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ABSTRACT Given a directed acyclic graph (DAG), a k-hop reachability query u
?k
−→ v is used to answer

whether there exists a path from u to v with length ≤ k . Answering k-hop reachability queries is a
fundamental graph operation and has been extensively studied during the past years. Considering that existing
approaches still suffer from inefficiency in practice when processing large graphs, we propose a novel
labeling scheme, namelyHT, to accelerate k-hop reachability queries answering.HT uses a constrained 2hop
distance label to maintain the length of shortest paths between a set of hop nodes and other nodes, and for the
remaining reachability information, HT uses a novel topological level to accelerate graph traversal. Further,
we propose to enhance HT by two optimization techniques. The experimental results show that compared
with the state-of-the-art approaches, HT works best for most graphs when answering k-hop reachability
queries with small index size and reasonable index construction time.

INDEX TERMS Graph data management, reachability queries processing, k-hop reachability.

I. INTRODUCTION
Given a directed graph, a reachability query u?  v asks
whether there exists a path from u to v. Answering reachabil-
ity queries on directed graph is a basic operator for a variety
of databases, such as XML and RDF, and network appli-
cations, such as social and biological networks, which has
been extensively studied during the past decades [1]–[14].
In practice, besides asking whether u can reach v, users may
want to know the strength of the influence of one node on
another, which is usually measured as the length of the path
connecting the two nodes. For example, in awireless network,
the information may get lost after a few hops. For another
example, in social networks, users may be interested to know
whether two persons are connectedwithin a few hops. In these
situations, the query becomes a k-hop reachability query,
which asks whether there exists a path from u to v with

length ≤ k, denoted as u
?k
−→ v, and traditional reachability

query can be seen as a special case of k-hop query where k =
∞. Further, there aremany applicationswhere the data graphs
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are DAGs, instead of directed graphs. For example, the paper
citation relationship in DBLP1 can be naturally modeled as
a DAG. For another example, the Gene Ontology of the
UniProt project2 is also aDAG [6]. Although researchers have
proposed various approaches [15]–[17] for answering k-hop
reachability queries on directed graphs, they are not tailored
for DAGs, and still suffer from inefficiency when the under-
lying data graphs are DAGs. With the continuing increase
of the graph size, it is practically challenging to efficiently
answer k-hop reachability queries online with reasonable
offline index construction time and index size, especially
for applications where k-hop reachability queries answer-
ing is intensively involved [18], [19] with the underlying
DAGs.

To answer a k-hop reachability query, one way is pre-
computing the shortest distance between each pair of nodes,
such that we can answer it in O(1) time with a single look-
up. Another option is performing graph traversal, such as
depth-first search (DFS) or breadth-first search (BFS) to
get the answer. The former suffers from unaffordable index

1https://dblp.uni-trier.de/
2https://www.uniprot.org/
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size and index construction time, and cannot scale to large
graphs, while the latter suffers from the worst query per-
formance. During the past years, researchers made trade-
off between the above two extremes and proposed various
approaches.

Generally speaking, the state-of-the-art approaches can
be classified into two categories: Label-Only [15] and
Label+G [16], [17], [20]. By Label-Only, it means that based
on the index, the shortest distance between two nodes can be
got by comparing their labels. By Label+G, it means that
the index covers only a part of shortest distance informa-
tion, and we need to perform graph traversal, if we cannot
get the answer directly from the index. Even though both
kinds of approaches are much more efficient than the naive
approaches, they still suffer from inefficiency in practice
for large graphs. On one hand, the Label-Only approaches
need to maintain all the shortest distance information, thus
suffer from large index for both directed graphs and DAGs.
And they are inefficient when the given k-hop reachability

query u
?k
−→ v is unreachable, due to that they need to

scan the whole node label to get the result. On the other
hand, for Label+G approaches, they have different perfor-
mance. kReach [16], [17] aims at processing k-hop reachabil-
ity queries on general directed graphs. It constructs a k step
index to answer k-hop reachability queries and suffers from
large index if k is large. As a comparison, BFSI-B [20] is the
first and unique approach until now that targets processing k-
hop reachability queries on DAGs. It uses topological orders
to quickly prune unreachable queries, and uses interval of a
BFS spanning tree to facilitate reachable queries answering.
It was shown in [20] that when processing k-hop reachability
queries onDAGs, BFSI-B performs better than kReach. How-
ever, since a spanning tree interval covers only a small part of
reachable nodes, its performance degenerates quickly when
the number of satisfied queries increases.

Considering that answering k-hop reachability queries on
DAGs can find its own applications in practice and existing
approaches cannot work well, in this paper, we focus on
efficiently answering k-hop reachability queries on DAGs.
We propose a novel Label+G labeling scheme, namely HT,
that utilizes the properties of DAGs to efficiently answer
k-hop reachability queries with reasonable index construc-
tion time and index size. The basic idea is to further increase
the coverage of node label by efficiently constructing a
compact index that captures shortest distance between most
nodes, such that many k-hop reachability queries can be
answered without graph traversal. For the remaining queries,
we answer them by performing graph traversal, during
which HT label is used to largely reduce the search space.
Compared with existing Label-Only approaches, we do not
need to maintain all shortest distance information, therefore
HT achieves smaller index size. Compared with existing
Label+G approaches, our index covers much more shortest
distance information, therefore HT achieves better query per-
formance. Our contributions are as follows.

1) We first propose a new labeling scheme HT, which
consists of two kinds of labels. The first is partial 2hop
distance label, which takes a few nodes as hop nodes to
construct 2hop distance label, in order to capture a cer-
tain percent of reachability information and the shortest
distance betweenmost nodes and these hop nodes, such
that to reduce the search space of k-hop reachability
queries answering. The second is two complementary
topological levels to help us determine whether the
given query is unreachable.

