that each equilibrium
on the boundary of the simplex has two eigenvalues, which
have different signs. In this case, it follows that there exists
a heteroclinic cycle on the boundary of each simplex. Since
the eigenvalues of the inner equilibrium z∗ are conjugated
complex roots, the dynamic behavior of the interior of each
simplex is complex.

B. COMPLEX DYNAMICS
In this subsection, we discuss the dynamical behavior in the
interior of of each simplex. Since the dynamics cannot be
predicted solely from the eigenvalues at z∗, we analyze the
complex dynamics through the different signs of γ1 + γ2.

Next, we give a theorem to illustrate the complex dynami-
cal behaviors in imitative dynamics (2).
Theorem 1: The following three statements hold for the

asymmetric RPS game under imitative dynamics (2):
(i) There exists a heteroclinic cycle on the boundary of the

simplex.
(ii) Chaotic behavior is displayed in the interior of each

simplex when γ1 + γ2 ≥ 0.

TABLE 1. The equilibria and their eigenvalues.

(iii) Chaotic behavior cannot occur in the interior of any
simplex when γ1 + γ2 < 0.

Proof: First, we consider the boundary of the simplex in
the asymmetric RPS game. Since the boundary of the simplex
is an invariant set and each equilibrium on the boundary of
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FIGURE 8. The solution trajectory of RI ,PI ,RII ,SII when γ1 = −0.1, γ2 = 0.05.

simplex has two eigenvalues with different signs as shown
in Table 1, it follows that a heteroclinic cycle is exists on the
boundary of the simplex.

Second, we consider the interior of each simplex in the
asymmetric RPS game. The Lyapunov Exponent(LE) in con-
tinuous system is:

Li = lim
t→∞

ln
||δxi(x0, t)||
||δx(x0, t)||

,

where x0 is a center, ||δx(x0, t)|| is radius of n-sphere
ellipsoid, ||δxi(x0, t)|| is semimajor axis of ellipsoid.
The approximate formula of LE as follows,

L1 = −
ln d
T
+

1
NT

N∑
k=1

ln ||V (k)
1 ||,

L2 = −
ln d
T
+

1
NT

N∑
k=1

ln ||V (k)
2 ||,

L3 = −
ln d
T
+

1
NT

N∑
k=1

ln ||V (k)
3 ||,

L4 = −
ln d
T
+

1
NT

N∑
k=1

ln ||V (k)
4 ||.

(3)

The LE of system (2) can be calculated through approximate
formula (3) in Table 2.

From the results shown in Figure 1 and Table 2, we see that
there are two positive LEs in system (2) when γ1 + γ2 = 0.
This outcome implies that chaotic behavior is shown in the

TABLE 2. Lyapunov Exponent for different parameters.

interior of each simplex. At the same time, we can see that
there are four negative LEs in system (2) when γ1 + γ2 < 0,
which implies that chaotic behavior does not emerge in this
case. �
Remark 1: The sensitivity of results in Theorem 1 with

respect to parameters γ1 and γ2 in system (2) can be described
as follows (see Figure 2). This outcome implies that γ1+γ2 =
0 is the critical value, i.e. there is a limit cycle in the interior
of simplex when γ1 + γ2 < 0, and chaotic behavior emerges
when γ1 + γ2 ≥ 0.
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Remark 2: The interpretation of the system (2) when it
evolves to a chaotic behavior is that the interior of the trajec-
tory of system (2) in unpredictable, i.e. the evolution results of
the mixed strategy in asymmetric RPS game is unpredictable.
Since the payoff of draw is different in two populations (γ1 6=
γ2), the evolutionary strategy stability of asymmetric RPS
game cannot be reached. In this case, the chaotic behavior
can be evolved in this asymmetric RPS game.

IV. NUMERICAL SIMULATIONS
In this section, we give two simulations for imitative dynam-
ics with zero-sum and nonzero-sum games.
Example 1: In the case of a zero-sum game, we take

γ1 = 0.5, γ2 = −0.5,

in equation (2) and choose initial values:

(0.3,0.15,0.3,0.25), (0.5,0.25,0.5,0.15), (0.7,0.15,0.7,0.2).

The dynamical behavior is presented in the following figures.
Figure 3 shows the 3-dimensional dynamical behavior in
each population for the initial values chosen above. Figure 4
shows 2-dimensional dynamical behavior in each population,
and Figure 5 shows the frequency of each strategy in the
asymmetric RPS game. Since the strategy state (x, y) is four-
dimensional, it is drawn in two pieces, with x represented on
the left-hand side of population I and y represented on the
right-hand side of population II .

Example 1 shows that chaos emerges in the interior of each
simplex when γ1+γ2 = 0, which is consistent with the result
in Theorem 1 (ii).
Example 2: In the case of a nonzero-sum game, we take

γ1 = −0.1, γ2 = 0.05,

in equation (2) and choose initial values:

(0.25, 0.15, 0.28, 0.25), (0.45, 0.2, 0.45, 0.15),

(0.65, 0.15, 0.65, 0.2).

The dynamical behavior is presented in the following figures.
Figure 6 shows the 3-dimensional dynamical behavior in each
population, Figure 7 shows 2-dimensional dynamical behav-
ior in each population, and Figure 8 shows the frequency of
each strategy in the asymmetric RPS game.

Example 2 shows that the trajectories approach a limit
cycle in the interior of each simplex when γ1+γ2 < 0, which
expands the result in Theorem 1 (iii).

V. CONCLUSION
In this paper, the complex dynamics of asymmetric RPS
games under imitative dynamics have been investigated. On
the one hand, the results obtained are different from those
for the symmetric RPS game under imitative dynamics,
i.e., chaos emerges in the asymmetric RPS game, while it
cannot occur in the symmetric case. On the other hand,
the results are more complicated than in replicator dynamics.

Some numerical examples have also been given to illustrate
the effectiveness of our results.

In game theory, the choice of strategy is difficult because of
the presence of chaos. To predict the behavior of an opponent,
players must know more information about the opponent.
In this case, chaos is important in evolutionary game dynam-
ics for more equitable interactions.

If we increase the number of interaction players (i.e., from
two players to three players or more), the chaotic behaviors
may become much more complicated. As an extension of this
work, we plan to explore the evolutionary dynamics of a game
with N players.
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