IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 5, 2019, accepted November 21, 2019, date of publication November 28, 2019,

date of current version December 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956551

Algorithms for Minimizing Resource
Consumption Over Multiple Machines

With a Common Due Window

JEN-YA WANG

Department of Computer Science and Information Management, Hungkuang University, Taichung 43302, Taiwan

e-mail: jywang @sunrise.hk.edu.tw

This work was partially supported in part by the Ministry of Science and Technology of Taiwan, R.O.C., under Project

MOST-108-2410-H-241-006.

ABSTRACT Scheduling on multiple machines has attracted considerable attention recently. However, most
of traditional studies focused only on commercial cost and customer satisfaction. In fact, we are able to
alleviate environmental damages via proper scheduling. This study explores a multi-machine scheduling
problem with a due window. The objective is to minimize the total cost (including environmental cost).
We develop a branch-and-bound algorithm (B&B) and two complementary lower bounds for optimally
solving the problem when n <16. Moreover, we propose an imperialist competitive algorithm (ICA) to
obtain near-optimal schedules for large problem instances. Experimental results are provided to show the

performance of the proposed algorithms.

INDEX TERMS Chemical industry, multi-machine scheduling, resource consumption, due window,
imperialist competitive algorithm, branch-and-bound algorithm.

I. INTRODUCTION

Job scheduling has been studied in both industry and
academia for long. A good scheduling algorithm meets its
corresponding objectives, e.g., minimum tardiness or maxi-
mum profit. Due to the advances in technology, traditional
scheduling algorithms may not fit today’s environments. For
example, parallel machines are commonly seen in many fac-
tories. All the jobs allocated to multiple machines should
be considered as a whole. Scheduling each single machine
by some traditional algorithms may not lead to the global
maximum profit. Consequently, new issues need to be rein-
vestigated and new scheduling algorithms are called for.

In general, multi-machine scheduling is more difficult
than single-machine scheduling. Not only the position order
of jobs but also the capabilities of machines need to be
taken into account. There are some multi-machine schedul-
ing examples with different objectives. Lee and Wu [1]
studied a multi-machine scheduling problem whose objec-
tive is to minimize the total completion time. In this prob-
lem, regular maintenance for each machine is inevitable.
A metaheuristic was proposed to solve this NP-hard problem.
Balin [2] solved another multi-machine scheduling problem.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jihwan P. Choi

172136

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

In this problem, machines are of different capabilities. Again,
this problem is not easy to be solved optimally. Another
metaheuristic was proposed to provide near-optimal sched-
ules. Kayvanfar et al. [3] aimed to minimize makespan, ear-
liness, tardiness in a parallel-machine environment. They
also proposed a metaheuristic for this problem. In [4], CPUs
could vary their speeds for facing different workloads in a
clustered environment. Since low speed means less power
consumption, these CPUs can be scheduled to avoid tardiness
and save power. Thiruvady et al. [5] considered a scheduling
problem in the mining industry. Multiple parallel machines
were employed to minimize the total tardiness. In sum,
the above examples show that multi-machine scheduling is
a trend in today’s industries. In [6], a multi-machine schedul-
ing problem was considered to minimize the total tardiness
under some restrictions on PM 2.5 emission. A branch-and-
bound algorithm was developed to solve this this eco-aware
scheduling problem.

Due to the rise of environmental awareness, traditional
scheduling for pursuing maximum efficiency or minimum
cost does not meet today’s requirements. In a multi-machine
environment, machines are of different power consumption
rates, carbon emissions, and capacities. Fang and Lin [4]
considered a multi-server computing environment. Not all
CPUs need to be active at off-peak nighttime. Low power

VOLUME 7, 2019

https://orcid.org/0000-0001-6625-9689
https://orcid.org/0000-0001-7996-5507

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

consumption is still able to meet the requirement of tardiness.
Ji et al. [7] allocated a batch of jobs to machines with dif-
ferent capabilities. Their objective was to minimize the envi-
ronmental cost with a restriction on a specified makespan.
Given a specified carbon emission, Yeh ez al. [8] aimed to
minimize makespan. The above examples show that there
exist some contradictions when we schedule jobs for deriving
customer satisfaction as well as prevent our environments
from being damaged. In the multi-machine environment
described in [9], resources were limited. Consequently, some
duplicate jobs were partially omitted to reduce processing
time. Due to this idea, the resulting schedules could be more
environmental-friendly than before.

Both tardiness and earliness are important research top-
ics in job scheduling, since they directly involve cus-
tomer satisfaction. A real-world mining example was shown
in [5]. In this example, tardiness means missing ship-
ping date, causing customer complaint, and increasing cost.
Anzanello et al. [10] discussed how to improve tardiness and
decrease cost by learning. With the consideration of learning
effect, job scheduling becomes more different than before.
On the other hand, some job scheduling problems must avoid
or alleviate earliness due to the properties of their prod-
ucts, e.g., perishable food. There are very few studies whose
research interests focus only on earliness. It is interesting
that such scheduling is only found in chemical industry;
e.g., [11]-[14]. This is because these chemicals need batch
processing, stirring, or coagulating. In the field, the damage
caused by earliness is much more severe than that caused by
tardiness.

Due window is also a rising research topic. If this topic is
ignored, earliness brings more inventory cost and tardiness
causes worse customer satisfaction. However, jobs scheduled
within a due window require neither earliness nor tardiness
as possible as we can. Given a fixed due window and a
maximum tardiness, Su and Tien [15] aimed to minimize
the standard deviation of completion times. In [16]-[18],
researchers adjusted the size of due window to reduce ear-
liness or tardiness. In light of these studies, we learn that due
window is not always fixed. It may be unknown and needs to
be determined.

The applications of multi-machine scheduling are grow-
ing everywhere such as textile, electronics, construction,
information industries. When scheduling multiple machines,
we may find that some objectives are conflicted, e.g., tar-
diness and energy saving. To achieve no tardiness, we may
choose some fast but energy-consuming machines. That is,
customer satisfaction is at the cost of environmental damages.
In light of this observation, how to balance multiple objec-
tives over multiple machines draws increased attention.

When scheduling on multiple machines, outsourcing is
also a choice for reducing tardiness or completion time.
In [19], this is a multi-machine environment. Outsourcing
is allowed if needed. Since the cost of outsourcing is much
higher than the cost paid by producers themselves, outsourc-
ing is the last resort to avoid tardiness. However, scheduling

VOLUME 7, 2019

with outsourcing makes the producers have more flexibility
to retain customer satisfaction.

TABLE 1. Three kinds of milling machines.

Asphalt milling machine Processing speed Environmental cost

Wirtgen W 35 DC 57 HP 43 kW
Wirtgen W 50 DC 127 HP 95 kW
Wirtgen WR 2000 XL 422 HP 315kW

TABLE 2. An industrial problem instance.

Region Processing time Weight Due window

1 40 hours 1.2

2 20 hours 1.0

3 40 hours 1.1

4 20 hours 1.0

5 20 hours 1.3 2018/11/17
6 80 hours 1.0

7 20 hours 1.0

8 40 hours 1.0

9 40 hours 1.0

10 20 hours 1.1 .
11 20 hours 1.2

12 40 hours 1.0

13 40 hours 1.0

14 20 hours 1.0

15 80 hours 1.0

16 60 hours 1.0

17 20 hours 10 201811725
18 60 hours 1.0

19 40 hours 1.1
20 40 hours 1.0
21 60 hours 1.0

This study is motivated by the following real-world exam-
ple. The example of multi-machine scheduling with due
window is shown in Tables 1 and 2. There are three
asphalt milling machines whose processing speeds and envi-
ronmental costs are all different. Twenty one neighboring
regions need to be paved with stone and asphalt within
17th Nov. and 25th Nov. The processing cost of each region
can be roughly estimated by its area. However, the density
of manholes or handholes slightly affects the complexity of
trimming and the labor of traffic control. Earliness causes
extra cost, since traffic signal installation or planting engi-
neering had better be done first. Tardiness also leads to
contractual fine. Consequently, all the jobs had better be fin-
ished within the due window. However, the internal resource
(e.g., machines) is limited, so jobs may not be completed
on schedule and outsourcing may be a choice. Clearly, such
scheduling is meaningful and worthwhile to explore in more
detail.

Il. RELATED WORK

This study aims to balance scheduling performance, customer
satisfaction, and environmental protection. Some related
issues include multi-machine scheduling, energy saving, and
due window. They are discussed as follows.

172137

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

A. MULTI-MACHINE SCHEDULING

Multi-machine scheduling means high performance but also
brings considerable complexity. Though most of such prob-
lems are NP-hard, e.g., [4], [7], [8], multi-machine scheduling
is still needed in today’s industries. As a company grows,
it naturally purchases many facilities at different stages.
Moreover, the specifications of machines may be different.
Some machines waste power and emit excess carbon diox-
ide. However, during some time, the production capacity
is greater than the requested amount. Consequently, some
machines causing high pollution and high power consump-
tion can to be shut down for a while.

In general, to minimize makespan or tardiness, we use all
available machines and resources as possible as we can. From
the past studies [20]-[22], we learn that no machine could be
absent when minimizing completion time or tardiness. Some
examples are given below.

In [3], jobs were non-preemptive and machines are non-
identical. The objective was to minimize weighted makespan,
total earliness, and total tardiness at the same time. It is
noted that makespan directly affects customer satisfaction
and grows in O(n). Earliness and tardiness are also indica-
tors of customer satisfaction and grow in O(n?). To achieve
the minimum earliness, they may obtain a large makespan.
Moreover, not all jobs were processed at time 0, i.e., some
machines were idle at some time. In [21], machines were
identical and jobs were preemptive. The objective was to
minimize the total tardiness. Earliness was not considered
in this study. Therefore, each optimal schedule started at
time 0 and no machine was idle. Even so, this problem is
still NP-hard. In a multi-machine environment [23], jobs
had a common due date and learning effect and deteriora-
tion effect were considered. The objective was to minimize
both tardiness and earliness. Some similar jobs could be
accelerated because of learning effect and some jobs needed
more processing time due to bad weather or darkness. Again,
since earliness was considered, jobs did not always start at
time 0. Although machines were identical, the problem is
NP-hard. Moreover, tardiness or earliness was improved by
multi-machine scheduling. However, the complexity and dif-
ficulty increased, since more resources implied more decision
making.

In sum, compared with single-machine scheduling, multi-
machine scheduling become an increasingly important trend.
All the above studies aimed to increase productivity and
shorten completion time without consideration of environ-
mental issues. However, there might be some schedules
which achieve similar results but are more eco-friendly.
So this issue is worth considering.

B. ENVIRONMENTAL ISSUES

There are various environmental considerations when we per-
form multi-machine scheduling. For example, different per-
formance indicators were considered in a data center that uses
heterogeneous servers to meet users’ various requests [24].

172138

These indicators included energy cost, carbon emission,
workload balance, and processing efficiency. The processing
efficiency varied with carbon emission. It was debatable that
all processing units are always keeping in high-performance
status. On the other hand, Galizia and Quarati [25] consumed
less energy to accomplish the same objective by adjusting the
workloads of processing units in a grid environment.