2) We propose several optimization techniques, based on
which we propose a k-hop reachability queries process-
ing algorithm to efficiently answer k-hop reachability
queries.

3) We conduct rich experiment on real datasets. The
experimental results show that our approach works best
onmost datasets for queries answeringwith small index
size and reasonable index construction time.

II. BACKGROUND AND RELATED WORK
A. PRELIMINARIES
Given a directed acyclic graph (DAG)G = (V ,E), whereV is
the set of nodes and E the set of edges. Similar as [10], we use
inG(u) = {v|(v, u) ∈ E} to denote the set of in-neighbors of
u in G, and outG(u) = {v|(u, v) ∈ E} the set of out-neighbors
of u. We use in∗G(u) to denote the set of nodes in G that can
reach u where u 6∈ in∗G(u), and out

∗
G(u) the set of nodes in G

that u can reach where u 6∈ out∗G(u).
A topological sorting on G is a mapping t : V → X , such

that for ∀(u, v) ∈ E , we have t(u) < t(v) [10]. Here, t(u) is the
topological order of u in X . A topological sorting on G can
be done in linear time O(|V | + |E|) [21] to get topological
order.

We use d(u, v) to denote the shortest distance between u
and v, i.e., length of the shortest path from u to v.
Problem Statement: Given a DAG G and a k-hop reach-

ability query u
?k
−→ v, return TRUE if there exists a simple

directed path from u to vwith nomore than k edges, otherwise
FALSE.

B. RELATED WORK
The state-of-the-art approaches on k-hop reachability queries
answering can be classified into two categories according to
the coverage of shortest distance: Label-Only [8], [15] and
Label+G [16], [17], [20], as discussed in below.
Label-Only Approaches: The main idea of these

approaches is by constructing a certain index, such that a
given k-hop reachability query can be answered using just
index without graph traversal.

Following this idea, a naive approach is directly maintain-
ing the shortest distance between all pairs of nodes, such that
a given k-hop reachability query can be answered by a single
look-up. Although it is simple and efficient, it suffers from
huge index with space complexity O(|V |2) and cannot scaled
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to large graphs. Considering this problem, [15] proposed to
construct PLL index, which is an efficient distance index
based on 2hop [22], where each node u is associated with
two distance labels, in-label Lin(u) and out-label Lout (u).
Lin(u)(Lout (u)) consists of a set of tuples, where each tuple
[v, d(v, u)]([v, d(u, v)]) consists of a node v that can reach (be
reached by) u and the shortest distance from v to u (u to v).
Given the 2hop distance label, the computation of shortest
distance between u and v is transformed into computation of
the smallest summation of the shortest distance from u and v
to a hop node that connects them, as shown by Equation 1,
where Cin(v) = {u|[u, d(u, v)] ∈ Lin(v))} and Cout (v) =
{u|[u, d(v, u)] ∈ Lout (v))}.

d(u, v) = min
w∈Cout (u)

⋂
Cin(v)

(d(u,w)+ d(w, v)) (1)

Based on the shortest distance d(u, v), a k-hop reachability

query u
?k
−→ v returns TRUE if d(u, v) ≤ k , otherwise returns

FALSE indicating that there does not exist a path from u to v
with length ≤ k .

Even though PLL can answer k-hop reachability query
without graph traversal, it suffers inefficiency from two
aspects: (1) large index size and index construction time, due
to maintaining the length of all the shortest path information,
(2) long query time for unreachable queries due to scanning
the whole label to find that there does not exist a path con-
necting the two nodes of a given k-hop reachability query.
Label+G Approaches: Considering that existing Label-

Only approaches suffer from large index size and index con-
struction time, researchers proposed to make improvements
by maintaining partial distance index to make tradeoff. The
basic idea is: constructing a compact index with linear or
sub-linear time, based on which we can answer many k-hop
reachability queries in constant time, and for queries that need
to be answered during graph traversal, we use the index to
reduce the search space. According to their pruning power,
there are three kinds of approaches as discussed below.

The first kind of approaches [1]–[11] are the ones to answer
traditional reachability queries. We can answer unreachable
queries by these approaches. For reachable queries, however,
we need to further check whether they satisfy the require-
ment of k step by graph traversal. Therefore, although this
kind of approaches has comparatively small index and index
construction time, when the number of reachable queries
increases, their performance degrade significantly.

The second kind of approaches [16], [17] construct a partial
index based on set cover. The basic idea is to first construct a
node cover, then compute the transitive closure of these nodes
and maintain the shortest distance value between each pair of
nodes. Based on this index, a k-hop reachability query can
be answered efficiently if both or either one of the two query
nodes are in the node sets. The main problem of this approach
lies in that the index is constrained by k’s value, which lacks
scalability in practice. When the k in the given query is larger
than the k in the index, it may need to afford expensive graph
traversal.

The third kind of approach [20] uses two topological orders
proposed in [4] to quickly prune many unreachable queries.
For other queries, the authors proposed a BFS based spanning
tree, based on which each node is assigned a level and an
interval. Here, interval is used to check whether two nodes
have ancestor-descendant relationship in the spanning tree,
while level is used to check whether they have a distance
smaller than k . The problem of this approach is that the
coverage of interval label is small, which covers only a small
part of reachable queries, therefore the query performance
degenerates when the number of satisfied queries increases.

