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ABSTRACT During the past decade, deep learning is one of the essential breakthroughs made in artificial
intelligence. In particular, it has achieved great success in image processing. Correspondingly, various
applications related to image processing are also promoting the rapid development of deep learning in all
aspects of network structure, layer designing, and training tricks. However, the deeper structure makes the
back-propagation algorithm more difficult. At the same time, the scale of training images without labels
is also rapidly increasing, and class imbalance severely affects the performance of deep learning, these
urgently require more novelty deep models and new parallel computing system to more effectively interpret
the content of the image and form a suitable analysis mechanism. In this context, this survey provides four
deep learning model series, which includes CNN series, GAN series, ELM-RVFL series, and other series,
for comprehensive understanding towards the analytical techniques of image processing field, clarify the
most important advancements and shed some light on future studies. By further studying the relationship
between deep learning and image processing tasks, which can not only help us understand the reasons for
the success of deep learning but also inspires new deep models and training methods. More importantly, this
survey aims to improve or arouse other researchers to catch a glimpse of the state-of-the-art deep learning
methods in the field of image processing and facilitate the applications of these deep learning technologies
in their research tasks. Besides, we discuss the open issues and the promising directions of future research
in image processing using the new generation of deep learning.

INDEX TERMS Image processing, deep learning, convolutional neural network, generative adversarial
network, extreme learning machine, deep forest, capsule networks, ADMM-Net, image classification, style
transfer, object detection, super-resolution.

I. INTRODUCTION
Since images play an essential role in our daily life, and
as the advances in computer information collection systems,
one can obtain more and more image sets, but most of them
cannot be processed manually [1]–[3]. Hence image pro-
cessing becomes attractive since much of this image infor-
mation can be represented and processed digitally. With the
fast computers and signal processors available in the 2000s,
image processing has become the most common processing
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technique to be used in medical images, remote sensing
image and nature image [4] (see Fig.1), and generally, is used
because it is not only the most versatile method but also
the cheapest [5]. Image processing has been playing a more
vital and essential role in various information access sys-
tems to enhance the cognition level and facilitate decision-
making process [6]. In pattern recognition and machine
learning, the commonly used image processing includes
image generation, image compression and encoding, image
deblurring, super-resolution, image segmentation, classifica-
tion and object recognition, change detection, image annota-
tion, and image retrieval, etc. In particular, machine learning
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FIGURE 1. Three typical sample type of image processing. Left: remote
sensing image [8], Middle: medical images [9], Right: nature image [10].

techniques has been widely and successfully applied to image
processing research [7].
Compared with the nonlearning-based methods that might

not precisely translate domain knowledge into rules or fea-
tures, machine learning acquires its knowledge from data
representations [11]. In other words, while the low-level
features can be hand-crafted with great success for some
specific data and tasks, designing useful features for new
data and tasks requires new domain knowledge since most
hand-crafted features cannot adapt to new conditions [12].
Besides, conventional machine learning techniques usually
do not directly deal with raw data but heavily rely on the data
representations, which further to require considerable domain
expertise and sophisticated engineering [13]–[15].
Learning higher-level features from the data of interest

is considered as a plausible way to remedy the limitation
of hand-crafted features [16]–[19]. A successful example of
such methods is learning through the framework of deep net-
works, which draws significant attention recently. Compared
with hand-crafted features, learned multiple levels of repre-
sentations require less human interventions and providemuch
better performance. There is no doubt that deep learning tech-
niques have made significant advances in image processing.
The core idea of deep learning is to discover multiple levels
of representation and automatically learns the representa-
tions, with the hope that higher-level features represent more
abstract semantics of the data [20]. Meanwhile, such abstract
representations learned from deep networks are expected to
provide more invariance to intra-class variability [21], [22].
To further improve the readability of this survey, we present

the phrases commonly and explanations that appeared in
deep learning in TABLE 1. As is known to all, one key
ingredient in the success of deep learning in image processing
is the use of CNNs [23], which includes a convolutional
flow module stacked on top of each other. Moreover, each
convolutional flow module comprises four parts— convo-
lution filter bank layer, feature maps pooling layer, nonlin-
ear processing layer, and BN. Many classical variations on
deep CNNs have been proposed to different tasks in image
processing, such as LeNet, AlexNet, GoogleNet, VGGNet,
R-CNN, YOLO, SSD, SqueezeNet, ResNet, DenseNet [24],
SegNet, and DCGAN, etc. and their success is usually jus-
tified empirically [25]–[27]. With the development of com-
puting power and data scale, many classical deep learning
algorithms, which based on the SGD method, have verified,

TABLE 1. An explanation of phrases commonly.
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but only under an apparent theoretical premise can we know
what theworst is. At present, The uncertainty of deep learning
is mainly reflected in three aspects [28],
• The BP algorithm for updating weights and bias causes
gradient diffusion or explosion.

• The initialization method of network weights/bias
affects the solution to non-convex optimization
problems.

• The regularizationmethods affect the generalization per-
formance of the deep learning model.

Besides, many classical deep learning algorithms rely
on a massive amount of datasets because the singularity
of the sample does not effectively remove, and the spatial
logic or structure relationship of the target for the sample is
ignored, etc [29]. According to the different requirements of
the application task, at the same time, to solve the existing
problems of classical deep learning (such as AE, CNN, DBN,
RNN, and GAN, etc.), a variety of new generation algorithms
and frameworks of deep learning have proposed. These latest
frameworks not only improved the network generalization
performance and significantly improved the efficiency of
optimization but also enriched the research system of deep
learning [30], [31].

A. MOTIVATIONS
In recent years, researchers have published many reviews/
surveys papers related to deep learning technology in the field
of image processing, such as the works in the fields of micro-
scopic image analysis [32], hyperspectral image analysis [33]
and medical image analysis [34] etc. Besides, the work of
Tian et al. summarize the related processing ideas of deep
learning in specific image denoising tasks [35]. Deng et al.
summarize the deep stackedmodel under the semi-supervised
learning paradigm from the design and application points
of view [36]. These works have positive enlightenment for
the improvement of existing methods and model selection of
specific application background. However, the types of deep
models mentioned in these works are not abundant, none of
them can provide a mathematical principle of the models, and
they lack some of themost recent deep learningmodels. Com-
pared with the above reviews/surveys, an initial motivation
of this survey is trying to summarize the application of these
new-generation deep learning algorithms and frameworks in
image processing and to evaluate the effectiveness of these
new generations of deep network framework and acquire
more inspiration for deep network’s design and optimization
tricks [37].

In particular, the summary of the new generation of deep
learningmodels will follow along the fourmain lines, 1) Deep
CNN and its improved deep network structure [38], the clas-
sic framework include CV-CNN, SRCNN, Mask R-CNN,
FCN, U-Net, DenseNet, FractalNet, etc. 2) GAN [39] and
its improved deep network structure, the classic frame-
work includes DCGAN, PTGAN, InfoGAN, LAPGAN,
TAC-GAN, SegAN, CoGAN etc. 3) ELM [40] or RVFL [41]
(denote as ELM-RVFL) and its improved deep network

structure, the classic framework includes C-ELM, H-ELM,
BLS, F-BLS, etc. 4) Other typical new generation deep
network structure includes Deep Forest, ADMM-Net,
CapsuleNet, ML-CSC [42], VAE, PCANet, DDL, etc.
More concretely, these can be summarized as TABLE 2
and TABLE 3.