In a multi-machine environment, an eco-aware schedule
is not necessarily cost-efficient. As long as machines are
different, power consumption, carbon emission, productiv-
ity are different. As shown in [7], to minimize makespan,
a greedy approach would choose the fastest machine in a
heterogeneous environment. However, the greedy approach
would select the most environment-friendly machine if low
carbon emission is the top priority. In [26], there were dif-
ferent sources of energy, e.g., immediately available steam
or external gas. Their environmental costs were different.
In the case of abundant resources, energy resulting in minor
environmental damage is preferred. That is, different kinds of
energy can be managed and scheduled.

Environmental protection and cost efficiency have always
been a dilemma and we need to weigh their severities.
In [27], there were several pumps of different capacities
and a reservoir storing groundwater from different sources.
Because the nighttime electricity was charged at a low price
and frequent pump switching will caused wear and tear,
we had better continue to pump water for a long time at
night. However, some places were not abundant in water,
so groundwater should be pumped intermittently in order
not to cause land subsidence. For protecting environment,
we were forced to pump groundwater during some daytime.
Therefore, multi-machine scheduling could help us to meet
the conflicted objectives. Another example was a multi-CPU
scheduling problem [4]. Traditional multi-CPU scheduling
algorithms focused on partitioning and sequencing, since
their major concern was load balance. Note that the process-
ing speed is adjustable in today’s computing environments.
High-speed brings us high performance as well as high power
consumption. Consequently, load balance is no longer the
only concern. A compromise between completion time and
power consumption should be found. Multi-machine schedul-
ing is an answer to such problems.

In short, job scheduling becomes more complex if envi-
ronmental issues are taken into account. The final decision
may be different from the optimal schedule suggested by tra-
ditional algorithms. Environmental protection might be at the
cost of makespan or tardiness. Because traditional scheduling
cannot solve today’s problems, new eco-aware algorithms are
called for.

C. DUE WINDOW

Due-window scheduling is commonly seen in many fields
and it manages to compress all the completion times within
a period of time. In [28], many kinds of due window were
discussed. Due window originated from JIT (Just-In-Time).
With due window, we guaranteed customers an expected

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

delivery time. If all completion times could be controlled
within a time period, a producer could reduce inventory, over-
production and avoid needless waiting time, extra delivery
time, excess processing time, defective goods. The practical
applications of due window can be found in semiconductor,
project management (e.g., PERT/CPM), network industries,
etc. Taking VoD (Video on Demand) as an example, the
arrival times of multimedia network packets need to be con-
trolled within a period of time, since early packets will clog
memory buffers and tardy packets will cause jerky or choppy
videos. The packets must arrive at an expected time interval.

Janiak et al. [28] divided due-window scheduling prob-
lems into four types. First, a common due window was spec-
ified for all jobs in advance, e.g., [29]-[32]. Their objectives
were minimum earliness and tardiness. Such problems were
almost NP-hard. Second, each job was assigned to a due
window in advance, e.g., [33], [34]. These problems were also
NP-hard and aimed to reduce earliness and tardiness. Third,
a window size for all jobs was given in advance and we need
to determine the beginning time of the common due window,
e.g., [35], [36]. The problems looked simple, but they were
actually not the case. Even for a single schedule, there are
many possible starting points for the due window. So these
problems are still NP-hard. Fourth, the starting point and the
size of a due window were all unknowns, e.g., [37]-[39].
Since there were multiple unknowns, it meant we have more
freedom to schedule jobs. Such problems were polynomially
solvable and could be solved optimally in O(n?).

Some past research aimed to minimize earliness and tar-
diness simultaneously [23], [40], [41]. Min and Cheng [40]
pointed that on-time delivery is important in textile, indus-
trial, electronics industries, etc. Therefore, scheduling with
due window is meaningful. If machines are heterogeneous,
scheduling becomes more complicated. Kayvanfar et al. [41]
simultaneously minimized the tardiness and earliness on a
single machine. Although no due window was explicitly
specified in this study, we could suppose that there exists a
due window of size 0 for minimizing tardiness and earliness.
The applications of due window were common in a data
center with multiple servers [24], [42], [43]. Accelerating
disks or CPUs help us meet the requirements during rush
hour and decelerating them can save energy at nighttime.
How to achieve a balance on both is important. Interestingly,
industrial scheduling and computer science pursue the same
purpose. Again, Toksari and Guner [23] considered both
earliness and tardiness. All jobs were assigned a common
delivery date, i.e., a due window of size 0. In this problem,
earliness and tardiness would cause different penalties. Such
a problem was also NP-hard.

Four points are drawn from the above observations. First,
multi-machine scheduling has become an important research
issue. Related applications are seen in many fields, e.g., man-
ufacturing plants, data centers, pumping stations. Second,
the related eco-aware issues are discussed less than 10%
in multi-machine scheduling. This is because traditional
scheduling emphasized customer satisfaction and tardiness

VOLUME 7, 2019

TABLE 3. Related research regarding the three topics.

Issue Multi-machine Environmental Due window

Objective scheduling protection
Earliness [3, 44, 45] [45-47]
Number of Early Jobs [32, 35, 48] [32]
Tardiness [3, 20, 49-54] [6,9,55] [45,47, 56,
57]
Number of Tardy Jobs [32, 35, 58] [32,59]
Makespan [7,22,52, 60-65] [7, 66, 67]
Completion Time [68-70] [15]
Environmental Cost [4,7,24,27,55,66, [4,7,24,27,72]
71]

Window Assignment [30, 34, 45, 73-76] [30, 34, 73,

74, 77-79]

was strictly controlled or even not allowed. Consequently,
environment protection was sacrificed or ignored. Third,
due window and environment protection are seldom consid-
ered simultaneously. This is because due window is also a
customer-oriented concept and usually conflicts with envi-
ronment protection. Fourth, since most of these problems
are NP-hard, some metaheuristic algorithms are needed for
generating near-optimal schedules for practical use. Table 3
summarizes past research regarding the three topics of
multi-machine scheduling, environmental protection, and due
window. It is clear that the three issues are seldom stud-
ied simultaneously, especially for heterogeneous machines.
Therefore, the three issues are worth detailed exploration.

Ill. PROBLEM FORMULATION

Consider the real-world application shown in Tables 1 and 2
and formulate the job scheduling problem as follows. There
are n jobs to be scheduled on m machines with a common
due window [e, d], where e < d. All the jobs are available
at time 0. Each machine can process at most one job at a
time and each job can be allocated to any machine. Job j
has a processing time p; and a processing cost coefficient w;.
Machine i has a speed v; and a unit production cost c;(resource
consumption). For example, the resource consumption of
job j on machine i is pjwjc;/v;. Without loss of generality,
we assume that c1 /v < ¢2/v2 < ... < ¢/, Intuitively, v;
and ¢; can be regarded as the second and third columns shown
in Table 1. It is clear that machine 1 is the most economic.
For a schedule , the completion time of job j is denoted by
Cj(r) and the earliness and tardiness of job j are determined
as Ej(m) = max{0, e — Cj(7r)} and T;(7r) = max{0, C;() —
d}, respectively. The objective is to minimize the total cost,
e, YL S Subject to Y, (i) + Ty(m) < A,
where j@M; means job j is allocated to machine i and A is
a specified limit. To meet this requirement, a decision maker
can outsource some jobs at a unit production cost of ¢41,
where ¢y4+1 = ¢m/Vim.

A problem instance is shown in Fig. 1. Let A = 18,
le,d] = [10,12], m = 2, n = 8, v; = 2,1, ¢; =
1,1, pj = 2,2,4,4,8,8,12,16, w; = 2,2,2,2,1,1,1,1
fori = 1,2 andj = 1,2,...,8. For a schedule 7 =
(8,4,3,5,7,0,6,2, 1, 0), two zeros separate the 8 jobs into

172139

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

e d
Jobs on machine 1 | 8 l4]3] 5 | 7 \
Completion Time 8 12 16 22
Jobs on machine 2 | \ 6 211]
Completion Time 2 12 14

FIGURE 1. A problem instance.

Function LBI(&, B ,my ,co oty » Ay)

INPUT
« : determined job sequence

[: remaining jobs
myg, : current machine
cg : current objective cost

t,, : current completion time on machine m, , i.e., maxjea{(,i/ (m)}

Ay, : current accumulated earliness and tardiness
OUTPUT
Cq t g+ lower bound

Step 1. Sort jobs in f in descending order of w; /pj .

Step 2. Set ppax =max{p;|je B} .

k=mg+1,mg+2,.,m.
Step 4. Set ¢p=0.
Step 5. For k =mg, to m+1 do Step 6.
Step 6.

Step 7. Output ¢, tcg.

Step 3. Construct buffer Bma =[ty,d+A-A4,] for processing jobs on machine m, and buffer By =[e— pyax /i elUle,d]U [d,d+A—A,] for

Repeatedly allocate jobs one by one to buffer By in a preemptive way and accumulate the cost ¢ until By is full.

FIGURE 2. The proposed lower bound 1.

three parts. Since the third part is empty, no outsourcing
is needed. The completion times of all the jobs are shown
in Fig. 1. Therefore, the total tardiness and earliness is 18,
ie,7; =2,0,0,0,4,0,10,0,E; = 0,0,0,0,0,0,0, 2, for
j=1,2,..., 8. Note that small jobs with large weights are
centralized within the due window [e, d] and the starting time
on machine 2 is 2. Moreover, the cost for machine 1 is 26 and
the cost for machine 2 is 16. Therefore, the minimum resource
consumption is 42.

The following theorem shows that the problem is NP-hard
by reducing the 0-1 knapsack problem [80]. The 0-1 knapsack
problem is defined as follows. There are » indivisible items
and a knapsack. These items are of different values and
weighs. We want to take as valuable a load as possible, but the
load cannot exceed the maximum capacity of the knapsack.

Theorem 1: The proposed problem is NP-hard.

Proof: At first an instance [of the 0-1 knapsack problem
is given. There are n positive values y1, y2, ..., ¥u» € Z,
n positive weights wp, w2, ..., w, € Z, and a positive capacity
W € Z. Which items should be taken such that we have
maximum X; is chosen¥j With 2j is chosen@j < W?

For any given instance / of the 0-1 knapsack problem,
we construct a corresponding instance I’ of the corresponding
decision version of our scheduling problem as follows:

172140

-Number of machines: m = 1

-Speeds of machines: v; = 1 fori =1

-Costs of machines: ¢; = 1 fori =1

-Limit of total earliness and tardiness: A = 0

-Number of jobs: n

-Processing times: p; = w; forj=1,...,n

-Job weights: w; = yjforj=1,...,n

-Due window: [e, d] = [0, W]

Itis easy to verify that there exists an optimal schedule with
the total earliness and tardiness less than or equal to O if and
only if there exists an optimal solution for the 0-1 knapsack
problem with the maximum load less than or equal to W. The
proof is complete.]

Compared with the 0-1 knapsack problem, the proposed
problem is more difficult. The 0-1 knapsack problem needs
only to determine an optimal combination (or partition) of
valuable items, whereas the proposed problem should deter-
mine an optimal permutation of jobs. That is, the solu-
tion space of the proposed problem is much larger than
that of the 0-1 knapsack problem. Moreover, even for a
determined schedule, the starting time on each machine is
also needed to be determined. Consequently, it is not suit-
able for solving this problem by only using some com-
mercial programs. Some dedicated properties need to be

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

Function LB2(¢, B ,my , o sty sty > Ag)

INPUT
« : determined job sequence

[: remaining jobs

myg, : current machine

cg : current objective value, i.e., earliness and tardiness

t(: starting time on machine

t,, © current completion time on machine m, , i.e., maxjea{C/- (m)}
Ay, : current accumulated earliness and tardiness

OUTPUT
Cq t g+ lower bound

Step 1. Sort jobsin A in descending order of w;/p; .
Step 2. Set vy =max{vy |k =mgy,my +1,...,m} .
Step 3. Set ppax =max{p;|je g

Step 4. Construct buffer
By =[e— pmax / Vi-elU[e,d] for k=mgy +1,my +2,...m .