In summary, Label-Only approaches do not need to per-
form expensive graph traversal, while they suffer from large
index and index construction time, and their query perfor-
mance degenerates when the number of unreachable queries
increases. On the contrary, Label+G approaches, such as
BFSI-B [20], can construct index quickly with smaller index
size, while for query time, their performance degenerates
when the number of reachable queries increases.

III. THE HT LABELING SCHEME
Considering that existing approaches cannot perform well
for both reachable and unreachable queries, we propose a
new Label+G labeling scheme, namely HT, which aims at
efficiently answering k-hop reachability queries with smaller
index size and index construction time. Here, HT means that
it assigns each node two kinds of labels: (1) a partial 2hop
distance label, and (2) two topological levels. We discuss the
details in below.

TABLE 1. The complete 2hop distance label of G in Figure 1(a).

A. PARTIAL 2HOP DISTANCE LABEL
To give an intuitive comparison before introducing our par-
tial 2hop distance label, we begin by giving the complete
2hop distance label in Table 1 for G in Figure 1(a). The
complete 2hop distance label is constructed as follows: (1)
It first sorts all nodes based on their rank values, where the
rank value of each node u can be measured by either one
of its degree, betweenness centrality or closeness centrality.
Here, we use (|inG(u)| + 1)× (|outG(u)| + 1) to rank nodes,
which was shown performed well in practice [15]. (2) In each
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FIGURE 1. Illustration of a sample DAG (a), the reduced DAG G′ (b) and the partial 2hop distance label (c), where in G′ , the two integers
beside each node u is u’s topological level and its sinking topological level.

iteration, it picks the node u with the highest rank value, and
performs forward BFS and backward BFS to compute the
shortest distance between u and nodes being visited. If the
distance between u and each visited node v is less than the
distance computed by 2hop distance label constructed so far,
we add an entry [u, d(u, v)] to v’s in-label, if v is visited when
performing forward BFS; otherwise we add [u, d(v, u)] to v’s
out-label.

It was shown in [14] that for 2hop distance label, nodes
with large degree have smaller label size but catch most
reachability information, and the majority part of label size
is contributed by nodes with small degree.
Example 1: If we construct 2hop distance label using

e and k , the result is shown in Figure 1(c). By compar-
ing Table 1 and Figure 1(c), we know that using 2 nodes,
we catch 79% reachable information, but the label size is
only 40% to the complete 2hop distance label. We further
show the reachability ratio of k hop nodes on four real graphs
in Figure 2, from which we know that even though reachabil-
ity ratio various for different graphs, for each graph, they will
change little when k ≥ 8. �

FIGURE 2. Coverage of reachability queries for k hop nodes.

Based on the above observation, we propose to construct
a partial 2hop distance label, which maintains most reacha-
bility relationship between nodes with small label size. Here,
‘‘partial’’ means that we construct 2hop distance label using

a part of, rather than all nodes. Let reachability ratio be the
number of pairs of reachable nodes that can be answered
using partial 2hop label over all the reachable pairs of the
given DAG, the number of nodes used for partial 2hop
distance label construction is determined by λ, which is a
threshold to control the ratio of reachability information. That
is, we will construct the 2hop label until the reachability
ratio ≥ λ.
Example 2: If we set λ = 70%, then for G in Figure 1(a),

the partial 2hop distance label is shown in Figure 1(c), where
two nodes, i.e., k and e, are used to construct 2hop distance
label. �

Hereafter, we call nodes that are used to construct 2hop
distance label as the hop nodes. We have that after con-
structing the partial 2hop distance label, the hop nodes can
be removed to simplify the input DAG, since the shortest
distance between any node and hop node is maintained by
the partial 2hop distance label. For example, after deleting k
and e from Figure 1(a), we get the reduced graph G′ shown
in Figure 1(b).
Based on the partial 2hop distance label, a k-hop reachabil-

ity query can be answered in two steps: (1) we get a distance
from the partial 2hop distance label, if it is less than k , then
we return the answer directly, otherwise (2) we perform graph
traversal on the largely simplified graph to quickly get the
final answer.
Example 3: Given a k-hop reachability query f

?2
−→ n,

using the partial 2hop distance label in Figure 1(c), we know
that the shortest distance from f and n through k is 2, thus
we directly return TRUE for the query. If the given query

is f
?1
−→ n, then by the partial 2hop distance label, we still

can not say that there does not exist a path from f to n with
one step. We need to perform graph traversal from f in G′.
Here, for G′ in Figure 1(b), f does not have out-neighbors,
which means that we do not need to perform graph traversal
anymore. Therefore, we know immediately that the result is
FALSE. �
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For graph traversal operation, we further propose a novel
topological level. we discuss the details in below.

B. SINKING TOPOLOGICAL LEVEL
A topological level for each node u is the length of the longest
path from all nodes without in-neighbors. Given the reduced
DAG G′, we assign each node u a topological level l(u),
as shown by Equation 2, then we know that u cannot reach v,
if l(u) ≥ l(v). In this way, we can quickly prune many
unreachable queries.

l(u) =

{
1, inG(u) = ∅
max{l(v)+ 1|v ∈ inG(u)}, otherwise

(2)

Example 4: For G′ in Figure 1(b), the topological level of
each node u is shown by the first integer beside u. For k-hop

reachability query b
?2
−→ c, we know that b cannot reach c

due to l(b) = 2 = l(c), thus we can directly return FALSE.