In this survey, our main intention is to focus on a new
generation of deep learning models and their mathemati-
cal principles. It is worth pointing out that we have three
criterions for choosing several representative models. One
is that this network has a novel topological structure. Sec-
ond, excellent generalization performance can achieve in
specific image application tasks. Third, the research results
generally accepted by scientific researchers, and there are
further development and improvement for a deep model.
Most of the other deep learning models can be variants of
these four deep architectures’ main lines. In the following
parts, we review the four typical deep learning series models
in detail. Also, we will mainly describe the generalization
performance of the corresponding new generation of deep
learning algorithm from the perspective of the application
task, which covers various topics, such as image classifi-
cation, style transfer, object recognition, super-resolution,
image compression, image segmentation, change detection,
image denoising. Specifically, the framework structure flow
diagram of this survey shown in Fig.2.

B. CONTRIBUTIONS
Nowadays, deep learning is the dominant method of more
excellent solutions to many tasks in image processing. The
survey is not only to provide a systematic overview of
deep learning in image processing, but also presents a ded-
icated discussion on open challenges, unsolved problems,
and potential future trends. Specifically, we introduce the
contributions of deep learning to different image process-
ing tasks and present the current effort devoted to address-
ing these issues by the new generation of deep learning.
Furthermore, we point out several potential future research
trends of deep learning in image processing. Meanwhile,
we analysis the fundamental theoretical insights about the
new generation deep networks in detail, it seems the pressing
need for deep learning nowadays. Finally, This survey aims
to improve or arouse other researchers to catch a glimpse
of the state-of-the-art deep learning methods in the field of
image processing and facilitate the applications of these deep
learning technologies in their research tasks. It is particularly
worth pointing out that, as far as many neurocognitive mech-
anisms are still further developed and perfected, the work of
network modeling based on biological neural enlightenment
is still a long way off.

The rest of this survey as structured as followed.
In Section II we introduce the new generation of deep learn-
ing techniques that have used for image processing and
that referred to throughout the survey. Section III describes
the contributions of deep learning to canonical tasks in
image processing: image classification, style transfer, object

VOLUME 7, 2019 172233



L. Jiao, J. Zhao: Survey on the New Generation of Deep Learning in Image Processing

TABLE 2. Some new generation of deep learning models for image processing tasks.
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TABLE 3. Some new generation of deep learning models for image processing.

detection, super-resolution, image compression, semantic
segmentation, and image denoising. Section IV discusses
obtained results and open issues in application areas; mean-
while, we also objectively give a critical discussion and an
outlook for further research.

II. RESEARCH PROGRESS OF NEW GENERATION
OF DEEP LEARNING
Deep learning is often used as classifiers or feature extractors
for various tasks in image processing [43], [44]. In the fol-
lowing parts, we mainly introduce several new generations of
deep learning techniques that have used for image processing,
and that referred to throughout the survey.

A. CNN SERIES MODELS FOR IMAGE PROCESSING
1) CNN
In recent years, CNN has also made great success in image
processing and object recognition. The strength of CNN lies
in their shared weights. Weight sharing dramatically reduces
the number of free parameters learned, thus to lower the
memory requirements for running the network and allowing
the training of more extensive, more powerful networks [45].

A CNN consists of convolutional layers, pooling layers,
normalization layers, and fully connected layers. At each
layer, the input image X ∈ Rn×m is convolved with a set of
K kernels {W k ∈ Rv×v, k = 1, 2, · · · ,K } and subsequently
biases {bk ∈ R, k = 1, 2, · · · ,K } are added, each generating
a new feature map Xk by an element-wise non-linear trans-
form σ (·). The same process is repeated for convolutional

layer l,

X l
k = σ

(
W l

k ⊗ X l−1
+ blk

)
(1)

where symbol ‘⊗’ denotes the discrete convolution operator,
and its specific type of operation has a variety of forms, such
as ‘valid’ convolution, ‘same’ convolution, ‘extra’ convolu-
tion, strided convolution, fractional-strided convolution, etc.

Another essential layer of CNN is pooling, which is
a form of non-linear down-sampling. Convolutional lay-
ers are typically alternated with pooling layers where pixel
values of neighborhoods are aggregated using some per-
mutation invariant function, usually the max or average
operations, which provides another form of translation
invariance [46]–[48].

S(l)k = Pooling
(
X (l)
k

)
(2)

Finally, after several convolutional and max-pooling lay-
ers, the high-level reasoning in the neural network is done
via fully connected layers, where weights are no longer
shared. CNN is typically trained end-to-end in an entirely
supervised manner. The significant reduction in the number
of weights parameters and the translational invariance of the
learned features contributes to the ability of CNN to be trained
end-to-end.

2) CV-CNN
To fully explore the rich information embedded in complex-
valued (CV) images, CV-CNN has to be developed
[49], [50], [82]. The architecture of a CV-CNN can regard
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FIGURE 2. The framework structure of survey.
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as a variant of the deep neural networks, which not only
takes complex data as input but also propagates the phase
information through all layers. For CV-CNN, all the layers
of the networks, including the convolutional layer, pooling
layer, fully connected layer, should be fully CV. The details
of each layer in its CV version are presented in the following.

Firstly, for the convlutional layer, the complex output fea-
ture maps O(l)

k are computed by the convolution between all
the previous layers input feature maps O(l−1)

∈ Cn×m and a
set of filters {�(l)

k ∈ Cv×v, k = 1, 2, · · · ,K }, and then add
a bias {γ (l)

k ∈ C, k = 1, 2, · · · ,K }. where ‘C’ denotes the
complex domain and the superscript is its dimension.

O(l)
k = σ

(
�

(l)
k ⊗ O(l−1)

+ γ
(l)
k

)
(3)

where σ (·) is an element-wise non-linear function, and
∀z ∈ C. We have

σ (z) = σ
(
R(z)

)
+ jσ

(
I(z)

)
(4)

where z = R(z) + jI(z). And this CV-convolution operation
can be calculated by

�
(l)
k ⊗ Ol−1

=

(
R(�(l)

k )+ jI(�(l)
k )
)
⊗

(
R(O(l−1)

k )+ jI(O(l−1)
k )

)
=

(
R(�(l)

k )⊗R(O(l−1)
k )− I(�(l)

k )⊗ I(O(l−1)
k )

)
+ j
(
R(�(l)

k )⊗ I(O(l−1)
k )+ I(�(l)

k )⊗R(O(l−1)
k )

)
(5)

Secondly, for the pooling layer,

V (l)
k = Pooling

(
O(l)
k

)
= Pooling

(
R(O(l)

k )
)
+ jPooling

(
I(O(l)

k )
)

(6)

In other words, pooling layers can regard as sub-sampling
layers, and pooling helps to make the representation invariant
to small shifts and distortions of the input.

Finally, after several CV convolutional and CV pooling
layers, CV fully-connected layers are usually added to act
as classification layers. The expected output ỹ and predictive
output t can be written as,{

ỹ , y+ jy ∈ Cc

t = f (Wv+ β) ∈ Cc (7)

where f is the non-linear function, and real-valued vector
y ∈ Rc is the label of input sample, and CV vector v can
be obtained by flattening the CV matrix V (l). If the softmax
is applied to CV-CNN, the result is not a probability due
to its CV input. Therefore, the final output is the classifier,
and the least-squares loss function is adopted in CV-CNN.
Experiments show that the classification error can further
reduce if employing CV-CNN instead of conventional real-
valued CNN with the same degrees of freedom [50], [83].