Step5 Set cp =0.

Step 6. For k =m, to m+1 do Step 7.

Step 7.

Step 8. Output ¢, +cg.

By, =1t = Pmax / Vi, 101Ul d + (A= Ag) Viax / Vi,]

Repeatedly allocate jobs one by one to buffer B in a preemptive way and accumulate the cost ¢ until By is full.

for processing jobs on machine m, and buffer

FIGURE 3. The proposed lower bound 2.

Algorithm B&B(p; , w; ,v;, ¢; €, d, A, Tmin)
INPUT
Pj: processing time of job j
w; : weight of job j
v; : speed of machine i
¢; : cost of machine i
e: threshold for earliness
d : threshold for tardiness
A : limit of total earliness and tardiness
Tmin initial solution
OUTPUT

Tmin © optimal schedule

Step 1. (Initialization) Set the objective cost f(7,,;,) of the initial schedule.

//Note that f() means the objective function.

Step 2. (Branching) Apply Rules 1-9 and Lemmas 1-2 to delete the dominated branches.
Step 3. (Bounding) Compute the two lower bounds, i.e., LB1 and LB2, for each branch; Delete the branch if max{LB1,LB2} 2 f(Zyin) -

Step 4. If a lower objective cost f(7) occurs at a leaf node, replace f'(,;,) with the lower cost f(7) and set 7, =7 .

Step 5. Repeat Steps 2—5 until no branches are available.
Step 6. Output f(Zin) and 7y -

FIGURE 4. The proposed B&B algorithm.

developed to shrink the searching area in the solution
space.

IV. BRANCH-AND-BOUND ALGORITHM

To optimally solve the problem, we propose a branch-and-
bound algorithm for small problem instances. First, sev-
eral dominance rules are proposed for pruning unnecessary
branches in a search tree. Second, two complementary lower

VOLUME 7, 2019

bounds are developed for trimming some schedules whose
partial costs are higher than the lower bounds

A. DOMINANCE RULES

Some symbols used to develop the dominance rules are
introduced as follows. Suppose that 7 = («,1i,j,) and
7' = (a,j,i,B) are two schedules of jobs, where « is

a determined partial schedule and 8 is an undetermined

172141

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

Algorithm GA(7, , 7, , 175 , N)
INPUT
7. : crossover rate

: mutation rate

m
775 © local search rate

N : population size
OUTPUT
Tmin : final schedule

Step 1. (Initialization) N schedules are randomly generated.
costof ;. Ifa 7; achieves lower cost, set 7,

min

directly survive into the new generation.

Step 8. Repeat Steps 2—8 until some stopping criterion is met.
Step 9. Output the final schedule 7, -

N
Step 2. (Evaluation) For each schedule 7; , its fitness is / f(7;) / Zk=14 [f () . For each violation of 7; , a penalty of 1,000 is accumulated in the objective

=, . //Notethat f() means the objective function.
Step 3. (Selection) In the original population, schedules will be chosen by a standard roulette wheel selection to form a new generation.
Step 4. (Crossover) To form the new population, 7. N selected schedules are obtained by a shift-insert crossover operation and (1-7.)N selected schedules

Step 5. (Mutation) For each schedule 7; in the new generation, there is a mutation probability of 7, .
Step 6. (Evaluation) For each schedule 7; in the new generation, its fitness is computed again.

Step 7. (Local Search) In the new population, 7, N schedules are randomly selected and improved by a local search of S4.

FIGURE 5. The proposed genetic algorithm.

Function SA(A , T}, , Ty , K, 7T)
INPUT
A : cooling coefficient
Ty, - initial temperature
Tp : freezing temperature

K : iteration number
7 : initial schedule
OUTPUT
Tmin : final schedule
BEGIN
Step 1. Set the initial temperature, i.e., 7 = Tj,; .

Step 2. While (7' > Tj) do Steps 3-8.

Step 9. Output the final schedule 7, -

Step 3. For k =1to K do Steps 4-7.

Step 4. Generate a neighbor schedule 7" by taking a random walk (i.e., interchange of pairwise jobs) starting from 7 .
Step 5. Generate a random real number » with 0<r<1.

Step 6. Set €= f(x)— f(7"). //Notethat f() means the objective function.

Step 7. If(e>0)or(r<e T ythen zyy, ="

Step 8. Set T=AT .

FIGURE 6. The proposed local search.

partial sequence. The only difference between 7 and 7’ is
a pairwise interchange of two adjacent jobs i and j on some
machine k. For simplicity, let max;c, {C;()} = 19, Ci(r) =
to + pi/vi = 1, Ci(m) = 1 + pj/vi = b, Ci(n') =
fo + pj/vi = t3, and Ci()=t3+pi/vi =14 = 1p.

Rules 1 and 2 show that a larger job should be scheduled
first if both schedules cause earliness. Since the proofs are
similar, only the proof of the first dominance rule is given
below.

Rule 1: If t; < t3 < e < t4, then 7’ dominates 7.

172142

Proof: We observe the difference of earliness for the two
schedules. Since Ej(7r) = max{0, e — t,} = max{0, e — 14} =
Ei(n")and Ej(7') = max{0,e — Cj(7)} =e—t3 <e—1t; =
max{0, e — Ci(;r)} = E;(7r). So =’ dominates 7. The proof is
complete.]

Rule 2:If t; < t3 < t4 < e, then 7’ dominates 7.

Rules 3-6 deal with the situation that both earliness
and tardiness occur on a single machine. If a larger job
j is processed first, the total earliness or tardiness can be
improved.

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines IEEEACC@SS

Algorithm ICA(1. , 1y, , 173 , M , N)

INPUT
7, : assimilation rate (the crossover rate of GA)
7y, : revolution rate (the mutation rate of GA)
7 local search rate

M : number of empires

N : number of citizens (the population size of GA)
OUTPUT

Tmin © best king (final schedule)

determine a king for each empire.

crossover operation of GA).

Step 7. Repeat Steps 2—6 until some stopping criteria are met.
Step 8. Output the best king 7y, -

Step 1. (Initialization) Randomly generate N citizens (like the chromosomes of GA) and randomly assign them to these empires. Evaluate each citizen and

Step 2. (Assimilation) Select 7.N citizens by the standard roulette wheel selection and force each of them to move towards its corresponding king (like the

Step 3. (Rebellion) Randomly select 1, N citizens and let each of them defect to another empire (like the mutation operation of GA).

Step 4. (Local Search) Randomly select 73N citizens and apply the local search (i.e., SA) to each selected citizen.

Step 5. (Evaluation) Evaluate each citizen and determine a new king for each empire.
Step 6. (Competition) Randomly choose a citizen from the weakest empire (i.e., its king has the largest objective cost) and randomly assign it to another empire.

FIGURE 7. The proposed ICA algorithm.

TABLE 4. Parameter settings.

Parameter Range Meaning
n 5,10,15,25,50 number of jobs
m 1,2,3 number of machines
¢ [1.0,5.0], 10.0 unit cost of machine i
Vi [1.0,5.0] processing speed of machine i
Pi {1,2,...,100} processing time of job j
wi [1.0,2.0] processing cost coefficient of job j
e {100,101, ..., Round (0. lz P} due window

j=l

d {e,e+1,...,e+5007} due window
/ [0.25,0.75] control parameter for due window
a [0.0,1.0] control parameter for limit 4 (=300a)
N 50n population size of GA (ICA)
A 0.8 crossover rate of GA (assimilation rate of ICA)
T 0.05 mutation rate of GA (revolution rate of ICA)
s 0.05 local search rate of GA and ICA
A 0.95 cooling coefficient of SA
Tini 100.0 initial temperature of SA
To 0.0 freezing temperature of SA
K 100 iteration number of SA
M 3 number of empires of ICA

Rule 3:Ift) <e <d <tz3ande —t; > t3 —d, then ’
dominates 7.

Rule 4:If t; < e < t3 < d, then 7’ dominates 7.

Rule 5:1ft3 <e <d <tjandt] —d > e — t3, then 7’
dominates 7.

Rule 6: If t; < t3 <d and] < e, then 7’ dominates 7.

Rules 7-9 show that a smaller job j should be scheduled
first if both schedules cause tardiness.

Rule 7:Ife < t3 < t; and d < 11, then 7/ dominates 7.

Rule 8: If d < ty < t3 < t1, then 7’ dominates 7.

Rule 9: If e < 13 <d < t1, then 7’ dominates 7.

Let hx(x) = p; be a function for some allocated jobs
on machine k, where job j is scheduled at the xth position.
Lemma 1 shows that there exists an optimal schedule such
that i (x) is always concave upward, where /i (x) means

VOLUME 7, 2019

the process time of the job scheduled at the xth position on
machine k. By this lemma, we can prune many unnecessary
branches whose processing times are not concave upward on
a machine k.

Lemma 1: There exists an optimal sequence for each
machine k such that A (x) is concave upward.

Proof: Consider there are three situations for two adjacent
jobs i and j on machine k. First, they cause earliness. Then
by Rules 1 and 2, a larger job should be processed first.
Second, no earliness and tardiness occurs. Let the two jobs
scheduled with /A (x) concaves upward. That makes no harm
to the objective cost. Third, they cause tardiness. Then by
Rules 7-9, a smaller job should be processed first. Therefore,
there exists an optimal schedule with A (x) concaves upward.
The proof is complete. |

172143

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

TABLE 5. The performance of B&B and ICA for n = 5.