However, if the k-hop reachability query is l
?2
−→ m, we cannot

tell that the result is FALSE by topological level due to that
l(l) = 3 < l(m) = 5. �

For this problem, we propose to further enhance the prun-
ing power of topological level by assigning each node a
sinking topological level, denoted by Equation 3.

ls(u) =

{
l(u), outG(u) = ∅
min{ls(v)− 1|v ∈ outG(u)}, otherwise

(3)

The second topological level is constructed based on the
first one. Intuitively, it is used to make the difference of
topological levels between two nodes as small as possible.
Consider theDAG in Figure 3, where the first (second) integer
on the right of f and g is (sinking) topological level. It can be
seen that Equation 2 assigns each node a topological level
as small as possible, and Equation 3 makes the topological
level as large as possible based on Equation 2. We have the
following result.

FIGURE 3. Illustration of the sinking topological level.

Theorem 1: Given two nodes u and v, if u can reach v, then
we know that l(v)− l(u) ≥ l(v)− ls(u) ≥ d(u, v).

Proof 1:Wefirst prove l(v)−l(u) ≥ l(v)−ls(u). Assume
that l(v)− l(u) < l(v)− ls(u) holds, we know that ls(u) < l(u)
holds. However, according to Equation 2, ∀v ∈ outG(u), l(v)−
l(u) ≥ 1. Therefore, according to Equation 3, ls(u)−l(u) ≥ 0.
We then prove l(v) − ls(u) ≥ d(u, v). First, even though

ls(u) ≥ l(u), if u can reach v, the length of the longest path
from u to v is still bounded by ls(v) − l(u). As d(u, v) is the
length of the shortest path from u to v, we know that l(v) −
ls(u) ≥ d(u, v) holds. �

According to Theorem 1, we can use topological level and
its sinking topological level to quickly prune more unreach-
able queries.

Example 5: For k-hop reachability query l
?2
−→ m on G′

in Figure 1(b), by sinking topological level, we can immedi-
ately tell that l cannot reachm, due to that ls(l) = 5 = l(m).�
It is worth noting that similar to Equation 2, we can assign

each node a topological level following the reversed direction
of edges. For example, for the DAG in Figure 3, following
the reversed direction of edges, we assign the topological
level of g and f as 1 and 4, respectively. Even though, for

k-hop reachability query f
?2
−→ g, we cannot tell the result by

reversed topological level due to that the difference between
their topological levels is 3, which is greater than 2. However,
using sinking topological level, we can return the result
immediately due to that l(g)− ls(f ) = 4− 2 = 2.

IV. INDEX CONSTRUCTION
As shown by Algorithm 1, we construct the index in two
steps: we first generate the 2hop partial distance label by
calling Algorithm 2, then generate the two topological levels
by calling Algorithm 3.

Algorithm 1 genIndex(G = (V ,E), λ)
1 generate 2hop partial distance label w.r.t. λ by calling
Algorithm 2.

2 generate topological level label by calling Algorithm 3.

A. PARTIAL 2HOP DISTANCE LABEL CONSTRUCTION
Similar to [14], [15], we sort all nodes by (|in∗G(u)| + 1) ×
(|out∗G(u)| + 1). Then in each iteration, we pick a node u with
the highest rank value as the hop node, and perform forward
and backwardBFS from u to add the distance entry to the label
of nodes being visited. During this process, we terminate the
graph traversal in advance based on the following Theorems.
Theorem 2: When processing u during 2hop distance label

construction, if the visited node v is a hop node processed
before u, then we do not need to visit other nodes from v.

Proof 2: As shown by Figure 4, assume that hop node
v is processed before u, and by the 2hop distance label
constructed by v, d(x, v) = d1 and d(v, u) = d2. Therefore,
we know that the length of the shortest path from x to u
through v is d1 + d2.

When processing u, we need to perform backward BFS
from u. Obviously, when encountering v, we know that the
shortest distance from u to v is still d2. Therefore, even if we
do not stop graph traversal in v, the shortest distance from x to

FIGURE 4. Illustration of the stop conditions for 2hop distance label
construction.
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Algorithm 2 genPart2Hoplabel(G = (V ,E), λ)
1 compute the size of transitive closure T of G by [23]
2 N ← 0 /*the number of reachable pairs got*/
3 sort all nodes by (|in∗G(u)| + 1) × (|out∗G(u)| + 1) in
decreasing order

4 for each (unvisited node u ∈ V ) do
5 cf = cb = 1 /*cf and cb are the number of visited
nodes of u*/

6 add [u, 0] to Lin(u) and Lout (u)
7 push all [v, 1] into Q, where v ∈ outG(u)
8 while (¬ isEmpty(Q)) do
9 [v, d]← removeHead(Q)

10 if (d(u, v) > d) then /*d(u, v) is computed by
Equation 1*/

11 add [u, d] to Lin(v)
12 cf ← cf + 1
13 for each (unvisited w ∈ outG(v)) do
14 addTail(Q, [w, d + 1])
15 endfor
16 endif
17 endwhile
18 push all [v, 1] into Q, where v ∈ inG(u)
19 while (¬ isEmpty(Q)) do
20 [v, d]← removeHead(Q)
21 if (d(u, v) > d) then /*d(u, v) is computed by

Equation 1*/
22 add [u, d] to Lout (v)
23 cb← cb + 1
24 for each (unvisited w ∈ inG(v)) do
25 addTail(Q, [w, d + 1])
26 endfor
27 endif
28 endwhile
29 N ← N + cf × cb − 1
30 if ( NT > λ) then return
31 endfor

u through v is still d1 + d2 based on 2hop distance label of u.
Hence, we can safely terminate the graph traversal in v. �
Theorem 3: When processing u during 2hop distance label

construction, for any node w being visited, if the length of the
shortest path between u and w is greater than the length of the
path computed by 2hop distance label constructed so far, then
we do not need to visit other nodes from w.