3) SRCNN
There have been a few studies of using deep learn-
ing techniques for image super resolution [84], [85].
Especially, the SRCNN can directly learn an end-to-endmap-
ping between the low-resolution image and high-resolution
image [53]. The mapping represents a deep CNN model that
consists of three operations: patch extraction and represen-
tation, non-linear mapping, reconstruction. At the beginning
of detailing each operation, here we only consider a single
low-resolution image, and first upscale it to the desired size
using bicubic interpolation; and then denote the interpolated
image as y ∈ Rm×m×c; finally, we expect to recover from y
an image f (y) that is as similar as possible to the ground truth
high-resolution image x ∈ Rm×m×c. To keep the following
description simple and understandable, we denote y a low-
resolution image, and x is the high-resolution image.

Firstly, it can be expressed as an operation for the patch
extraction and representation:

f1(y) = max(0,W1 ⊗ y+ b1) (8)

where W1 and b1 represent the filters and biases respec-
tively. Specifically, W1 corresponds to n1 filters of support
p1 × p1 × c, where c is the number of channels in the input
low-resolution image y ∈ Rm×m×c and p1 is the spatial size
of a filter. The biases b1 ∈ Rn1 . After applying the ReLU(
max(0, ·)

)
on the filter responses, then the output f1(y) is

composed of n1 feature maps, that is, f1(y) ∈ Rm×m×n1 .
Secondly, for the non-linear mapping, the operation is,

f2(y) = max(0,W2 ⊗ f1(y)+ b2) (9)

where W2 contains n2 filters of size p2 × p2 × n1 and
b2 ∈ Rn2 .Without loss of generality, it is possible to addmore
convolutional layers to increase the non-linearity, but the cost
is more training time to increase the complexity of the model.
The same with previous operation, that is, f2(y) ∈ Rm×m×n2 .

Thirdly, for the reconstruction, the final high-resolution
image can be generated by the following operation,

f3(y) = W3 ⊗ f2(y)+ b3 (10)

where W3 comprise c filters of size p3×p3×n2 and b3 ∈ Rc,
The same with previous operation, that is, f3(y) ∈ Rm×m×c.
Although the above three operations motivate by different

intuitions, and they all lead to the same form as a convo-
lutional layer, so three operations together and form a deep
CNN architecture, namely SRCNN. Further, the filtering
weights and biases are to be optimized by the following loss
function,

L(2) =
1
N

N∑
n=1

‖F(yn,2)− xn‖22 (11)

where N is the number of training samples, and parameters
2 = {W1,W2,W3, b1, b2, b3}. We have F(y,2) , f3(y).
Also, using MSE ( mean squared error) as the loss function
favors a higher PSNR ( peak signal-to-noise ratio), and the
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FIGURE 3. The framework of mask R-CNN [55].

loss function is minimized using SGD with the standard BP
algorithm [86].
Finally, it is worth pointing out that the ground truth

high-resolution images {xn} can prepare as m× m× c-pixel
sub-images randomly cropped from the training images.
By applying sub-images means, these samples treated as
small images rather than patches. Meanwhile, to synthesize
the low-resolution samples {yn}, one can blur a sub-image by
the Gaussian kernel, sub-sample it by the up-scaling factor,
and upscale it by the same factor via bicubic interpolation.
We assume that all the convolutional layers have no padding
for avoiding the phenomenon of border effects.

FIGURE 4. Residual learning: A building block [87].

4) RESNET
It is well-known that many other non-trivial visual recogni-
tion tasks have also greatly benefited from ultra-deep models.
Therefore, a question arises that ‘‘ is learning better networks
as easy as stacking more layers?’’ With the network layer
increasing, it is indisputable that an obstacle is the noto-
rious problem of vanishing or exploding gradients, which
can hamper the convergence of networks. Besides, accu-
racy gets saturated and then degrades rapidly. Unexpectedly,
such degradation does not cause by over-fitting. Furthermore,
adding more layers to a suitably deep model lead to higher
training error. For the degradation problem, The classical
ResNet [87] can explicitly let these stacked layers fit a resid-
ual mapping rather than a desired underlying mapping. For
example, a building block in Fig.4 that has two layers,
Therefore, a building block defined as:

y = F(x) + x (12)

where x and y are the input and output of the layers consid-
ered. The function F(x) represents the residual mapping to be
learned, that is,

F(x) � W 2σ (W1x + b1) + b2 (13)

where σ denotes classical active function ReLU [88].
The operation F(x) + x is performed by a short-cut con-

nection and element-wise addition. It should note that the
dimensions of x and F(x) must be the same. If this is not
the case, the first choice is that one can perform a linear
projection W s by the short-cut connections to match the
dimensions:

y = F(x) +W sx (14)

The other choice is that one can still perform identity
mapping, but with extra zero entries padded for increas-
ing dimensions was considered. Certainly, we can also use
the square matrix in Eq.(12), and it can further make the
form of residual function F(x) more flexible. In particular,
if the residual functionF(x) representsmultiple convolutional
layers, then the element-wise addition is performed on two
feature maps, channel by channel.
More importantly, ResNet structure is simple, which can

solves the problem of deep convolution neural network per-
formance degradation under ultra-deep conditions, and its
classification performance is excellent. Finally, more tricks
include BN right after each convolution and before activation,
and one can do not use dropout or max-out.

5) MASK R-CNN
Mask R-CNN is a simple, flexible, and general framework
for object instance segmentation [55]. This framework con-
sists of two stages, the first stage, called an RPN, proposes
candidate object bounding boxes. The second stage, which
extends Faster R-CNN [89] (see black flowchart in Fig.3)
by adding a branch for predicting binary segmentation masks
on each RoI, in parallel with the current branch for softmax
classification and bounding box regression. Significantly,
Faster R-CNN does not design for pixel-to-pixel alignment
between network inputs and outputs. RoIAlign is a simple
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FIGURE 5. The architecture of FCN for object segmentation [91].

quantization-free layer for fixing the misalignment, which
faithfully preserves exact spatial locations.
Further, during the training phase, a multi-task loss on each

sampled RoI can be expressed as follows,

L = Lcls + Lbox + Lmask (15)

where Lcls and Lbox is classification loss and bounding-box
loss, respectively. Moreover, the mask branch has a Km2-
dimensional output for each RoI, which encodes K binary
masks of resolution m × m, one for each of the K classes.
To this, we apply a per-pixel sigmoid and define Lmask as
the average binary cross-entropy loss. Besides, for an RoI
associated with ground-truth class k , Lmask is only defined
on the k-th mask.

For theMask R-CNN network architecture in Fig.3, we can
differentiate between the convolutional Backbone architec-
ture used for feature extraction over an entire image and
the network head for bounding-box recognition (softmax
classification and regression) and binary mask prediction
that is applied separately to each RoI. Specifically, one
can using the nomenclature network-depth-features for the
Backbone architecture, such as ResNet networks of depth
50 or 101 layers, and with an FPN [90] backbone extracts
RoI features from different levels of the feature pyramid
according to their scale. Therefore, Using a ResNet-50/
101-FPN backbone for feature extraction captures excellent
gains in both accuracy and speed. For the network head,
which closely follows architectures presented in previous
work to which adds a fully convolutional mask prediction
branch; the head part on the ResNet-50/101-FPN that uses
fewer filters is more efficient. Finally, RPN can be trained
separately and does not share features ofMask R-CNN unless
specified.