B&B GA ICA
Nodes Run Time Run Time REP Run Time REP
m [A Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
1025 0 1390 66 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.22 0.00 0.00
100 6.34 66 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
200 0.00 0 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.16 0.00 0.00
300 1.74 87 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
0.50 0 10.00 66 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
100 1.32 66 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
200 0.00 0 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
300 2.98 87 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
0.75 0 6.22 66 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
100 1.46 41 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
200 1.52 76 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.17 0.00 0.00
300 0.00 0 0.00 0.00 0.11 0.13 0.00 0.00 0.13 0.14 0.00 0.00
2025 0 17.04 66 0.00 0.02 0.12 0.14 0.00 0.00 0.14 0.16 0.00 0.00
100 0.00 0 0.00 0.00 0.12 0.13 0.00 0.00 0.14 0.17 0.00 0.00
200 0.00 0 0.00 0.00 0.12 0.14 0.00 0.00 0.14 0.16 0.00 0.00
300 2.12 106 0.00 0.00 0.12 0.14 0.00 0.00 0.15 0.16 0.00 0.00
0.50 0 8.78 98 0.00 0.00 0.12 0.14 0.00 0.00 0.14 0.17 0.00 0.00
100 0.00 0 0.00 0.00 0.12 0.14 0.00 0.00 0.14 0.16 0.00 0.00
200 0.00 0 0.00 0.00 0.12 0.14 0.00 0.00 0.14 0.16 0.00 0.00
300 0.00 0 0.00 0.00 0.13 0.14 0.00 0.00 0.14 0.16 0.00 0.00
075 0 5.84 66 0.00 0.00 0.12 0.13 0.00 0.00 0.14 0.16 0.00 0.00
100 1.04 52 0.00 0.00 0.12 0.13 0.00 0.00 0.14 0.16 0.00 0.00
200 0.00 0 0.00 0.00 0.12 0.13 0.00 0.00 0.14 0.16 0.00 0.00
300 0.00 0 0.00 0.00 0.12 0.13 0.00 0.00 0.14 0.16 0.00 0.00
3025 0 1224 66 0.00 0.02 0.13 0.14 0.00 0.00 0.16 0.17 0.00 0.00
100 0.72 36 0.00 0.00 0.14 0.16 0.00 0.00 0.16 0.17 0.00 0.00
200 0.00 0 0.00 0.00 0.14 0.14 0.00 0.00 0.16 0.16 0.00 0.00
300 0.00 0 0.00 0.00 0.14 0.16 0.00 0.00 0.16 0.17 0.00 0.00
0.50 0 6.22 60 0.00 0.02 0.13 0.16 0.00 0.00 0.16 0.17 0.00 0.00
100 0.00 0 0.00 0.00 0.13 0.14 0.00 0.00 0.16 0.16 0.00 0.00
200 0.00 0 0.00 0.00 0.14 0.16 0.00 0.00 0.16 0.17 0.00 0.00
300 0.00 0 0.00 0.00 0.14 0.16 0.00 0.00 0.16 0.16 0.00 0.00
075 0 6.26 60 0.00 0.00 0.13 0.14 0.00 0.00 0.16 0.17 0.00 0.00
100 1.14 57 0.00 0.00 0.14 0.14 0.00 0.00 0.16 0.16 0.00 0.00
200 0.00 0 0.00 0.00 0.14 0.16 0.00 0.00 0.16 0.17 0.00 0.00
300 0.00 0 0.00 0.00 0.14 0.16 0.00 0.00 0.16 0.17 0.00 0.00

The concept of outsiders is described as follows. Let ny,
be the number of left-hand jobs whose completion times
less than e and ng be the number of right-hand jobs whose
completion times greater than d. Then Lemma 2 shows that
there exists an optimal schedule which has the same number
of left-hand outsiders and right-hand outsiders, i.e., n;, = ng,
for each machine k. By Lemma 2, we can determine the
starting time of jobs allocated to a machine.

Lemma 2: Given jobs allocated to a machine
(machine k), for each optimal sequence on the machine,
ny = nR.

Proof: We prove it by contradiction. Assume there are no
such optimal sequence with n; = ng for machine k. Without
loss of generality, suppose « is an optimal sequence with
ny < ng. Let § be the minimum nonzero earliness E; and
tardiness 7; for all jobs allocated to machine k. Then we
force all jobs to be processed 0.58 later than their original
starting times. Namely, all their original completion times
C;j becomes C; + 0.58. Then the objective gain becomes a
negative value, i.e., 0.5(n;.§ — ngd). This contradicts that « is
an optimal sequence on the machine with n;, < ng. The proof
is complete. |

172144

B. LOWER BOUND

To accelerate the B&B algorithm, we propose two comple-
mentary lower bounds. Again, let 7 = («, §) be an incom-
plete schedule, where « is a determined partial schedule and
B is an undetermined partial sequence. When computing the
lower bounds, we assume that jobs in 8 are preemptive.

Fig. 2 shows the details of the first lower bound. Assume
that ¢, is the current cost, m, is the current machine, ¢, is
the current makespan on machine my, and A, is the current
accumulated earliness and tardiness. We sort jobs in 8 in
descending order of w;/p; and determine the largest job in 8
(Steps 1 and 2). Since there is a quota of (A — A,,) for earliness
and tardiness, we allow for overtime work on machine my, for
k = my + 1,my + 2,...,m (Step 3). Moreover, we take
advantage of the period of processing time [e — pmax/Vk, €]
before the due window. We assume that jobs processed during
the period cause no earliness and tardiness. Then, we can
allocate valuable jobs (i.e., larger w;/p;) one by one to eco-
nomic machines (i.e., smaller c;/vx) in a preemptive way
(Steps 4-6). Finally, the lower bound is returned in Step 7.

Fig. 3 shows the details of the second lower bound.
We assume that max;e,{Cj(r)} = 19. Note that the most

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

TABLE 6. The performance of B&B and ICA for n = 10.

B&B GA ICA
Nodes Run Time Run Time REP Run Time REP

m / A Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
1 0.25 0 27462.98 334274 0.29 3.20 0.49 0.61 0.00 0.00 0.64 0.77 0.00 0.00
100 50919.48 362838 0.60 3.81 0.51 0.70 0.21 4.25 0.70 0.84 0.00 0.00
200 22590.28 210535 0.27 231 0.53 0.67 0.00 0.00 0.71 0.84 0.00 0.00
300 10024.52 111666 0.12 1.31 0.56 0.91 0.09 3.06 0.73 0.80 0.06 3.06
0.50 0 69949.14 749204 0.68 6.82 0.51 0.61 0.00 0.00 0.67 0.75 0.00 0.00
100 37647.28 401229 0.42 4.10 0.54 0.73 0.00 0.00 0.71 0.78 0.00 0.00
200 47415.28 512614 0.53 5.43 0.55 0.62 0.00 0.00 0.74 0.92 0.00 0.00
300 9446.94 150078 0.12 1.90 0.57 0.84 0.01 0.63 0.76 0.81 0.00 0.00
0.75 0 53923.90 749204 0.53 6.99 0.53 0.61 0.00 0.00 0.70 1.05 0.00 0.00
100 41732.78 675044 0.44 6.60 0.54 0.59 0.04 2.01 0.73 1.23 0.00 0.00
200 10758.52 210405 0.13 2.45 0.55 0.59 0.00 0.00 0.73 0.80 0.00 0.00
300 7639.36 163921 0.09 1.92 0.56 0.61 0.10 4.96 0.73 0.76 0.10 4.96
2 0.25 0 35670.54 749204 0.37 6.93 0.50 0.53 0.10 3.80 0.68 1.05 0.19 9.07
100 19903.50 396502 0.24 4.21 0.53 0.84 0.07 1.18 0.74 0.94 0.02 1.18
200 19234.64 258781 0.22 2.76 0.53 0.56 0.14 5.99 0.75 0.84 0.00 0.00
300 8246.08 126560 0.10 1.42 0.53 0.58 0.00 0.00 0.75 0.80 0.00 0.00
0.50 0 42056.70 708884 0.43 6.74 0.51 0.62 0.01 0.36 0.71 1.09 0.00 0.00
100 16394.24 172604 0.20 2.11 0.53 0.58 0.04 0.91 0.75 1.01 0.00 0.00
200 599.62 29981 0.01 0.37 0.54 0.58 0.04 1.83 0.75 1.05 0.00 0.00
300 8651.54 214487 0.10 2.37 0.53 0.58 0.02 0.72 0.74 0.83 0.01 0.36
0.75 0 79905.72 749204 0.78 7.02 0.53 0.86 0.00 0.00 0.71 0.78 0.00 0.00
100 62027.34 563766 0.68 6.55 0.55 1.11 0.91 45.08 0.73 0.81 0.00 0.00
200 13480.64 229296 0.16 2.59 0.54 0.58 0.02 0.63 0.74 0.89 0.01 0.28
300 922.90 46145 0.01 0.56 0.55 0.59 0.01 0.35 0.74 0.80 0.01 0.35
3 0.25 0 75503.20 749204 0.76 6.82 0.53 0.89 0.14 3.98 0.70 0.86 0.00 0.00
100 22794.04 295176 0.27 3.34 0.54 1.00 0.12 2.77 0.75 1.05 0.03 0.85
200 11262.78 176609 0.13 1.93 0.54 0.58 0.04 0.87 0.77 1.26 0.00 0.00
300 12490.10 222107 0.14 2.42 0.54 0.58 0.03 0.89 0.76 0.80 0.01 0.25
0.50 0 27381.74 554684 0.29 5.43 0.53 0.56 0.00 0.11 0.71 0.78 0.00 0.00
100 34534.60 544635 0.39 5.43 0.54 0.56 0.08 1.55 0.74 0.80 0.03 0.88
200 4462.28 199040 0.05 2.25 0.54 0.84 0.07 332 0.77 1.23 0.00 0.00
300 0.00 0 0.00 0.00 0.55 0.58 0.01 0.46 0.77 1.20 0.00 0.00
0.75 0 12810.10 331176 0.14 3.25 0.53 0.58 0.00 0.00 0.74 1.31 0.00 0.00
100 22170.98 306731 0.26 3.39 0.55 0.61 0.01 0.59 0.75 0.84 0.01 0.45
200 7266.62 153499 0.09 1.90 0.56 0.59 0.05 2.37 0.78 1.11 0.00 0.00
300 3992.46 105952 0.05 1.36 0.57 0.61 0.01 0.51 0.78 0.87 0.00 0.00

economic machine is not necessarily the fast machine. Con-
sequently, we increase the processing speed of machine my
and assume that all the remaining quota, i.e., (A — Agy)
is consumed only by this machine. Therefore, no earliness
and tardiness occur on the other machines and the time
buffers of other machines are narrower than those of lower
bound 1.C. Branch-and-bound algorithm To optimally solve
the problem, we employ a depth-first search to develop a
B&B algorithm which includes the following basic six steps
(Fig. 4). First, we borrow a near-optimal solution from a
metaheuristic algorithm, e.g., GA or ICA, (see next sub-
section) and build a search tree. In Steps 2 and 3, dom-
inance rules and lower bounds are employed to eliminate
some branches that the optimal solutions do not reside in.
Step 3 updates the current global minimum if a new local
minimum occurs. Note that f() means the objective func-
tion. Repeat the depth-first search and obtain the global
minimum.

V. METAHEURISTIC ALGORITHMS
When the problem size is large, we propose an imperi-
alist competitive algorithm (ICA) to provide near-optimal

VOLUME 7, 2019

solutions. Moreover, we also employ a genetic algo-
rithm (GA) as a benchmark for evaluating the performance
of ICA.