Proof 3: As shown by Figure 4, assume that hop node v
is processed before u, and by the 2hop distance label con-
structed by v, d(w, v) = d3 and d(v, u) = d2. When
performing backward BFS from u, and assume that the length
of the shortest path from w to u is d4 satisfying that d4 >
d3 + d2, then we know that we do not need to add u to w’s
out-label. Because in this case, we know that the path from
w to u through v is shorter than d4. And for every node that
can reach w, we do not visit them either when performing
backward BFS from u. Similarly, when performing forward
BFS from u, we also have this conclusion. �

Algorithm 3 genTopolevel(G′ = (V ′,E ′))
1 for all nodes u, l(u)← 0, ls(u)←∞
2 perform a topological sorting to get a topological order
3 for each (u processed in ascending topological order) do
4 if (inG(u) = ∅) then l(u) = 1
5 else
6 for each (v ∈ outG(u)) do
7 l(v)← max{l(u)+ 1, l(v)}
8 endfor
9 endif
10 endfor
11 for each (u processed in descending topological order)

do
12 if (outG(u) = ∅) then ls(u) = l(u)
13 else
14 for each (v ∈ inG(u)) do
15 ls(v)← min{ls(u)− 1, ls(v)}
16 endfor
17 endif
18 endfor

Based on Theorems 2 and 3, we can significantly reduce
the 2hop distance label size.
Example 6: For G in Figure 1(a), the first processed hop

node is e. After processing it, we process the second hop
node k . When processing k by performing backward BFS,
according to Theorem 2, we can terminate the expansion
when encountering e. When visiting d by performing back-
ward BFS from k , according to Theorem 3, we can termi-
nate the expansion on d , due to that by the 2hop distance
label of e, we find the distance of the path from d to k
through e is not larger than the distance from d to k by
backward BFS. �
The Algorithm:We use Algorithm 2 to compute the partial

2hop distance label, which works in three steps: (1) In
line 1, it computes the size of transitive closure T of G
by the approach proposed in [23]. (2) In line 3, it sorts all
nodes based on degree to get a node processing order. (3)
In lines 4-31, for each processed node u, it first performs
forward BFS in lines 7-17 to add u to in-label of its reachable
nodes. It then performs backward BFS in lines 18-28 to add u
to out-label of nodes that can reach u. Then, we compute
the number of covered reachable node pairs in line 29, and
if we reach the required ratio λ, we terminate algorithm 2
in line 30.
Example 7: Consider constructing partial 2hop distance

label for G in Figure 1(a). Assume that λ = 0.7. By line 1,
we know that T = 89. The first processed node is e. After
processing it, cf = 8 and cb = 5, then we know N

T =
(5 × 8 − 1)/89 = 44% < λ. The second processed node is
k . After processing it, we know that cf = 4 and cb = 8, than
we know that N = 39+ 4× 8− 1 = 70. Then, we terminate
the partial 2hop distance label construction, due to that NT =
70/89 = 79% ≥ λ = 0.7. The partial 2hop distance label of
G in Figure 1(a) w.r.t. λ = 0.7 is shown in Figure 1(c). �
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It is worth noting that in line 10 of Algorithm 2, we need
to compute d(u, v) according to Equation 1, which is a set
intersection operation and requires that both Lout (u) and
Lin(v) are sorted by node ID. To accelerate index construction
and reduce the index size, we use the following techniques to
make acceleration, as shown in below.
R1 (Avoiding the Sorting Operations): We notice that the

result of the set intersection between Lout (u) and Lin(v) is
the length of the shortest path from u to v through a hop
node. We do not need to know exactly which hop node it is.
Therefore, we use the following heuristics to avoid the sorting
operation when a node is added into Lout (u) and Lin(v).
Rule-1: For each node u and any entry [v, d] in its in-label

and out-label, we only need to replace v’s ID with v’s pro-
cessing order.
Example 8: In Figure 1(c), we can replace e by 1 for all

entries denoting that e is the first processed node. Similarly,
we can replace k by 2 denoting that k is the second processed
node. In this way, when any entry needs to be added into an
in-label or out-label, we do not need to do sorting operation,
instead, we directly add this entry at the end of the label. �
R2 (Reducing the Size of Index): On one hand, the number

of processed hop nodes is usually very small to construct 2hop
distance label. On the other hand, for a real graph, the distance
is also very small. Therefore, we do not need to maintain an
entry by two integers. We can reduce the index size using the
following heuristics.
Rule-2: Each entry [u, d] of in-label and out-label can

be represented using one integer. The higher half is used to
represent u’s processing order, and the lower half is used to
represent d .

Based on Rule-2, we use one integer to maintain each
entry [u, d], and the index size can be reduced into half of
its original size.
Analysis:We consider the time complexity of Algorithm 2.

The cost of line 1 is O(wavg×|E|), where wavg is the average
number of processed nodes for all nodes. The cost of line 3 is
O(|V | log |V |). For each node processed in lines 5-30 of Algo-
rithm 2, the cost isO((|V |+|E|)×L), where L is the length of
the longest node label. Therefore, given the constraints of λ,
the cost of lines 4-31 is O(c× (|V |+ |E|)×L), where c is the
number of processed hop nodes. Usually in practice, c is very
small compared with |V |. Therefore, the time complexity of
Algorithm 2 isO(wavg×|E |+|V | log |V |+c×(|V |+|E|)×L).