6) FCN
FCN, a novel deep CNN architecture proposed recently, has
achieved excellent performance on pixel levels recognition
tasks, such as object segmentation and edge detection [91].

Typical recognition nets, including LeNet, AlexNet, osten-
sibly take fixed-sized inputs and produce non-spatial out-
puts. Undoubtedly the fully connected layers of these nets
have fixed dimensions and throw away spatial coordinates.
Positively, these fully connected layers can also regard as
convolutions with kernels.
It is assuming that each layer of data onto a CNN architec-

ture is a three-dimensional array H ×W × P, that is, spatial
dimensions H ×W (height and width) and feature or channel
dimension P. First, how to convert a fully connected layer
to a convolutional layer? For examples, from H × W × Pl
to 1 × 1 × Pl+1, where Pl denotes the number of channel
dimension of l-th block or ConvNet layer. Actually, we need
Pl+1 filters of size H ×W × Pl . Second, How to realize up-
sampling? The method used is backward strided convolution
(sometimes called deconvolution), which can connect coarse
outputs to dense pixels via interpolation. For instance, simple
bilinear interpolation computes each output from the nearest
four inputs by a linear map that depends only on the relative
positions of the input and output cells. Thus up-sampling is
performed in-network for end-to-end learning by BP from the
pixel-wise loss.
Note that the deconvolution filter in such a layer need

not fix (e.g., bilinear up-sampling), but one can learn it. For
examples, in Fig.5, one can learn deconvolution filter from
H
32 ×

W
32 to H × W . Here the number of channel dimensions

is neglected, then we can obtain the size of filters is(
H + 1 −

H
32

)
×

(
W + 1 −

W
32

)
(16)

In other words, the output size after deconvolution is 32 times
the input feature map, which we now call FCN-32s in Fig.6.
similarly, one can learn to combine high layer information
with low layer information, such as FCN-16s in Fig.6.

7) DESCRIPTION OF OTHER MODELS IN CNN SERIES
U-Net is an improvement based on FCN architecture. Its net-
work architecture consists of two parts: contraction path and
extension path [60]. The shrinking path is mainly used to
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FIGURE 6. Two sampling types: FCN-32s and FCN-16s.

capture the context information about the picture, while the
expanding path used to precisely locate the parts that need to
the segment of the picture. Compared with FCN, the high-
pixel feature extracted by U-Net in contraction path will
be combined with the new feature map in the up-sampling
process to maximize the retention of some important feature
information in the previous down-sampling process. Besides,
there is no full connected layer in the whole network, which
can minimize the number of training parameters. And the
U-shaped structure can better retain the information about the
picture. As we all know, classical deep learning needs abun-
dant samples and expensive computing resources; however,
U-Net can be used for small sample learning. In particular,
this network is suitable for medical-related image segmenta-
tion tasks.
Compared with ResNet, DenseNet’s innovation lies in the

outputs of each layer are connected with all successor layers
in a dense block, the feature maps learned by this layer are
also passed directly to all the layers behind it as input [24].
Another highlight of DenseNet is efficient for feature reuse,
which dramatically reduces network parameters. It is worth
pointing out that dense connection directly connects input
and loss in each layer, thus alleviating the phenomenon of
gradient vanishing. Finally, This new model shows state-
of-the-art accuracy with a reasonable number of network
parameters for the object recognition tasks.
FractalNet is an advanced and alternative architecture of

the ResNet model, which is another efficient for design-
ing large models with nominal depth [63]. Unlike ResNet,
FractalNet demonstrates that path length is essential for train-
ing ultra-deep neural networks, and residual learning is not
necessary for ultra-deep networks. Unlike ResNet, the perfor-
mance of FractalNet trained by dropout and drop-path tricks
often surpasses that of ResNet.

B. GAN SERIES MODELS FOR IMAGE PROCESSING
1) GAN
The GANs framework (see in Fig.7 ) includes a generative
model that captures the sample distribution and a discrimina-
tive model that estimates the probability that a sample came
from the training (real) sample rather than generating (fake)
sample [39], [147]. Based on game theory, one can training
GANs requires finding a Nash equilibrium of a non-convex
game with continuous, high-dimensional parameters.

FIGURE 7. The framework of GAN [39], [147].

Generally, training GANs is a problematic issue in practice
because of the instability of GANs learning. Several well-
designed networks have proposed to overcoming the problem
of instability. In Fig.7, We can use differentiable functions
D and G to represent the discriminator and the generator,
and their inputs are real sample x and random variables z,
respectively. The purpose of D is to achieve the correct clas-
sification of sample source, while the purpose ofG is to make
the performance of generated sampleG(z) consistent with the
performance of the real sample. Therefore, the optimization
of GAN can formulate as the following minimax problem:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)]

+Ez∼Pnoise
[
log

(
1 − D(G(z))

)]
(17)

The adversarial optimization process improves the perfor-
mance of D and G gradually. Eventually, when the discrim-
ination ability of D has been improved to an excellent level
but cannot discriminate against the sample source correctly,
it is thought that the generatorG has captured the distribution
of a real sample.
Since Ian J Goodfellow proposed GAN in 2014, many

GAN variants have produced so far. Undoubtedly, GANs
have solvedmany problems in generativemodels and inspired
other artifical intelligence (AI) methods, but there are still
some limitations [148]. For example, from a mathematical
point of view, GANs adopt the adversarial learning idea, but
the convergence of the model and existence of the equilib-
rium point have not been proved yet. Besides, the same as
generative models based on neural networks, GANs have
the common disadvantages of neural networks, such as poor
interpretability. Furthermore, although the samples generated
by GANs are very different in style, there exists the mode col-
lapse problem (that is, GANs cannot generate continuously
changing samples with the change of input noise z). Scientific
researchers have put forward many research directions to
focus on better solving those drawbacks of GANs. From the
perspective of combining GANs with other methods, how to
integrate GANs with feature learning, imitation learning, and
reinforcement learning to develop new AI applications and
promote the development of these methods is very mean-
ingful and hopefully. Below, we mainly introduce the per-
formance of several classic GAN variant models in image
processing.

2) DCGAN
A DCGAN firstly introduced convolutional layers to GANs
architecture, which can effectively to solve instability of the
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FIGURE 8. The architecture of DCGAN [92].

learning process for the classical GAN (see in Fig.8) [92].
Generally, there are some architecture guidelines for the sta-
bility of DCGAN.

FIGURE 9. Convolution types: strided convolutions and fractional-strided
convolutions.

The first is the all convolutional networks that replace
deterministic spatial pooling functions (such as max pooling)
with strided/fractional-strided convolutions and allowing the
network to learn its spatial down-sampling or up-sampling.
Concretely, pooling layers in discriminator can replace with
strided convolutions, and pooling layers in the generator can
replace with fractional-strided convolutions. For example,
in Fig.9, we have the following relationship for strided con-
volutions,

output_size =
⌊
input_size-kernel+2·padding

stride

⌋
+ 1 (18)

where kernel is the size of filters (here, kernel is 3 in Fig.9),
and ‘b·c’ denotes floor function. Obviously, we have the input
x ∈ R5×5 and the output y ∈ R2×2. For fractional-strided
convolutions, which can view as the inverse process of strided
convolutions. That is, how to implement from y to x ?We need
to calculate the new stride and new padding for expanding y,{

stride(new) = 1
padding(new) = kernel− 1

(19)

and then we have the following relationship for fractional-
strided convolutions,

output_size(new) = stride×
(
input_size(new) − 1

)
+ kernel

(20)

where input(new) is the size of y. More cases can be referred
to the relevant literature.