A. GENETIC ALGORITHM (GA)

A simple genetic algorithm (GA) is used as a benchmark
and the details are shown in Fig. 5. In Step 1, we ran-
domly generate N schedules, where N is the population
size. For example, we have five jobs (n 5) and two
machines (m = 2). A schedule (1,5,3,0,2,0,4) means that
jobs 1, 5, 3 are allocated to machine 1, job 2 is allocated
to machine 2, and job 4 is outsourced, where the zeros
mean separators. Note that some schedules may be invalid.
In Step 2, we compute the fitness for each schedule for later
selection and crossover. In Steps 3 and 4, a roulette wheel
selection is employed for selection. We select 7N solutions
to form the next generation by crossover and (1 — r.)N
solutions to directly survive into the next generation. For
each pair of selected solutions, a shift-and-insert crossover is
conducted. Consider a solution as a circular queue. We ran-
domly choose two integers a and b from {0,1,..., n-1}.
If a < b, we first take the job at position a away,

172145

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

TABLE 7. The performance of B&B and ICA for n = 15.
B&B GA ICA
Nodes Run Time Run Time REP Run Time REP
m A Mean Max Mean Max NA Mean Max Mean Max NA Mean Max Mean Max NA

1 025 0 8687466.87 79520474 230.53 2056.81 12 1.41 2.34 122 21.61 12 2.12 4.18 0.24 532 12
100 10443159.55 62697916 261.76 1533.04 12 1.45 2.45 1.17 10.10 12 226 435 0.30 3.49 12

200 7149356.89 93297077 173.05 2217.57 13 1.61 4.67 2.07 2147 13 241 3.99 0.56 7.88 13

300 5842394.07 56441024 152.00 1470.28 7 1.50 215 0.35 3.82 7 207 293 0.23 3.82 7

050 0 3721244.00 94118209 94.69 2396.85 19 1.58 2.54 0.27 3.49 19 234 423 0.12 3.02 19
100 7134050.67 67611043 168.25 1591.37 11 1.52 237 0.66 13.65 11 2.30 3.78 0.20 4.00 11

200 4967775.60 81131885 125.64 2029.71 8 1.50 2.03 0.15 2.41 8 2.18 3.10 0.12 4.09 8

300 2424016.42 61632046 58.90 1468.48 5 1.55 1.93 0.17 2.36 5 2.16 2.65 0.06 1.40 5

0.75 0 1770360.78 63203313 39.90 142392 14 1.59 2.39 0.13 3.57 14 226 287 0.00 0.00 14
100 13243166.85 95078198 331.92 2350.31 16 1.55 4.87 1.55 11.85 16 2.24 3.71 0.65 5.48 16

200 4621671.82 52232796 109.85 1335.06 23 147 222 1.05 7.07 23 2.36 3.84 0.23 2.23 23

300 8437599.57 82097615 193.87 185791 22 1.53 2.70 1.55 2322 22 2.47 5.26 0.12 1.95 22

2 025 0 544511421 97772554 136.30 2366.86 11 1.45 2.53 0.65 5.71 11 2.25 3.54 0.25 4.68 11
100 226131.00 4628874 5.79 11820 14 148 2.09 0.20 5.54 14 2.30 3.85 0.00 0.15 14

200 435922990 84590522 100.95 1852.26 9 149 248 0.27 5.66 9 243 4.45 0.06 1.15 9

300 4105277.75 63204366 107.32 1712.16 14 1.55 4.82 0.46 9.30 14 2.33 3.81 0.08 2.01 14

0.50 0 144595995 21816858 35.66 495.76 8 1.58 4.76 0.98 29.58 8 2.38 3.98 0.03 1.09 8
100 418585.38 18836342 11.24 505.79 5 1.52 2.50 0.07 3.00 5 237 432 0.01 0.48 5

200 15658706.71 84025270 388.00 2032.27 16 1.59 4.01 285 59.99 16 2.48 3.78 0.23 5.03 16

300 11828472.41 99206146 283.13 2361.65 21 1.65 334 0.79 6.13 21 243 431 0.07 0.82 21

0.75 0 4250486.49 52921698 97.04 116435 11 1.55 2.45 0.68 6.53 11 2.52 434 0.03 0.54 11
100 11939213.51 82956616 300.02 2036.69 13 1.54 3.00 2.60 36.70 13 233 3.45 0.13 222 13

200 5374951.50 85961952 130.63 197043 12 152 287 0.49 9.58 12 235 3.78 0.01 0.32 12

300 1751259.66 27535073 42.37 661.21 3 147 212 0.11 2.65 3 2.33 4.32 0.00 0.11 3

3 025 0 2609580.00 55968313 64.57 1364.39 9 1.50 2.64 0.51 10.17 9 2.31 3.26 0.17 3.69 9
100 4231731.59 70788897 102.96 1747.48 9 1.51 2.68 0.12 2.56 9 2.44 5.57 0.00 0.00 9

200 417201.95 17939684 10.01 430.39 7 148 2.04 0.09 2.37 7 2.28 3.85 0.00 0.00 7

300 8687466.87 79520474 230.53 2056.81 12 1.41 2.34 122 21.61 12 212 418 0.24 5.32 12

0.50 0 10443159.55 62697916 261.76 1533.04 12 1.45 2.45 1.17 10.10 12 226 435 0.30 3.49 12
100 7149356.89 93297077 173.05 2217.57 13 1.61 4.67 2.07 2147 13 241 3.99 0.56 7.88 13

200 5842394.07 56441024 152.00 1470.28 7 1.50 2.15 0.35 3.82 7 207 293 0.23 3.82 7

300 3721244.00 94118209 94.69 2396.85 19 1.58 2.54 0.27 3.49 19 234 423 0.12 3.02 19

0.75 0 7134050.67 67611043 16825 1591.37 11 1.52 237 0.66 13.65 11 2.30 3.78 0.20 4.00 11
100 4967775.60 81131885 125.64 2029.71 8 1.50 2.03 0.15 2.41 8 2.18 3.10 0.12 4.09 8

200 242401642 61632046 58.90 1468.48 5 1.55 1.93 0.17 2.36 5 2.16 265 0.06 1.40 5

300 1770360.78 63203313 39.90 142392 14 1.59 239 0.13 3.57 14 226 287 0.00 0.00 14

then shift jobs one by one from positions a+1, a+2,..., b
to positions a, a+1,..., b-1, and finally insert the previously
taken job into position b. Similarly, @ > b, we first take
the job at position a away, then shift jobs one by one from
positions a+1, a+2,...,n-1,0,1,..., b to positions a, a+1,...,
n-1,0,1,..., b-1, and finally insert the previously taken job
into position b. In Step 5, there is a mutation probability of
r, that a solution mutates in the new generation. Moreover,
we perform a local search to enhance the solution quality of
GA by a simple algorithm of simulated annealing (SA) in
Step 7. In the last step, the algorithm terminates if the run time
reaches 2n seconds or no improvements are made during the
recent 20n generations.

A simulated annealing (SA) algorithm is used as a local
search (Fig. 6). SA is motivated by annealing in metals. The
phenomenon is a gradually stabilized process which occurs
when heated or melted metal cools down slowly. High tem-
perature means a random state and it is relatively easy for
molecules to reach a new thermal equilibrium. Therefore,
in Step 6, SA jumps to a new position mainly due to discovery
of a local minimum and slightly due to forced change (like
mutation of GA). Moreover, the completion time of cooling

172146

process is controlled by the cooling coefficient XA in Step 8.
After searching the local area of 7, a new schedule # with
lower objective cost is returned.

B. IMPERIALIST COMPETITIVE ALGORITHM (ICA)

The imperialist competitive algorithm (ICA) was first intro-
duced by [81], [82]. ICA is based on the competitions of
empires. There are M empires and all of them have N citizens.
Each citizen can be viewed as a chromosome in GA. The
king of an empire is defined as a citizen who achieves the
minimum cost in the corresponding empire. That is, a king
is a local minimum in the solution space. In general, we can
regard each empire in ICA as a population in GA. The main
difference is that ICA has a rebellion operation and achieves
more diversification force [83].

The details of ICA are shown in Fig. 7. Like GA, each
citizen is encoded as a random permutation of 1,2,..., n, and
(m-1) zeros, where a zero means a separator (Step 1). For
each violation in the encoding of a citizen, a penalty of 1,000
is accumulated in its objective cost. In Step 2, each citizen is
forced to move towards its king. The assimilation operation is
done by a shift-and-insert crossover like GA. The main idea

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

TABLE 8. The comparison between the two lower bounds for n = 10.

B&B B&Bi 51 B&Bi s
Nodes Run Time Nodes Run Time Nodes Run Time
m [A Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 025 0 27462.98 334274 0.31 3.51 57204.54 614132 0.61 5.85 27462.98 334274 0.30 337
100 50919.48 362838 0.65 4.12 74494.74 465868 0.87 4.85 50919.48 362838 0.62 3.95

200 22590.28 210535 0.29 2.56 23760.88 212818 0.29 251 22590.28 210535 0.28 2.48

300 10023.62 111666 0.13 1.42 10114.18 111834 0.13 1.37 10023.62 111666 0.13 1.37

0.50 0 69949.14 749204 0.73 7.30 107092.66 749204 1.09 7.05 69949.14 749204 0.71 7.05
100 37646.86 401229 0.45 4.43 47418.90 484994 0.53 5.06 37646.86 401229 0.43 4.28

200 47415.28 512614 0.54 5.49 48605.58 513214 0.53 532 47415.28 512614 0.52 532

300 9447.62 150078 0.12 1.81 9514.76 151502 0.12 1.76 9447.62 150078 0.12 1.76

0.75 0 53923.90 749204 0.55 7.29 76152.92 749204 0.78 7.07 53923.90 749204 0.54 7.05
100 41732.78 675044 0.46 6.90 49485.96 690044 0.53 6.79 41732.78 675044 0.45 6.66

200 10758.02 210405 0.14 2.59 11273.32 211311 0.14 253 10758.02 210405 0.13 2.50

300 7638.86 163921 0.10 2.03 7680.38 164011 0.10 197 7638.86 163921 0.10 1.98

2 025 0 35681.20 749204 0.40 7.49 55075.72 749204 0.62 732 35681.20 749204 0.39 7.30
100 19896.26 396502 0.26 4.59 29077.68 533160 0.35 5.60 19908.08 396502 0.25 4.43

200 19234.64 258781 0.24 3.00 20041.18 272127 0.24 3.06 19771.52 258781 0.24 2.93

300 8246.08 126560 0.11 1.54 8415.28 127848 0.11 1.50 8254.24 126560 0.10 1.48

0.50 0 42056.70 708884 0.45 6.99 70464.90 708884 0.76 6.74 42056.70 708884 0.44 6.77
100 16403.98 172604 0.21 2.17 22708.78 250599 027 2.87 16445.74 172604 0.20 2.09

200 599.62 29981 0.01 0.44 599.98 29999 0.01 041 724.98 36249 0.01 0.48

300 8651.28 214487 0.11 2.50 8736.86 215692 0.11 243 8665.56 214487 0.11 2.43

0.75 0 79905.72 749204 0.83 7.33 110566.96 749204 1.10 7.08 79905.72 749204 0.80 7.10
100 62027.34 563766 0.73 7.21 72875.90 689849 0.81 8.08 62922.04 563766 0.72 7.04

200 13479.72 229296 0.17 2.78 14032.28 232074 0.17 273 13667.38 238085 0.17 2.78

300 921.36 46068 0.01 0.61 954.76 47738 0.01 0.62 921.36 46068 0.01 0.59

3 025 0 75508.10 749204 0.81 7.29 124367.28 749204 1.28 7.10 75508.10 749204 0.78 7.05
100 22845.56 295176 0.29 3.45 29574.88 353349 0.35 3.85 23867.30 298038 0.29 3.35

200 11263.44 176609 0.14 2.08 11689.20 180537 0.14 2.07 11690.76 180604 0.14 2.08

300 12480.28 222107 0.15 2.56 12535.92 222286 0.15 248 12810.72 225086 0.15 2.53

0.50 0 27384.02 554684 0.31 5.65 71562.96 749204 0.75 7.08 27384.02 554684 0.30 5.46
100 34474.50 544635 0.42 5.77 44161.86 566908 0.51 577 34732.00 544635 0.41 5.62

200 4462.28 199040 0.06 242 4690.92 205755 0.06 2.51 4496.64 200758 0.06 2.39

300 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00

0.75 0 12811.08 331176 0.15 3.54 35693.94 561284 0.39 557 12811.08 331176 0.14 342
100 22179.38 306731 0.28 3.64 28503.94 348041 0.34 3.92 22711.84 306731 0.28 3.54

200 7266.62 153499 0.10 1.98 7812.76 160001 0.10 198 7509.20 157538 0.10 1.97

300 3992.46 105952 0.051 1.404 4020.88 105952 0.05 134 4219.00 117279 0.05 1.50

behind assimilation is similar to the crossover operation in
GA or the movement in particle swarm optimization (PSO).
In Steps 3 and 4, a citizen may rebel and defect to another
empire. Like GA, we also employ a local search of SA to
enhance the solution quality. All the N citizens are evaluated
and the weakest empire is punished (Steps 5 and 6). Like
GA, ICA terminates if the run time reaches 2n seconds or no
improvements are made during the recent 20n generations.