B. TOPOLOGICAL LEVEL LABEL CONSTRUCTION
After constructing partial 2hop distance label, we remove all
hop nodes to simplify the given DAG. For example, for G
in Figure 1(a), if we take e and k as hop nodes, and construct
the partial 2hop distance label shown in Figure 1(c), we can
safely remove them and get the reduce graph G′ shown
in Figure 1(b).
Based on the reduced graph, we compute topological

levels using Algorithm 3. In line 2, we perform topological
sorting to get a topological order. In lines 3-10, we visit
nodes in ascending topological order and assign each node

a topological level as Equation 2. In line 11-18, we visit
nodes in descending topological order to assign each node the
sinking topological level as Equation 3. For example, for G′

in Figure 1(b), after performing Algorithm 3, the topological
level and the sinking topological level for each node u are
shown as the second pair of integers beside u.

We consider the time complexity of Algorithm 3. The cost
of line 1 is O(|V | + |E|). The cost of performing topological
sorting in line 2 is O(|V | + |E|) [21]. In lines 6-8, we visit
all out-neighbors of u once, thus the cost of lines 3-10 is
O(|V |+|E|). similarly, the cost of lines 11-18 isO(|V |+|E|).
Therefore, the time complexity of Algorithm 3 isO(|V |+|E|).
Together with Algorithm 2, the time complexity of Algo-
rithm 1 for index construction isO(wavg×|E |+|V | log |V |+
c× (|V | + |E |)× L), and the space complexity is O(L|V |).
We show the comparison of time and space complexi-

ties with the state-of-the-art Label-Only approach PLL and
Label+G approach BFSI-B in Table 2. For time complexity,
as c and L are small in practice, our HT usually has a compa-
rable performance with BFSI-B (shown by the experimental
results). As a comparison, PLL suffers from larger time
complexity due to processing all nodes to get the complete
2hop distance label. For space complexity, all the three algo-
rithms need to maintain all labels during index construction,
therefore the space complexities are O(L|V |), O(h|V |) and
O(L|V |) for PLL, BFSI-B and HT, respectively.

TABLE 2. The comparison of time and space complexities for index
construction, where L is the length of the longest node label of PLL, and
h is the number of integers for each node.

V. OPTIMIZATION
We make optimizations from two aspects: (1) enhancing the
pruning power of answering unreachable queries, and (2)
early stop condition. We discuss the details below.
O1 (Enhancing the Pruning Power for Unreachable

Queries): Existing work [4] showed that topological orders
can be used to quickly answer many unreachable queries.
We notice that after removing hop nodes, the graph can be
largely simplified, and the topological order can be more
effective to answer unreachable queries. Different with [4]
that uses two reversed topological orders to answer unreach-
able queries on the original DAGs, we use four topologi-
cal orders on the reduced DAGs. Here, the aim is not just
‘‘1+ 1 = 2’’, but ‘‘1 + 1 > 2’’. In our approach, the four
topological orders w.r.t. every node u are divided into two
pairs, the first one is the same as [4], denoted as t1(u)
and t2(u). The second pair of mutually reversed topological
orders are computed based on the reversed direction of edges,
denoted as t3(u) and t4(u). Given a reachability query asking
whether u can reach v, we can tell that u cannot reach v,
if ∃i ∈ [1, 4], such that ti(u) > ti(v). In this way, we can
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FIGURE 5. Illustration of the benefits of using the first optimization, where the two integers beside each node are its two topological orders.

answer more unreachable queries. We show the benefits by
the following example.
Example 9: Consider the DAG known as S03 graph in

Figure 5(a), it is not possible to use two topological orders
to avoid false positives [4]. For instance, we cannot tell that b
cannot reach e using the two topological orders in Figure 5(a)
due to that t1(b) = 2 < t1(e) = 5 ∧ t2(b) = 2 < t2(e) = 5.
However, if we take c as a hop node, and construct partial
2hop distance label of c, then c can be safely removed. After
that, we have the simplified DAG G2 shown in Figure 5(b).
Based onG2, we compute the two topological orders for each
node. It is easy to verify that now we can tell that e cannot
reach b, due to that t1(b) = 3 > t1(e) = 2.
Further, it was shown in [10], [11] that if the given DAG

is a tree where the root node has no in-neighbors, then
two topological orders can answer all unreachable queries,
such as the DAG G3 in Figure 5(c). However, if the root
node of the tree has no out-neighbors, such as the DAG
G4 in Figure 5(d), we cannot guarantee that all unreachable
queries can be answered using two topological orders. For
instance, we cannot tell that d cannot reach c in G4 due to
that t1(d) = 2 < t1(c) = 4 ∧ t2(d) = 2 < t2(c) = 4.
To this problem, we compute the second pair of topological
orders following the reversed direction of edges, i.e., we
process a tree with root node without out-neighbors same
as the tree with root node without in-neighbors, as shown
by G4 in Figure 5(e). Then, we can answer all unreachable
queries using the corresponding two topological orders. But
in this case, the testing of whether u cannot reach v becomes
whether ti(u) < ti(v). To make it consistent with the original
case, for each topological order x, we replace it by |V |+1−x,
then we have the two topological orders shown in Figure 5(f),
and now we can check whether u cannot reach v by testing
whether ∃i, such that ti(u) > ti(v). �
It is worth noting that this optimization does not change the

time and space complexities of index construction, due to that
the four topological orders can be got with time O(|V | + |E|)
and space O(|V |) [10], [11].