The second is BN, which stabilizes learning by normal-
izing the input to each unit to have zero mean and unit
variance. BN can helps to deal with training problems that
arise due to poor initialization and maintains gradient flow in
deeper models. Besides, BN can use in other layers both of
the generator and the discriminator rather than the generator
output layer and the discriminator input layer.

The third is that remove fully connected hidden layers for
deeper architectures. The fourth is that the ReLU activation
can use in the generator except for the output layer which uses
the Tanh function,

Tanh(t) =
et − e−t

et + e−t
(21)

and the Leaky_ReLU activation function,

Leaky_ReLU (t) =

{
x, if x ≥ 0
αx, if x ≤ 0

(22)

is used in the discriminator for all layers, where α is a small
constant, it means that the negative axis information will not
be completely lost.

3) infoGAN
It is well-known that the goal of GAN is to learn a generator
distribution that matches the real data distribution [93]. The
generator network can generate samples by transforming a
noise variable of z. Besides, the noise z can be used by the
generator in a highly entangled way, causing the individual
dimensions of z to not corresponding to semantic features of
the data. In other words, z is not an interpretable expression
variable. Furthermore, this is precisely the motivation of Info-
GAN to find an interpretable expression, which decomposes
the input noise vector into two parts: (1) z, which is treated
as source of incompressible noise; (2) c, which call the latent
code and target the salient structured semantic features of the
data distribution.

It is important to identify these latent factors without
supervision. Based on information-theoretic regularization,
if latent code c is interpretable for generating data G(z, c)
(here G(·) is the generative model), then there should be
high mutual information. In information theory, mutual infor-
mation between c and G(z, c), namely I (c,G(z, c)), can be
used to measures the amount of information learned from
knowledge of variable c about the other variable G(z, c).
Further, it can be expressed as the difference between two
entropy terms,

I (c,G(z, c)) , H (c)− H (c|G(z, c)) (23)

where H (t) denotes entropy of t. Obviously, I (c,G(z, c)) is
the reduction of uncertainty in cwhenG(z, c) is observed. For
original GAN, the minimax game is given by the following
expression:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)]

+Ez∼Pnoise
[
log

(
1− D(G(z))

)]
(24)

VOLUME 7, 2019 172241



L. Jiao, J. Zhao: Survey on the New Generation of Deep Learning in Image Processing

FIGURE 10. The framework of cycleGAN [94].

whereD(·) is the discriminative model, and Pdata and Pnoise is
the real data distribution and noise distribution, respectively.
For InfoGAN, we have the following information-regularized
minimax optimization object:

min
G

max
D
VI(D,G) = V (D,G)− λI (c,G(z, c)) (25)

where λ is the Lagrange multiplier. In practice, I (c,G(z, c))
is hard to maximize directly as it requires access to the
posterior P(c|x). Fortunately we can obtain a lower bound of
it by defining an auxiliary distribution Q(c|x) to approximate
P(c|x):

I (c,G(z, c))

= H (c)− H (c|G(z, c))

= Ex∼G(z,c)[Ec′∼P(c|x)[logP(c′|x)]]+ H (c)

= Ex∼G(z,c)
[
Ec′∼P(c|x)[logQ(c′|x)]

+KL(Q(·|x)||P(·|x))
]
+ H (c)

≥ Ex∼G(z,c)
[
Ec′∼P(c|x)[logQ(c′|x)]

]
+ H (c) (26)

where KL(·) can measure the difference between two proba-
bility distributions. We can define a variational lower bound,

L1(G,Q) , Ex∼G(z,c)
[
Ec′∼P(c|x)[logQ(c′|x)]

]
(27)

Hence, InfoGAN is defined as the following minimax game,

min
G

max
D

VInfoGAN(D,G) = V (D,G)− λL1(G,Q) (28)

Finally, if c is categorical latent code, then Q(c|x) can
be represented using the non-linear transmission of softmax;
if c is continuous latent code, it can be represented by the
Gaussian distribution.

4) PTGAN
The goal of PTGAN is to realize the migration of back-
ground style under the premise of keeping pedestrian fore-
ground [68]. This person transfer procedure was inspired by
the CycleGAN [94] (see in Fig.10). To keep the following
description better understanding, we have markings,{

x , xf + xb
xf = x �M (x)

(29)

where xf and xb is the person foregrounds and backgrounds
for x, respectively. andM (x) represents the foreground mask
of x. Similarly, we have the same markings for y. How to
capture person style transfer from x to y ? that is, we can
obtain new image xf + yb or xb + yf . Here, the symbol ‘�’
denotes hadamard product.
Firstly, for CycleGAN, the objective function of style

transfer learning can be formulated as follows:

Lstyle = LGAN (Gx ,Dx , y, x)

+LGAN (Gy,Dy, x, y)+ λLcycle(Gx ,Gy) (30)

where Lcycle(Gx ,Gy) denotes the cycle consistency loss. and
we have the following formulation,

Lcycle(Gx ,Gy) = Ex∼P(x)
[
||Gx(Gy(x))− x||1

]
+Ey∼P(y)

[
||Gy(Gx(y))− y||1

]
(31)

Secondly, to avoid the appearance of pedestrians in style
transfer may change, the objective function of identity (per-
son or foreground) loss can be formulated as follows:

LID = Ex∼P(x)
[
||(Gy(x)− x)�M (x)||2

]
+Ey∼P(y)

[
||(Gx(y)− y)�M (y)||2

]
(32)

Different transferred samples of one person regard as hav-
ing the same person. Based on the above discussions, PTGAN
can be constructed to satisfy two constraints, i.e., the style
transfer and person identity keeping. Therefore, We thus
formulate the loss function of PTGAN as follows,

LPTGAN = LStyle + γLID (33)

where γ is the parameter for the trade-off between two losses.
In practice, Extensive experiments show that PTGAN effec-
tively reduces the domain gap.

5) LAPGAN
LAPGAN uses a cascade of CNN within a Laplacian pyra-
mid framework to generate images in a coarse-to-fine pro-
cessing way [95]. At each level of the pyramid, a separate
generative ConvNet model can be trained using the GAN
approach. The motivation of LAPGAN is to generate high-
quality sample images by taking random vectors as input.
furthermore, LAPGAN can construct by combination CGAN
(see in Fig.11) and laplacian pyramid framework. CGAN
can consider that both the generator and discriminator are
conditioned on some extra information y, and y could be any
auxiliary information, such as class labels or data from other
modalities. One can perform the conditioning by feeding y
into both the discriminator and generator as the additional
input layer. Then the objective function of a two-player min-
imax game would be formulated as follows,

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x|y)]

+Ez∼Pnoise
[
log

(
1− D(G(z|y))

)]
(34)
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FIGURE 11. The architecture of CGAN.

In the generator, the prior input noise and y can be combined
with joint hidden representation. Moreover, in the discrimi-
nator, x and y are presented as inputs and to a discriminative
function.

FIGURE 12. Laplacian pyramid structure: downsample and upsample for
image I with Level = 2.