VI. EXPERIMENTAL RESULTS
The experiments are divided into three parts. In the first part,
to evaluate the performance of B&B, we solve the problem
optimally when the problem size is small. The related statis-
tics are recorded, e.g., average node and run time. In the sec-
ond part, ICA is used to obtain near-optimal solutions when
the problem size is large. To evaluate the performance of ICA,
the performance of GA is viewed as a benchmark. In the
third part, two sensitivity tests are conducted to observe the
influence of control parameters on the objective cost.

Table 4 summarizes the parameters used in the experi-
ments. Parameters n, m, ¢;, vi, wj, p;, e, d, and A have already
been defined in Section 3. Parameters ¢; and v; are two

VOLUME 7, 2019

real numbers randomly chosen from [1.0, 5.0], w; is a real
number randomly chosen from [1.0, 2.0]. Assume that the
unit cost of outsourcing, i.e., ¢+ 1, is 10.0. Processing time p;
follows a discrete uniform distribution over {1, 2, ..., 100}.
Parameters / and a are used to control the width of due
window and limit A respectively. For GA and ICA, both
population sizes are N and their crossover rates, mutation
rates, and local search rates are identical. Moreover, both
of them employ the same local search SA with the same
settings. All the algorithms are implemented in Pascal and
executed on an Intel Core i7 @ 3.40GHz with 8 GB RAM in
a Windows 7 SP1 environment. For each setting, 50 random
trials are conducted and recorded. For the two metaheuristic
algorithms, the stopping criteria are the run time is over
2n seconds or solution quality cannot be improved more
during recent 20n generations.

In the first part, Table 5 shows the solution quality and run
time of the proposed algorithms for n = 5. The relative error
percentage (REP) is defined as (f — fpp)/fep X 100%, where
f means the objective cost obtained by GA or ICA and fpp is
the optimal objective cost obtained by B&B. All the execution
speeds of the proposed algorithms are measured in second.

172147

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

TABLE 9. The performance of ICA for n = 25.

GA ICA
Run Time RDP Run Time RDP

m / A Mean Max Mean Max Mean Max Mean Max
1 0.25 100 4.37 6.57 0.62 4.46 6.77 20.08 0.04 1.11
200 4.70 9.69 1.49 9.14 8.13 18.42 0.02 0.82

300 5.20 15.97 2.57 16.01 9.06 21.09 0.02 0.69

0.50 100 4.90 10.08 1.30 7.87 7.77 14.70 0.02 1.10
200 5.27 10.17 1.55 6.54 8.85 16.82 0.04 1.11

300 4.92 9.52 2.65 29.02 8.85 19.81 0.00 0.00

0.75 100 4.93 10.61 1.41 9.20 8.32 14.26 0.00 0.04
200 5.63 11.23 1.66 15.03 8.80 14.68 0.01 0.72

300 5.42 8.42 2.72 1645 9.78 21.11 0.00 0.00

2 0.25 100 5.86 14.74 432 15.09 9.68 20.14 0.03 1.02
200 6.20 19.94 5.08 2721 9.87 28.39 0.00 0.00

300 6.64 21.30 546 37.53 9.54 20.02 0.01 0.53

0.50 100 6.06 15.82 2.18 12.23 9.63 17.11 0.04 1.78
200 6.19 18.92 224 22.80 9.96 22.54 0.00 0.06

300 6.66 22.20 4.62 48.38 10.53 16.38 0.00 0.00

0.75 100 5.87 16.77 1.84 10.40 9.60 17.16 0.03 0.95
200 7.06 26.36 2.28 1436 9.96 20.62 0.00 0.00

300 5.80 25.96 221 20.64 10.19 18.81 0.00 0.00

3 0.25 100 6.30 16.38 4.18 28.95 9.24 17.13 0.06 2.73
200 6.35 17.44 7.17 5037 10.48 21.56 0.00 0.00

300 6.48 19.72 7.47 65.08 10.53 21.20 0.00 0.00

0.50 100 6.11 15.34 240 10.15 9.61 19.03 0.00 0.00
200 6.89 20.11 4.10 37.85 9.49 20.36 0.00 0.00

300 6.07 15.20 337 5337 10.85 21.45 0.00 0.00

0.75 100 6.02 14.98 2.09 18.49 10.15 22.18 0.00 0.00
200 6.01 16.44 1.99 2298 9.92 19.81 0.00 0.00

300 5.97 15.93 2.06 24.40 10.69 21.50 0.00 0.00

It is seen that the average nodes of B&B decreases when
the number of machines increases. Multi-machine scheduling
seems easier to solve for B&B for some fixed n. B&B also
takes more run time to solve an instance with an early due
window (i.e., small /). This is because we have enough room
for containing small jobs and need more trial and errors to
obtain the optimal schedules. On the other hand, when the
limit A is small, it also means we have less flexibility to
adjusting these small jobs and therefore B&B will consume
more execution time to find the optimal schedule. For both
metaheuristic algorithms, their solution quality are the same
for n = 5. However, ICA needs more run time to deal with
the competition between the empires.

Table 6 shows the solution quality and run time of the
proposed algorithms for n = 10. Again, the effects of m,
I, A on B&B are similar. However, the difficulty increases
when m increases. Multi-machine scheduling is still harder
than single-machine scheduling. The most difficult setting is
m =2,1 =0.75,A = 0, since the average node is 79905.
On the other hand, as » increases, ICA achieve lower REPs
than GA in general though it takes a little more execution
time. The design of multiple empires now are effective.

Table 7 shows the solution quality and run time of the
proposed algorithms for n = 15. The symbol NA means
the optimal solutions are not available. This is because we
force B&B to quit if the nodes exceeds one hundred million.
It implies that some metaheuristic algorithms are needed
for providing near-optimal solutions for n >15. On the
other hand, the REPs of ICA are relatively low compared
with GA. Therefore, ICA can be a good candidate for solving

172148

large problem instances. Note that B&B always generates
the optimal solutions but consumes more run time. On the
other hand, although ICA takes a little longer run time than
GA, ICA always provides higher solution quality (i.e., lower
REP). Namely, ICA’s wider biodiversity is helpful to improve
solution quality in this problem.

Table 8 shows the performance of the two proposed lower
bounds for n = 10. In this table, B&B cooperates closely
with two lower bounds, B&Bj g; means a branch-and-bound
algorithm works with dominance rules and LB1 only, and
B&Bj g2 means a branch-and-bound algorithm is equipped
with dominance rules and LB2 only. As shown in the mean
node columns, LB2 is very powerful, especially for dealing
with the situations of early due windows and small limits,
e.g.,m=1,L =0.25,A = 0. On the other hand, LB1 is good
at pruning unnecessary nodes for more machines and larger
limits, e.g., m =2, L = 0.5, A = 200. However, without the
help of LB2, B&Bj g1 will take more runt time than B&B and
B&Byp». It is clear that both lower bounds complement each
other.

As shown in the above experiments, B&B can optimally
solve the problem within 5 minutes for small problem
instances. On the other hand, ICA can provide high-quality
solutions within 2n seconds for a large n. It is qualified for
solving the real-world instance in Table 2.

In the second part, Tables 9 and 10 shows the performances
of two metaheuristic algorithms for large problem instances.
The relative deviation percentage (RDP) is defined as
(f — fmin)/fmin X 100%, where f means the objective cost
obtained by GA or ICA and fiij is the minimum cost obtained

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

TABLE 10. The performance of ICA for n = 50.

GA ICA
Run Time RDP Run Time RDP
m / A Mean Max Mean Max Mean Max Mean Max
1 025 100 26.24 79.08 0.56 2.04 3395 63.79 0.01 0.22
200 29.06 59.20 0.75 1.78 39.13 87.17 0.01 0.31
300 26.03 74.04 121 4.56 39.06 77.02 0.00 0.14
0.50 100 24.24 5441 099 5.72 3480 64.82 0.01 0.44
200 2591 62.70 1.31 5.25 38.12 85.57 0.00 0.09
300 29.15 6791 1.83 5.98 4533 89.65 0.01 0.51
0.75 100 28.33 100.03 1.27 3.98 40.43 99.37 0.01 0.12
200 27.00 57.85 228 8.19 49.80 100.04 0.00 0.04
300 27.64 5471 323 11.05 52.81 100.03 0.00 0.00
2 025 100 34.04 93.84 1.79 5.79 41.26 83.71 0.00 0.01
200 34.26 89.37 2.58 10.69 43.55 100.01 0.00 0.09
300 34.83 91.79 3.06 11.47 48.15 100.01 0.01 0.39
0.50 100 38.17 100.03 2.29 10.73 45.68 100.06 0.00 0.22
200 46.75 100.04 422 18.64 56.13 100.06 0.00 0.00
300 47.88 100.03 5.14 31.75 52.10 100.06 0.01 0.68
0.75 100 42.87 100.04 320 11.00 59.98 100.06 0.01 0.49
200 51.91 100.04 5.06 17.53 62.04 100.08 0.00 0.00
300 49.95 100.04 4.60 16.82 64.31 100.06 0.00 0.10
3 025 100 42.87 100.04 3.10 14.53 45.75 100.04 0.01 0.24
200 45.07 100.04 438 1547 4428 88.39 0.00 0.00
300 50.48 100.04 598 23.55 56.69 100.04 0.00 0.00
0.50 100 49.19 100.04 445 17.22 58.31 100.06 0.00 0.00
200 44.99 100.03 6.05 25.07 60.82 100.06 0.00 0.00
300 53.40 100.04 7.27 34.33 62.44 100.08 0.00 0.00
0.75 100 46.33 100.01 3.78 18.63 58.75 100.04 0.00 0.00
200 49.58 100.04 453 21.92 57.03 100.07 0.00 0.00
300 40.29 100.04 5.07 29.50 56.92 100.06 0.00 0.00
800 TABLE 11. The effects of input parameters on the objective cost.
780 7
760 processing time production cost production speed
« 740 \ 47300 -) @@ _ o) __
2 \ increase of a object chang objectiv chang objectiv chang
) 720 \ parameter ive e (%) e cost e (%) e cost e (%)
& 700 (%) cost
% 680 \: -15 557.114 -20.33 605.651 -13.39 848.502 21.34
S o ™ -10 597.286 -14.58 636958 -891 788858 12.81
-5 646.374 -7.56 668.203 -4.44 738.987 5.68
640 0 699.264 0.00 699.264 0.00 699.264 0.00
620 5 740.892 595 730377 445 650.271 -7.01
600 ‘ ‘ ‘ . ‘ ‘ ‘ : ‘ : 10 788.671 12.79 761.518 890 607.529 -13.12
w o e e e e e e w e 15 836.936 19.69 792.929 1339 575381 -17.72
g 2 2 I T L2002 S 5 505 correlation
S A . 0.999627 0.999999 -0.997053
coefficient

FIGURE 8. The effects of control parameters on the objective cost.

by GA and ICA. For most settings, ICA achieves lower costs
and its RDPs are always less than 2.73%. On the other hand,
compared with GA, ICA takes less run time when # is large.
This is because biodiversity is easy to be achieved by ICA.
Compared with GA, ICA has multiple dependent populations
and GA just has one. Some potential solutions of ICA are
therefore not weeded out.