O2 (Early Stop Condition): When using Equation 1 to
compute the distance between u and v, we do not need to get
length of the shortest path, instead, we take k as a parameter,
and when finding that the length of a path is not larger than k ,
we immediately terminate the set intersection operation, and
return TRUE.
Example 10: Consider the k-hop reachability query a

?2
−→

l on G in Figure 1. If we use Equation 1, we need to first
compute the set intersection of Cout (a) ∩ Cin(l) = {e, k}
based on the partial 2hop distance label in Figure 1(c), then
compute the length of the shortest path based on hop nodes,
i.e., d(a, l) = min{d(a, e) + d(e, l), d(a, k) + d(k, l)} =
min{2, 3} = 2. Finally, we return TRUE due to that we find
a path with length ≤ 2.
As a comparison, by taking k = 2 as a parameter, when

we find the first result e of the set intersection, we directly
compute the length of the path from a to l through e. Since
the length of the path is 2, we immediately terminate the
set intersection operation and return TRUE without checking
other hop nodes. �

VI. QUERIES ANSWERING
Given a k-hop reachability query u

?k
−→ v, we use Algorithm 4

to return the answer. If u = v, we return TRUE in line 1.
In line 2, we compute the distance d(u, v) between u and v
using Equation 1 and the early stop condition, and return
TRUE if d(u, v) ≤ k . In line 3, if u or v is a hop node, then
we know that d(u, v) computed in line 2 is the length of the
shortest path from u to v, and return FALSE immediately.
In line 4, we use the topological level to prune unreachable
queries, and we use topological orders in line 5 to find
more unreachable queries. If we still cannot get the result
so far, in lines 6-14, we perform graph traversal recursively
to get the answer, where we always choose the node with
smaller degree to make expansion, as shown by line 6. It
is worth noting that based on the topological level we got,
it is easy to verify that the larger the difference of topological
levels between two nodes, the longer the distance between
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Algorithm 4 HT (u, v, k)
1 if (u = v) then return TRUE
2 if (d(u, v) ≤ k) then return TRUE /*by Equation 1*/
3 if (u or v is a hop node) then return FALSE
4 if (ls(u) ≥ l(v)) then return FALSE
5 if (t1(u) > t1(v)∨ t2(u) > t2(v)∨ t3(u) > t3(v)∨ t4(u) >
t4(v)) then return FALSE

6 if (|outG(u)| < |inG(u)|) then return
7 for each (w ∈ outG(u)) do
8 if (HT (w, v, k − 1)) then return TRUE
9 endfor

10 else
11 for each (w ∈ inG(v)) do
12 if (HT (u,w, k − 1)) then return TRUE
13 endfor
14 endif
15 return FALSE

TABLE 3. Statistics of real datasets.

two nodes on average. Therefore, when answering a k-hop
reachability query, if graph traversal is needed, we first visit
nodes that have the largest topological level.

VII. EXPERIMENT
In our experiment, we make comparison between our HT
and the state-of-the-art approaches BFSI-B and PLL. We
implemented all algorithms using C++ and compiled by
G++ 6.2.0. All experiments were run on a PC with Intel(R)
Core(TM) i5-3230M CPU@ 3.0 GHz CPU, 12 GB memory,
and Ubuntu 18.04.1 Linux OS.
Datasets: Table 3 shows the statistics of 26 real datasets.

Among these datasets, the first ten are small datasets (|V | ≤
100, 000) and are downloaded from the same web page.3

3https://code.google.com/archive/p/grail/downloads

The following 15 datasets are large ones (|V | > 100, 000).
We call a graph a sparse graph if d < 2, otherwise a
dense graph. These datasets are usually used in the recent
works [1]–[9]. For large datasets, email4 is an email network.
As indicated by [6], go3 and 10go-unip5 (10go-uniprot) are
the joint graphs of Gene Ontology terms and the annotations
file from the UniProt6 database. uniprot100m3 (unipro-
tenc_100m) and uniprot150m3 (uniprotenc_150m) are
DAGs that are subgraphs of the RDF graph of UniProt, which
contain many nodes without incoming edges and few nodes
without outgoing edges. 10cit-Patent5(10cit-Patent), 05cit-
Patent5 (05cit-Patent), cit-Patents3 (cit-Patents) and cite-
seer3 are all citation networks with out-degree of non-leaf
nodes ranging from 10 to 30. wiki is the DAG of Wikipedia
talk (communication) network wiki-Talk4. LJ is an online
social network soc-LiveJournal14. dbpedia7 is a knowledge
graph Dbpedia. govwild8 is a large RDF graph. web is
a web graph web-Google8. twitter8 is a large-scale social
network [24].

Among all these datasets, the first 8 small datasets and four
large datasets, including email, wiki, LJ and web, are direct
graphs initially. We transform each of them into a DAG by
coalescing each strongly connected component into a node.
Note that this can be done in linear time [25]. All other
datasets are DAGs initially. The statistics in Table 3 are that
of DAGs.
Workloads:We generate a workload containing 1,000,000

queries, where the number of reachable queries and unreach-
able queries is both 500,000. We generate unreachable
queries by sampling node pairs with the same probabil-
ity, where most queries are unreachable queries. We check
whether they are unreachable by using existing reachabil-
ity algorithms. Then we generate reachable queries as fol-
lows. We randomly select a node u and randomly select
an out-neighbor v recursively until v has no out-neighbors.
We take all pairs of u and v as reachable queries during
this process until we reach the required number of reach-
able queries. The query time is the running time of a total
of 1,000,000 queries.

A. IMPACTS OF OPTIMIZATIONS
Impacts of λ: As shown by Table 4, with the increase of λ,
the index size and index construction time increases, but
increases little. As a comparison, with the increase of λ,
the query time is reduced. The reasons lie in the following
aspects: (1) With only a few hop nodes, we can catch a big
ratio of reachable information, therefore the index size and
index construction time increase little. (2) With more covered
reachable information, we can answer more k-hop reachabil-
ity queries by 2hop distance label, therefore the query time
can be reduced. In the following discussion, we set λ = 80%.