The Laplacian pyramid is a linear invertible image repre-
sentation. For example, if the number of levels in the pyramid
set to 2 and the sample factor equals 2, then we can obtain the
following Fig.12 for image I . Intuitively, each level captures
image structure present at a particular scale. For a better
understanding of LAPGAN, we can define the difference
image at each level,

hk = Ik − lk (35)

where k is the number of levels in the pyramid, that is,
k = 0, 1, 2. Especially, h2 = I2 is not a difference image,
but a low-frequency residual equal to the final pyramid level.

Correspondingly, LAPGANmodels at all levels except the
final level are conditional generative models that take an up-
sampled version of the current image lk as a conditioning
variable, in addition to the noise vector zk . Furthermore,
the advantage lies in the independent training of each pyramid
level(see in Fig.13). Finally, in the testing phase, the recur-
rence starts by taking l2 = 0 and using the model at the final
level generator G2 to generate a difference image h̃2 using
noise vector z2. Obviously, we have I2 ≈ h̃2 by Eq.(35).
Further, l1 can be approximated by up-sampling h̃2, that is,

l1 ≈ upsample(h̃2) (36)

where upsampling is the process of inserting zero-valued
samples between original samples to increase the sam-
pling rate. Similarly, one can use generator G1 to generate

FIGURE 13. The framework of LAPGAN: each level can be viewed as
CGAN separately [95].

a difference image h̃1, and by Eq.(35),

l0 ≈ upsample(h̃1 + l1) (37)

Finally, we can use generator G0 to generate a difference
image h̃0, and the final high-quality image can be obtained by
the following formulations,

I ≈ h̃0 + l0 (38)

From the above, LAPGAN can be trained by unsupervised
learning.

6) DESCRIPTION OF OTHER MODELS IN GAN SERIES
TAC-GAN is a text-to-image GAN framework for synthe-
sizing images from their text descriptions [69]. TAC-GAN
builds upon the conditional auxiliary classifier GANs by con-
ditioning the generated images on a text description instead of
on a class label. For the presented TAC-GANmodel, the input
vector of the Generative network is built based on a noise vec-
tor and another vector containing an embedded representation
of the textual description. While the Discriminator is similar
to that of the TAC-GAN, it is also augmented to receive the
text information as input before performing its classification.

SegAN mainly designs for the task of medical image
segmentation, which includes two parts: segmentor network
and critic network [70]. Unlike classical GAN architecture,
they use an FCN as the segmentor to generate segmentation
label maps and propose a novel adversarial critic network
with a multi-scale L1 loss function to force the critic and
segmentor to learn both global and local features that capture
long- and short-range spatial relationships between pixels.
Finally, the segmentor and critic networks can be trained in
an alternating fashion in a min-max game.

CoGAN is an improvement framework based on the GAN
framework, which has established as a viable solution to
image distribution learning tasks [71]. Moreover, CoGAN
can extend GAN for joint image distribution learning tasks.
Precisely, CoGAN consists of a tuple of GAN, each for one
image domain. The CoGAN learns a product of marginal
distributions rather than a joint distribution.
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C. ELM-RVFL SERIES MODELS FOR IMAGE PROCESSING
ELM can provides unified learning solutions for the applica-
tions of feature learning, regression, and classification [40].
Its main advantage is the lower computational cost, which
is especially important when dealing with many patterns
defined in a high-dimensional space.

Furthermore, ELM theories show that hidden neurons are
essential but need not iteratively tuned inmany types of neural
networks. However, due to its shallow architecture, feature
learning using ELM may not be useful for complex natural
signals, even with a large number of hidden nodes. Various
improved ELM networks have proposed to overcoming these
shortcomings.

FIGURE 14. The architecture of C-ELM for single-hidden-layer
feedforward network.

1) C-ELM
During the past decades, complex-valued neural networks
have attracted considerable attention in complex-valued
image applications. Naturally, one can also extend the ELM
algorithm from the real domain to the complex domain, that
is, C-ELM [96]. In Fig.14, σ (·) is the complex activation
function and β is the output weight matrix. There are many
fully complex activation functions, such as circular functions,

Tan(z) =

(
e(jz) − e(−jz)

)
j
(
e(jz) + e(−jz)

) (39)

and hyperbolic functions,

Tanh(z) =
e(z) − e(−z)

e(z) + e(−z)
(40)

where z ∈ C and j is the imaginary unit. Further, W and
b are randomly choose the complex input weight and the
complex bias, respectively. Next, if given complex-valued
training samples X ∈ CN×m and Y ∈ CN×c, then the hidden
layer output matrix H can be formulated as,

H = σ (XW + b) ∈ CN×M (41)

where M is the number of hidden nodes. Finally, we can get
the least-squares solution β of the linear system,

Y = Hβ (42)

Without loss of generality, The above equation can also be
rewritten as, (

HR −H I
H I HR

)(
βR
βI

)
=

(
YR
Y I

)
(43)

where YR and Y I is the real part and imaginary part of Y ,
respectively, other symbols are similar to interpretation.

One can quickly solve the above real linear system by
Moore-Penrose pseudo-inverse, and β , βR + jβI . C-ELM
can complete the learning phase at a breakneck speed and
obtain a much lower symbol error rate. In addition, C-ELM
encounters the drawback of ELM, that is, the contradiction
between the generalization ability of network and the number
of hidden nodes.

2) H-ELM
For pattern recognition tasks, feature learning is often
required before classification conducted in many applica-
tions. However, feature learning using ELM may not be
effective for natural signals. To address this issue, inspired
by the multilayer perceptron theories and deep stacked auto-
encoder networks, H-ELM is proposed [97], [98].

FIGURE 15. The architecture of ELM sparse auto-encoder.

The H-ELM learning framework consists of two main
components, one is ELM-based sparse auto-encoder for unsu-
pervised multilayer feature encoding, and the other is that
the original ELM applied for final decision making. First, for
ELM sparse auto-encoder (see in Fig.15), in order to generate
more sparse and compact features of the inputs, we have the
following equation,

min
β

∥∥X̃ − Hβ∥∥2F + λ ‖β‖1 (44)

where W and b are randomly choose the input weight and
the complex bias, and X̃ = [X ,1], and ‖·‖F is the Frobenius
norm, ‖·‖1 is the sum of absolute values of of a matrix’s
all components or elements. If θ , [W ; b], then we have
H = σ (X̃θ ). Once β can be obtained, we can replace random
parameter θ with βT . Further, we have the hidden mapping
matrix with non-randomness, that is,

Hβ = σ (X̃βT ) (45)

where Hβ can be viewed as an non-randomness alternative
to H . Its main advantage lies in an effective feature learning
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for x. It should be noted that x̂ is a approximation for x
in Fig.15. Second, H-ELM can be constructed by using the
following hierarchical stack way in Fig.16. where L is the
number of the hidden layer for multi-layer perceptron.

FIGURE 16. The framework of H-ELM.

Finally, for the decision making, we have obtained the
parameter β by original ELM, that is,

β = H†Y (46)

where Y is the target label correspond to input training sam-
ples X . And H† is the Moore-Penrose generalized pseudo-
inverse of the matrix H . Extensive experiments show that the
ELM sparse auto-encoder of H-ELMhelps to generate amore
excellent performance by providing more robust features.

FIGURE 17. The framework of BLS.