In the third part, a sensitivity test is provided in Fig. 8 to
show the influences of parameters / and a (i.e., A/300). The
default values of other parameters are n = 10 and m = 2.
It is clear that the objective cost will decrease intensively if
we have large due windows. That is, we have more flexibility
to schedule jobs. Moreover, loose limits of earliness and
tardiness also leads to lower objective costs. The decreasing

VOLUME 7, 2019

speed of a is faster than that of /. It implies that we had
better negotiate a large limit instead of requesting a wider due
window.

Table 11 provides another sensitivity test for three input
parameters (i.e., pj, ¢;, v;). An increase of processing time
(15%) will cause an increase of objective cost (19.69%). The
more processing time a job has, the more objective cost we
must pay. An increase of production cost of each machine
(15%) will lead to an increase of objective cost (13.39%).
The objective cost is directly affected by the input parameters.
On the other hand, an increase of production speed of each
machine (15%) will result in a decrease of objective cost
(17.72%). It means that we can earn profit by improving
the factory facilities, although investing them require some
cost.

172149

IEEE Access

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

VII.

CONCLUSION

This study considers a multi-machine scheduling problem
with a due window. Given a limit of total earliness and
tardiness, we aim to minimize the total cost including envi-
ronmental damage. The difficulty of this problem resides
in the variety of machines and distinction between jobs.
A branch-and-bound algorithm (B&B) is proposed. Using
the dominance rules and two complementary lower bounds,
B&B deals successfully with the instances of n < 15 and
m < 3. Moreover, an imperialist competitive algorithm (ICA)
is developed to provide near-optimal solutions. The experi-
mental results show that ICA performs well for n < 50. In the
future, we may consider due windows with different penalties
for earliness and tardiness and develop some metaheuristic
for obtaining near-optimal schedules for a large n, e.g., 100.

REFERENCES

(1]

[2]
[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

W.-C. Lee and C.-C. Wu, “Multi-machine scheduling with deteriorating
jobs and scheduled maintenance,” Appl. Math. Model., vol. 32, no. 3,
pp. 362-373, 2008.

S. Balin, “Non-identical parallel machine scheduling using genetic algo-
rithm,” Expert Syst. Appl., vol. 38, no. 6, pp. 6814-6821, 2011.

V. Kayvanfar, G. M. Komaki, A. Aalaei, and M. Zandieh, ‘“Minimizing
total tardiness and earliness on unrelated parallel machines with control-
lable processing times,” Comput. Oper. Res., vol. 41, pp. 31-43, Jan. 2014.
K.-T. Fang and B. M. T. Lin, ‘“Parallel-machine scheduling to minimize
tardiness penalty and power cost,” Comput. Ind. Eng., vol. 64, no. 1,
pp. 224-234, 2013.

D. Thiruvady, G. Singh, A. T. Ernst, and B. Meyer, “‘Constraint-based ACO
for a shared resource constrained scheduling problem,” Int. J. Prod. Econ.,
vol. 141, no. 1, pp. 230-242, 2013.

J.-Y. Wang, “A branch-and-bound algorithm for minimizing the total tar-
diness of a three-agent scheduling problem considering the overlap effect
and environment protection,” IEEE Access, vol. 7, pp. 5106-5123, 2019.

M. Ji, J.-Y. Wang, and W.-C. Lee, “Minimizing resource consumption on
uniform parallel machines with a bound on makespan,” Comput. Oper.
Res., vol. 40, no. 12, pp. 2970-2974, 2013.

W. C. Yeh, M.-C. Chuang, and W.-C. Lee, “Uniform parallel machine
scheduling with resource consumption constraint,” Appl. Math. Model.,
vol. 39, no. 8, pp. 2131-2138, 2015.

J.-Y. Wang, “Minimizing the total weighted tardiness of overlapping jobs
on parallel machines with a learning effect,” J. Oper. Res. Soc., to be
published.

M. J. Anzanello, F. S. Fogliatto, and L. Santos, “Learning dependent job
scheduling in mass customized scenarios considering ergonomic factors,”
Int. J. Prod. Econ., vol. 154, pp. 136-145, Aug. 2014.

L. Gimeno, M. T. M. Rodrigues, L. C. A. Rodrigues, and W. Alvarenga,
“Mixed integer linear programming and constrained based search
approaches in a multipurpose batch plant short term scheduling problem,”
Comput. Aided Chem. Eng., vol. 8, pp. 1039-1044, Jan. 2000.

P. A. Castro and I. E. Grossmann, ‘‘An efficient MILP model for the short-
term scheduling of single stage batch plants,” Comput. Chem. Eng., vol. 30,
nos. 6-7, pp. 10031018, 2006.

P. Castro and I. Grossmann, “Multiple time grid continuous-time formula-
tion for the short term scheduling of multiproduct batch plants,” Comput.
Aided Chem. Eng., vol. 21, pp. 2093-2098, Jan. 2006.

J. Lamothe, F. Marmier, M. Dupuy, P. Gaborit, and L. Dupont, “Schedul-
ing rules to minimize total tardiness in a parallel machine problem with
setup and calendar constraints,” Comput. Oper. Res., vol. 39, no. 6,
pp. 1236-1244, 2012.

L.-H. Suand Y.-Y. Tien, “Minimizing mean absolute deviation of comple-
tion time about a common due window subject to maximum tardiness for
a single machine,” Int. J. Prod. Econ., vol. 134, no. 1, pp. 196-203, 2011.
E. Gerstl and G. Mosheiov, ‘‘Due-window assignment problems with unit-
time jobs,” Appl. Math. Comput., vol. 220, pp. 487-495, Sep. 2013.

N. Shirvani, R. Ruiz, and S. Shadrokh, “Cyclic scheduling of perishable
products in parallel machine with release dates, due dates and deadlines,”
Int. J. Prod. Econ., vol. 156, pp. 1-12, Oct. 2014.

Z. Xingong and W. Yong, “Single-machine scheduling CON/SLK due
window assignment problems with sum-of-processed times based learning
effect,” Appl. Math. Comput., vol. 250, pp. 628-635, Jan. 2015.

172150

(19]

[20]

[21]

(22]

(23]

[24]

(25]

(26]

(27])

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

A. J. Ruiz-Torres, J. C. Ho, and F. J. Lopez, “Generating Pareto sched-
ules with outsource and internal parallel resources,” Int. J. Prod. Econ.,
vol. 103, no. 2, pp. 810-825, 2006.

M. M. Mazdeh, F. Zaerpour, A. Zareei, and A. Hajinezhad, ‘‘Parallel
machines scheduling to minimize job tardiness and machine deteriorat-
ing cost with deteriorating jobs,” Appl. Math. Model., vol. 34, no. 6,
pp. 1498-1510, 2010.

I. Saricigek and C. Celik, “Two meta-heuristics for parallel machine
scheduling with job splitting to minimize total tardiness,” Appl. Math.
Model., vol. 35, no. 8, pp. 4117-4126, 2011.

W. von Hoyningen-Huene and G. P. Kiesmuller, “Evaluation of the
expected makespan of a set of non-resumable jobs on parallel machines
with stochastic failures,” Eur. J. Oper. Res., vol. 240, no. 2, pp. 439-446,
2015.

M. D. Toksari and E. Giiner, “Parallel machine earliness/tardiness
scheduling problem under the effects of position based learning and
linear/nonlinear deterioration,” Comput. Oper. Res., vol. 36, no. 8§,
pp. 2394-2417, 2009.

S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-
conscious scheduling of hpc applications on distributed cloud-oriented data
centers,” J. Parallel Distrib. Comput., vol. 71, no. 6, pp. 732-749, 2011.
A. Galizia and A. Quarati, “Job allocation strategies for energy-aware and
efficient grid infrastructures,” J. Syst. Softw., vol. 85, no. 7, pp. 1588-1606,
2012.

M. Rager, C. Gahm, and F. Denz, “Energy-oriented scheduling based
on evolutionary algorithms,” Comput. Oper. Res., vol. 54, pp. 218-231,
Feb. 2015.

J. Y. Wang, F. G. Chen, and J. S. Chen, “A green pump scheduling algo-
rithm for minimizing power consumption and land depletion,” Concurrent
Eng.-Res. Appl., vol. 21, no. 2, pp. 121-128, 2013.

A. Janiak, W. A. Janiak, T. Krysiak, and T. Kwiatkowski, “A survey on
scheduling problems with due windows,” Eur. J. Oper. Res., vol. 242, no. 2,
pp. 347-357, Apr. 2015.

Z.-L. Chen and C.-Y. Lee, ‘“‘Parallel machine scheduling with a common

due window,” Eur. J. Oper. Res., vol. 136, no. 3, pp. 512-527, 2002.

E. Gerstl and G. Mosheiov, “Due-window assignment with identical
jobs on parallel uniform machines,” Eur. J. Oper. Res., vol. 229, no. 1,
pp. 41-47, 2013.

R. H. Huang, C. L. Yang, and H. T. Huang, “Parallel machine schedul-
ing with common due windows,” J. Oper. Res. Soc., vol. 61, no. 4,
pp. 640-646, 2010.

W.-K. Yeung, C. Oguz, and T.-C. E. Cheng, “Two-machine flow shop
scheduling with common due window to minimize weighted number of
early and tardy jobs,” Naval Res. Logistics, vol. 56, no. 7, pp. 593-599,
2009.

A. Janiak, W. A. Janiak, and R. Januszkiewicz, “Algorithms for parallel
processor scheduling with distinct due windows and unit-time jobs,” Bull.

Polish Acad. Sci.-Tech. Sci., vol. 57, no. 3, pp. 209-215, 2009.

J. Behnamian, M. Zandieh, and S. M. T. F. Ghomi, “Due window schedul-
ing with sequence-dependent setup on parallel machines using three hybrid
metaheuristic algorithms,” Int. J. Adv. Manuf. Technol., vol. 44, nos. 7-8,
pp. 795-808, 2009.

W.-K. Yeung, C. Oguz, and T. C. E. Cheng, “Minimizing weighted
number of early and tardy jobs with a common due window involv-
ing location penalty,” Ann. Oper. Res., vol. 108, nos. 1-4, pp. 33-54,
2001.

W. K. Yeung, C. Oguz, and T. C. E. Cheng, “Single-machine schedul-
ing with a common due window,” Comput. Oper. Res., vol. 28, no. 2,
pp. 157-175, Feb. 2001.

J.-B. Wang and C. Wang, ““Single-machine due-window assignment prob-
lem with learning effect and deteriorating jobs,” Appl. Math. Model.,
vol. 35, no. 8, pp. 4017-4022, 2011.