4http://snap.stanford.edu/data/index.html
5http://pan.baidu.com/s/1bpHkFJx
6http://www.uniprot.org/
7http://pan.baidu.com/s/1c00Jq5E
8https://code.google.com/p/ferrari-index/downloads/list
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TABLE 4. Impacts of λ to index size (MB), index construction time (ms) and query time (ms).

TABLE 5. Impacts of optimization techniques (λ = 80%).

Impacts of Topo-Orders and Early Stop Condition: In
Table 5, HT-base is our algorithm without using any opti-
mization techniques,HT-1 is our algorithm using topo-orders
to prune unreachable queries, and HT is our algorithm that
uses both topo-order and early stop condition. From Table 5,
we have the following observations.

First, for index size, since HT-base uses only partial 2hop
distance label, it has the smallest index size. By using four

topological orders for each node, the index size of HT-1 is
larger than that of HT-base. Note that the difference between
HT-1 andHT is thatHT uses early stop condition, which does
not affect the index size, therefore, the index size of HT-1 is
equal to that of HT.

Second, for index construction time, HT-base consumes
least time compared with HT-1 and HT, due to that it does
not need to compute the four topological orders. HT-1 and
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TABLE 6. Comparison of query time (ms, λ = 80%).

FIGURE 6. Impacts of reachable ratio to query time on different datasets (k = 5).

HT have the same index construction time since they have
the same index.

Finally, for query time, we can find that by using topo-order
and early stop condition, the query time can be reduced
significantly. The reasons lie in two aspects: (1) with topo-
orders, we can quickly prune more unreachable queries,
and (2) with early stop-condition, we can answer reachable
queries more efficiently.

B. COMPARISON OF QUERY TIME
Table 6 shows the comparison of query time with the change
of k . We have the following observations. For all the 25 real
datasets, our HT algorithm works best on at least 22 datasets
for all value of k , and the change of k has little affects on HT.

When k = 2 is small, we can see that BFSI-B can be more
efficient than PLL on several datasets, such as arxiv, email,
wiki and govwild. Even though, it is beaten by PLL on other
datasets. When k = 8 becomes large, BFSI-B is much worse
than PLL on several datasets due to the poor pruning power
for reachable queries, such as on arxiv, citeseer, cit-Patents
and twitter datasets.

It is worth noting that our approachHT is five times slower
than PLL on cit-Patents dataset when k = 8. The reason lies
in that our approach is a Label+G approach, and it cannot
answer all reachable queries. For some queries,HT still needs
to perform graph traversal. Even though,HT is 46 times faster
than PLL on index construction and the index size of PLL is
12.5 times bigger than that of HT.
In Figure 6, we show the impacts of reachable ratio to

query time on different datasets. Here, reachable ratio means
that for a given query workload containing 1,000,000 queries,
the ratio of the number of reachable queries. We select four
datasets to show the results, where amaze is a small sparse
graph, arxiv is a small dense graph, twitter is a large sparse
graph and 10go-unip is a large dense graph. From Figure 6
we have the following observations. First, with the increase
of reachable ratio, our HT always performs best. Second,
when reachable ratio is small, HT works much better than
PLL, and even when the reachable ratio equals 100%,HT still
achieves similar performance as PLL. Third, BFSI-B could be
better than PLL only if the reachable ratio is small, and with
the increase of reachable ratio, the performance of BFSI-B
degenerates significantly.
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TABLE 7. Comparison of index construction time (ms) and index size (MB).

C. INDEX CONSTRUCTION TIME AND INDEX SIZE
Table 7 shows the comparison of index construction time and
index size, from which we can see that for index construction
time, both BFSI-B and HT is smaller than that of PLL, and
either BFSI-B or HT can be best on several datasets, no one
can beat the other on all datasets. For index size, HT has the
smallest index size on 17 datasets. As PLL needs to maintain
all shortest path information, its index size is usually bigger
than the other two and the index construction time is usually
longer than the other two.

In summary, compared with BFSI-B, on one hand, our
HT uses four topological orders on a reduced graph, while
BFSI-B uses two topological orders on the original graph,
therefore, HT can answer more unreachable queries. On the
other hand, the partial 2hop distance label covers more
reachability information than the spanning tree used by
BFSI-B, therefore, it can answer more reachable queries.
As shown by the experimental results on query time, HT
works much better than BFSI-B, while at the same time,
HT has comparable index size and index construction time
compared with BFSI-B. Compared with PLL, HT is much
more efficient when answering unreachable queries, and has
the similar performance when answering reachable queries.
More importantly, HT usually consumes less index construc-
tion time and has smaller index size. Therefore, HT has
the best performance on average when processing k-hop
reachability queries.

VIII. CONCLUSION
Considering that both existing approaches are inefficient
when answering k-hop reachability queries onDAGs, we pro-
pose a new Label+G approachHT to efficiently answer k-hop

reachability queries. We first propose a partial 2hop distance
label to maintain most reachability information, such that to
quickly answer many reachable queries. We then propose to
use topological level and sinking topological level to quickly
prune many unreachable queries. Besides, we further propose
two optimization techniques to facilitate k-hop reachabil-
ity queries answering. Compared with existing Label-Only
approach PLL, our approach HT can answer unreachable
queries more quickly. Compared with existing Label+G
approach BFSI-B, our HT can be much more efficient when
processing reachable queries. Our experimental results show
that our approach achieves the best results on most datasets
when answering k-hop reachability queries with smaller
index size and reasonable index construction time. As an
indication, for all the 25 real graphs,HT needs the least query
time on 22,22 and 23 datasets compared with BFSI-B and
PLL, when k = 2, 5 and 8, respectively.
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