3) BLS
RVFL can offer a different conventional BP learning method,
which can view as the foundation or basic idea of ELM
and BLS [99]. The BLS can be expanded broadly when
new feature nodes and enhancement nodes are needed, see
in Fig.17. Compare to ELM, the main advantage of BLS is
that incremental learnings can rapidly update and remodel
the system. Moreover, BLS can be applied to an extended
network or to a network that only needs to compute the
connecting weights of the last layer, such as ELM.

In BLS, to take the advantages of sparse auto-encoder char-
acteristics (the samewith ELM sparse auto-encoder), we have
H1,k = σ (X̃βT1,k ) for the kth window, k = 1, 2, . . . ,K .

where X̃ = [X ,1] and β1,k can be solved by Eq.(47),

min
β

∥∥X̃ − R1,kβ1,k
∥∥2
F + λ

∥∥β1,k
∥∥
1 (47)

where R1,k = σ (XW1,k + b1,k ), and W1,k and b1,k are
randomly choose.

In addition, the number of hidden nodes at each window is
same. After acquiring H1,k , k = 1, 2, . . . ,K , we can obtain
H1 by cascading operation, that is, H1 , [H1,1, · · · ,H1,K ].
And then we can obtain H2 by the following operation,

H2 = σ (H1W + b) (48)

where W and b are randomly choose weight matrix and
bias, and σ is non-linear active function. To maintain the
information of H1, H can be acquired by cascading H2 and
H1. Finally, the parameter β can solve by the following linear
system,

min
β
‖Y −Hβ‖2F + λ ‖β‖

2
F (49)

That is, β = H†Y .
Further, for the incremental learning of the dynamic expan-

sion of the BLS model, and simplification BLS model
using singular value decomposition, one can refer to relevant
literature.

4) F-BLS
The F-BLS can replaces the feature nodes of BLS with a
group of Takagi Sugeno fuzzy sub-systems, and the input data
are processed by each of them [75]. Instead of aggregating
the outputs of fuzzy rules produced by every fuzzy subsys-
tem into one value immediately, all of them are sent to the
enhancement layer for further non-linear transformation to
preserve the character of inputs. The defuzzification outputs
of all fuzzy subsystems and the outputs of the enhance-
ment layer are combined to obtain the model output. The
parameters of F-BLS consist of the weights connecting the
outputs of the enhancement layer to the final output layer
and the coefficients in the following part of fuzzy rules in
every fuzzy subsystem, which can be calculated by pseudo-
inverse rapidly. Therefore, F-BLS can still retain the fast
computational nature of BLS.

D. OTHERS SERIES MODELS FOR IMAGE PROCESSING
Deep learning is rich in connotation. Next, we will continue
to introduce several classical frameworks of deep learning.
Some of these networks aim at improving the drawbacks
of deep neural network. And some networks try to extend
the deep learning framework beyond the non-neural network
system.

1) DEEP FOREST
The multi-grained cascades Forest (gcForest or Deep For-
est [100]), which is a novel decision tree ensemble method,
can work well even when there are only small-scale train-
ing data. This ensemble method can generate a deep forest
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FIGURE 18. The architecture of deep forest: there are three classes for
sample x [100].

(see in Fig.18), with a cascade structure which enables gcFor-
est to do representation learning. Also, the main advantage of
the deep forest is that the number of cascade levels can be
adaptively determined such that the model complexity can be
automatically set.

First of all, one of the essential concepts in gcForest is the
forest, which can regard as an ensemble classifier consist-
ing of multiple decision trees. For example, suppose there
are three classes, then each of the forests will produce a
three-dimensional class vector. Moreover, the class vector
of sample x can obtain by averaging across all trees class
vector for this forest. Here, the number of trees in the forest
is a hyperparameter. Further, one can apply different types of
forests to encourage diversity, and diversity is crucial for an
ensemble framework. For example, gcForest uses two com-
pletely random tree forests and two random forests, in which
each completely-random tree forest contains 500 completely
random trees, and each random forest also includes 500 trees.
Therefore, for the cascade forest structure, we have the fol-
lowing illustrations in Fig.19. Here y is the final prediction
for input feature vector x. Concatenate operations can be
used to avoid excessive attenuation of information with the
deepening of the level.

FIGURE 19. The cascade forest structure: there are three classes for
sample x at each forest [100].

Further, inspired by the local receptive field of CNN, slid-
ing windows are used to enhance cascade forest. Then we
have scanned for input feature vector. For example, suppose
there are 100 dimension raw features x and a window size
of 10 features is used in Fig.20, then 91 local feature vectors
are produced by sliding the window, and the dimension of
each local feature vectors is 10, these instances extracted from
the same size of windows will be used to train a completely-
random tree forest and a random forest, and then the

FIGURE 20. Scanning strategy: feature re-representation using the sliding
window scanning [100].

class vectors are generated and concatenated as transformed
features.

Finally, we can construct the overall procedure of gcForest
by the above cascade forest structure and scanning. That is,
given a feature vector x, corresponding transformed feature
representation can obtain by multi-grained scanning proce-
dure, in other words, scanning with multi-sliding window
size; and then go through the cascade till the last level,
the final prediction will obtain via an average and maximum
operation. More importantly, hyperparameters of gcForest
include four parts, ones are the number of trees in a for-
est, second is the number of the different forest for diversity
and the number of the forest for scanning, third is the number
of levels for cascade forest structure, and fourth is the number
of sliding window size. The same with traditional deep neu-
ral networks, gcForest can also achieve highly competitive
generalization performance. Further, gcForest can also be
regarded as a definite attempt of deep learning of non-neural
networks.

2) ADMM-NET
ADMM-Net, which is a novel deep network architecture,
can derive from the iterative procedures in ADMM algo-
rithm [77], [101]. It is application motivation is that it
improves the current magnetic resonance imaging system in
reconstruction accuracy and speed.

As a starting point, we introduce ADMM algorithm.
Assume x is an image to be reconstructed, and y is the
observed image or under-sampled image, then we have the
following generalized compressed sensing problem,

min
x

1
2
‖y− Ax‖22 +

L∑
l=1

λlg(Dlx) (50)

where A , 9F is a measurement matrix and 9 is an under-
sampling matrix, F is a Fourier transform.Dl denotes a trans-
form matrix for a filtering operation, g(·) is a regularization
function derived from the data prior, such as sparse prior.
This optimization problem can be solved efficiently by the
ADMM algorithm. Concretely, we use the norm equation for
simplicity,

‖t1 − t2‖22 = ‖t1‖
2
2 + ‖t2‖

2
2 − 2 < t1, t2 > (51)
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and its augmented Lagrangian function is:

min
x,β,z

1
2
‖y− Ax‖22 +

L∑
l=1

[
λlg(zl)+

ρl

2
‖Dlx + βl − zl‖22

]
(52)

where β = [β1, · · · , βL] and z = [z1, · · · , zL]. and ρ =
[ρ1, · · · , ρL] are penalty parameters. Further, Eq.(52) can be
solved the following three sub-problems:

minx
1
2
‖y− Ax‖22 +

L∑
l=1

[ρl
2
‖Dlx + βl − zl‖22

]
minz

L∑
l=1

[
λlg(zl)+

ρl

2
‖Dlx + βl − zl‖22

]
minβ

L∑
l=1

[ρl
2
‖Dlx + βl − zl‖22

]
(53)

Substitute A = 9F into Eq.(53), then the three sub-problems
have the following solutions:

X (n)
: x(n) = FT

[
9T9 +

∑L
l=1 ρlFD

T
l DlF

T
]−1

×

[
9T y+

L∑
l=1

ρlFDTl
(
z(n−1)l − β

(n−1)
l

)]
Z(n) : z(n)l = S

(
Dlx(n) + β

(n−1)
l ,

λl

ρl

)
β(n)
: βnl = β

(n−1)
l + ηl

(
Dlx(n) − z

(n)
l

)
(54)

where n denotes n-th iteration, S(·) is a non-linear shrinkage
function with parameters λl/ρl , and ηl is an update rate for
updating the multiplier. Here X (n), Z(n) and β(n) denotes three
types of solutions.