T. C. E. Cheng, S.-J. Yang, and D.-L. Yang, “Common due-window
assignment and scheduling of linear time-dependent deteriorating jobs and
a deteriorating maintenance activity,” Int. J. Prod. Econ., vol. 135, no. 1,
pp. 154-161, 2012.

G. Mosheiov and A. Sarig, “Scheduling with a common due-window:
Polynomially solvable cases,” Inf. Sci., vol. 180, no. 8, pp. 1492-1505,
2010.

L. Min and W. Cheng, “Genetic algorithms for the optimal common due
date assignment and the optimal scheduling policy in parallel machine
earliness/tardiness scheduling problems,” Robot. Comput.-Integr. Manuf.,
vol. 22, no. 4, pp. 279-287, 2006.

V. Kayvanfar, I. Mahdavi, and G. M. Komaki, “Single machine
scheduling with controllable processing times to minimize total tardi-
ness and earliness,” Comput. Ind. Eng., vol. 65, no. 1, pp. 166-175,
2013.

VOLUME 7, 2019

J.-Y. Wang: Algorithms for Minimizing Resource Consumption Over Multiple Machines

IEEE Access

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

H. Yuan, I. Ahmad, and C.-C. J. Kuo, ‘““Performance-constrained energy
reduction in data centers for video-sharing services,” J. Parallel Distrib.
Comput., vol. 75, pp. 29-39, Jan. 2015.

1. Goiri, J. L. Berral, J. O. Fit6, F. Julia, R. Nou, J. Guitart, R. Gavalda,
and J. Torres, “Energy-efficient and multifaceted resource management
for profit-driven virtualized data centers,” Future Gener. Comput. Syst.,
vol. 28, no. 5, pp. 718-731, 2012.

C.-Y. Cheng and L.-W. Huang, “Minimizing total earliness and tardiness
through unrelated parallel machine scheduling using distributed release
time control,” J. Manuf. Syst., vol. 42, pp. 1-10, Jan. 2017.

A. Janiak, W. Janiak, M. Y. Kovalyov, E. Kozan, and E. Pesch, “Parallel
machine scheduling and common due window assignment with job inde-
pendent earliness and tardiness costs,” Inf. Sci., vol. 224, pp. 109-117,
Mar. 2013.

F. Ahmadizar and S. Farhadi, ““Single-machine batch delivery scheduling
with job release dates, due windows and earliness, tardiness, holding and
delivery costs,” Comput. Oper. Res., vol. 53, pp. 194-205, Jan. 2015.

M. Ji, W. Y. Zhang, L. J. Liao, T. C. E. Cheng, and Y. Y. Tan, ‘“Multitasking
parallel-machine scheduling with machine-dependent slack due-window
assignment,” Int. J. Prod. Res., vol. 57, no. 6, pp. 1667-1684, 2019.

W. Li, Z. Zhang, H. Liu, and J. Yuan, “Online scheduling of equal-length
jobs with incompatible families on multiple batch machines to maximize
the weighted number of early jobs,” Inf. Process. Lett., vol. 112, no. 12,
pp. 503-508, 2012.

B. Alidaee and D. Rosa, “Scheduling parallel machines to minimize total
weighted and unweighted tardiness,” Comput. Oper. Res., vol. 24, no. 8,
pp. 775788, 1997.

I. A. Chaudhry and P. R. Drake, “Minimizing total tardiness for the
machine scheduling and worker assignment problems in identical paral-
lel machines using genetic algorithms,” Adv. Manuf. Technol., vol. 42,
nos. 5-6, pp. 581-594, 2009.

S. A. Kravchenko and F. Werner, “Minimizing total tardiness on parallel
machines with preemptions,” J. Scheduling, vol. 15, no. 2, pp. 193-200,
2012.

F. Yu, P. Wen, and S. Yi, “A multi-agent scheduling problem for two iden-
tical parallel machines to minimize total tardiness time and makespan,”
Adv. Mech. Eng., vol. 10, no. 2, 2018, Art. no. 1687814018756103.

C.-H. Lee, ““A dispatching rule and a random iterated greedy metaheuristic
for identical parallel machine scheduling to minimize total tardiness,” Int.
J. Prod. Res., vol. 56, no. 6, pp. 2292-2308, 2018.

I. A. Chaudhry and I. A. Q. Elbadawi, “Minimisation of total tardiness for
identical parallel machine scheduling using genetic algorithm,” Sadhana,
vol. 42, no. 1, pp. 11-21, 2017.

G. Gong, Q. Deng, X. Gong, W. Liu, and Q. Ren, “A new double
flexible job-shop scheduling problem integrating processing time, green
production, and human factor indicators,” J. Cleaner Prod., vol. 174,
pp. 560-576, Feb. 2018.

G. H. Wan and B. P.-C. Yen, “Tabu search for single machine scheduling
with distinct due windows and weighted earliness/tardiness penalties,”
Eur. J. Oper. Res., vol. 142, no. 2, pp. 271-281, 2002.

Y. Wu and D. W. Wang, “Optimal single-machine scheduling about a
common due window with earliness/tardiness and additional penalties,”
Int. J. Syst. Sci., vol. 30, no. 12, pp. 1279-1284, 1999.

H. G. Kahlbacher and T. C. E. Cheng, “Parallel machine scheduling to
minimize costs for earliness and number of tardy jobs,” Discrete Appl.
Math., vol. 47, no. 2, pp. 139-164, 1993.

L.Zhang, Y. Zhang, and Q. Bai, “Two-stage medical supply chain schedul-
ing with an assignable common due window and shelf life,” J. Combinat.
Optim., vol. 37, no. 1, pp. 319-329, 2019.

C.-L. Chen and C.-L. Chen, “A bottleneck-based heuristic for minimizing
makespan in a flexible flow line with unrelated parallel machines,” Com-
put. Oper. Res., vol. 36, no. 11, pp. 3073-3081, 2009.

K. Zhao, X. Lu, and M. Gu, “A new approximation algorithm for multi-
agent scheduling to minimize makespan on two machines,” J. Scheduling,
vol. 19, no. 1, pp. 21-31, 2016.

M. Gu, J. Gu, and X. Lu, “An algorithm for multi-agent scheduling to
minimize the makespan on m parallel machines,” J. Scheduling, vol. 21,
no. 5, pp. 483-492, 2018.

S. Wang, X. Wang, J. Yu, S. Ma, and M. Liu, “Bi-objective identical
parallel machine scheduling to minimize total energy consumption and
makespan,” J. Clean. Prod., vol. 193, pp. 424-440, Aug. 2018.

S.-S. Li, R.-X. Chen, Q. Feng, and C.-W. Jiao, ‘‘Parallel-machine schedul-
ing with job-dependent cumulative deterioration effect and rejection,”
J. Combinat. Optim., vol. 38, no. 3, pp. 957-971, 2019.

1. Kucukkoc, “MILP models to minimise makespan in additive manu-
facturing machine scheduling problems,” Comput. Oper. Res., vol. 105,
pp. 58-67, May 2019.

VOLUME 7, 2019

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

[74]

(751

[76]

(77]

(78]

[79]

[80]

(81]

(82]

(83]

S. A. Mansouri, E. Aktas, and U. Besikei, “Green scheduling of a two-
machine flowshop: Trade-off between makespan and energy consump-
tion,” Eur. J. Oper. Res., vol. 248, no. 3, pp. 772-788, 2016.

S.-W. Lin and K.-C. Ying, “Uniform parallel-machine scheduling for
minimizing total resource consumption with a bounded makespan,” IEEE
Access, vol. 5, pp. 15791-15799, 2017.

K.LiandS.-L. Yang, “‘Non-identical parallel-machine scheduling research
with minimizing total weighted completion times: Models, relaxations and
algorithms,” Appl. Math. Model., vol. 33, no. 4, pp. 2145-2158, Apr. 2009.
R. Mellouli, C. Sadfi, C. Chu, and I. Kacem, “Identical parallel-machine
scheduling under availability constraints to minimize the sum of comple-
tion times,” Eur. J. Oper. Res., vol. 197, no. 3, pp. 1150-1165, 2009.

S. Rubaiee and M. B. Yildirim, “An energy-aware multiobjective ant
colony algorithm to minimize total completion time and energy cost on
a single-machine preemptive scheduling,” Comput. Ind. Eng., vol. 127,
pp. 240-252, Jan. 2019.

K. Li, X. Zhang, J. Y.-T. Leung, and S. L. Yang, “Parallel machine
scheduling problems in green manufacturing industry,” J. Manuf. Syst.,
vol. 38, pp. 98-106, Jan. 2016.

J.-Y. Wang and J.-S. Chen, “A data partition method for MEMS-based

storage devices in a distributed computing environment,” Int. J. Softw. Eng.

Knowl. Eng., vol. 23, no. 1, pp. 101-115, 2013.

H. Zhao, H. Ma, G. Han, and L. Zhao, “A ptas for common due window
scheduling with window penalty on identical machines,” in Proc. Int. Conf.
Comput. Appl. Syst. Modeling, Shanxi, China, Oct. 2010, pp. 648—652.
A. Janiak, W. Janiak, M. Y. Kovalyov, and F. Werner, ““Soft due window
assignment and scheduling of unit-time jobs on parallel machines,” 4OR-A
Quart. J. Oper. Res., vol. 10, no. 4, pp. 347-360, 2012.

A. Janiak, W. Janiak, and M. Y. Kovalyov, “Due window assignment and
scheduling on parallel machines: A FPTAS for a bottleneck criterion,”
Bull. Polish Acad. Sci.-Tech. Sci., vol. 62, no. 4, pp. 805-808, 2014.
H.-B. Shi and J.-B. Wang, “Research on common due window assignment
flowshop scheduling with learning effect and resource allocation,” Eng.
Optim., to be published.

J. Li, D. Xu, and H. Li, “Single machine due window assignment schedul-
ing problem with precedence constraints and fuzzy processing times,”
J. Intell. Fuzzy Syst., vol. 34, no. 6, pp. 4301-4314, 2018.

B. Mor, “Minmax common due-window assignment and scheduling on a
single machine with two competing agents,” J. Oper. Res. Soc., vol. 69,
no. 4, pp. 589-602, 2018.

L. Liu, J.-J. Wang, F. Liu, and M. Liu, “Single machine due window
assignment and resource allocation scheduling problems with learning
and general positional effects,” J. Manuf. Syst., vol. 43, no. 1, pp. 1-14,

Apr. 2017.
R. C. T. Lee, S. S. Tseng, R. C. Chang, and Y. T. Tsai, Introduction to

the Design & Analysis of Algorithms. New York, NY, USA: McGraw-Hill,
2005.

M. Yousefi, M. Yousefi, and A. N. Darus, “A modified imperialist compet-
itive algorithm for constrained optimization of plate-fin heat exchangers,”
J. Power Energy, vol. 226, no. 8, pp. 1050-1059, 2012.

S. Talatahari, B. F. Azar, R. Sheikholeslami, and A. H. Gandomi, ““Imperi-
alist competitive algorithm combined with chaos for global optimization,”
Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 3, pp. 1312-1319,
2012.

C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3,
pp- 268-308, Sep. 2003.

JEN-YA WANG received the Ph.D. degree in
computer science and engineering from National
Chung Hsing University, Taiwan, in 2009. He is
currently a Professor with the Department of
Computer Science and Information Management,
Hungkuang University, Taiwan. His research inter-
ests include optimization algorithm, database sys-
tems, patent search, medical image, and artificial
intelligence.

172151