Based on the above iterative algorithm in the ADMM
algorithm, Basic ADMM-Net can design by the following
steps; the first is that generalizes X (n) to reconstruction layer,
the second is that decomposes Z(n) to convolution layer and
non-linear transform layer, the third is that extends β(n) to
multiplier update layer. Concretely, for reconstruction layer,
we have rewritten as,

X (n)
R : x

(n)

= FT
[
9T9 +

L∑
l=1

ρ
(n)
l FH (n)T

l H (n)
l FT

]−1
×

[
9T y+

L∑
l=1

ρ
(n)
l FH (n)T

l

(
z(n−1)l − β

(n−1)
l

)]
(55)

where H (n)
l is the l-th filter with size of wf × wf in the

iteration stage n, and replace the fixed Dl in Eq.(54). For
convolution layer C(n), we have D(n)

l ⊗ x(n) replace Dlx(n),
and l = 1, 2, · · · ,L. For non-linear transform layer N (n),
the output of this layer is defined as,

z(n)l = S
(
c(n)l + β

(n)
l

)
(56)

where S(·) is a piecewise linear function determined by a set
of control points. Finally, for multiplier update layer β(n)

R ,
we have

βnl = β
(n−1)
l + η

(n)
l

(
c(n)l − z

(n)
l

)
(57)

where η(n)l is a parameter to be learned. Compare to convo-
lution flow in CNNs, here new version convolution flow in
stage n can be represented as

· · · → X (n)
R → C(n)

→ N (n)
→ β

(n)
R → · · ·

In this novel deep architecture, its purpose to learn param-
eters includes H (n)

l and ρ(n)l for reconstruction layer, D(n)
l

for convolution layer, and η(n)l in multiplier update layer.
Obviously, immediate reconstruction result at each stage can
be visualized under each reconstruction layer.

3) CapsuleNet
To breakthrough of scalar input and scalar output restric-
tions for traditional neurons, an innovative capsule unit was
proposed that can output an activity vector represents the
instantiation parameters of a specific type of entity such as
an object or an object part, which can regard as vector version
of neurons. Naturally, each layer of the CapsuleNet [102] is
made up of some capsules; its main advantage is to make full
use of spatial relations of data.

To keep a clear understanding of the CapsuleNet archi-
tecture, a simple CapsuleNet architecture which based on
traditional CNN shows in Fig.21, and this architecture is
relatively shallow with only two convolutional layers and one
fully-connected layer.

FIGURE 21. The framework of CapsuleNet with three layers [102].

Assume the input x ∈ R28×28, and the label y ∈ R10.
Conv1 has 256 convolution kernels ( 9 × 9) with a stride of
1 and ReLU activation. Therefore, the output of conv1 can
express as,

h(1)i = ReLU (x ⊗W (1)
i ) ∈ R20×20 (58)

where W (1)
i ∈ R9×9 denotes i-th convolution kernels of first

hidden layer and i = 1, 2, · · · , 256.
Further, the second layer (or Primary Capsules) is a con-

volutional capsule layer with 4 primary capsules, and each
primary capsule contains eight convolutional units with a
9× 9 kernel and a stride of 2, that is,

h(2)j,s = h(1) ⊗W (2)
j,s =

256∑
k=1

h(1)k ⊗W (2)
j,s,k ∈ R6×6 (59)
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where W (2)
j,s,k ∈ R9×9, and subscript k denotes convolution

kernels, smeans convolutional units and j represents primary
capsules. In addition, s = 1, 2, · · · , 8 and j = 1, 2, 3, 4.
For simplicity, then the output of the second layer can be
rewritten as,

h(2) ∈ R4×6×6×8 (60)

Meanwhile, primary capsules of the second layer can be
viewed as 4 × 6 × 6 capsules, and each capsule is an
8-dimension vector. Without loss of generality, for each cap-
sule, we have,

u(2)s , h(2)(j, u, v, :) ∈ R8 (61)

where s = j×u×v, and u, v = 1, 2, · · · , 6. Notably, no rout-
ing is used between Conv1 and primary capsules. Further,
considering the number of categories is 10 for MNIST, so the
number of digit capsules is 10. Concretely,

h(3)r = Squash
(∑

s

Cr,sW (3)
r,su

(2)
s

)
∈ R16 (62)

where Squash(·) is a non-linear function to ensure that short
vectors get shrunk to almost zero length and long vectors get
shrunk to a length slightly below 1, and r means the r-th
category, r = 1, 2, · · · , 10. Specially, weight matrixW (3)

r,s ∈

R16×8, and the parameter Cr,s ∈ R is coupling coefficient
that are determined by the iterative dynamic routing process.
To allow for multiple digits, we use a separate margin loss,

Lr (x) = Tr max
(
0,m+ −

∥∥∥h(3)r ∥∥∥ )2
+ λ(1− Tr ) max

(
0,
∥∥∥h(3)r ∥∥∥− m−)2 (63)

where Tr = 1 iff a digit of class k is present, and the parameter
m+ = 0.9, m− = 0.1.

Finally, for the input x, the total loss is simply the sum of
the losses of all digit capsules, that is,

L(x) =
10∑
r=1

Lr (x) (64)

During the training phase, for all input samples {xn}Nn=1, then
we can solve the correspond parameter by the optimization
loss function

∑
n L(xn). For the testing phase, we can take ŷ(r)

equals Lr (x), then the final prediction ŷ = [ŷ(1), · · · , ŷ(10)].
Undoubtedly, a simple capsules system already gives unpar-
alleled performance at segmenting overlapping digits is
an early indication that CapsuleNet are a direction worth
exploring.

4) ML-CSC
ML-CSC [42], which consists of a cascade of convolutional
sparse layers, can provides a new interpretation of CNNs.
First, we give a concrete example for better understanding
CSC model. assume x ∈ R25 admits a decomposition as
Dα, where α ∈ R(25·m) is sparse and the dictionary D ∈
R25×(25·m) has a convolutional structure. Precisely, this dic-
tionary consists of m local n-dimensional filters at every
possible location, where m denotes the width of stripe for

FIGURE 22. The principle of CSC.

convolutional structure. For example, m = 2 and n = 5, then
CSC model can be shown in Fig.22, Further, each jth patch
Pjx ∈ Rn(&R5) from the signal x can be expressed in terms
of a shift-invariant local model corresponding to a stripe from
the global sparse vector, Sjα ∈ R(2n−1)m(&R18), where Pj
can be viewed as patch extraction, Sj is a patch extractor in
transform space.

In the context of CSC, the sparsity of the representation is
better captured through the l0,∞ pseudo-norm. Formally,

‖α‖s0,∞ , max
j

∥∥Sjα∥∥0 (65)

Given a convolutional dictionary of appropriate dimension,
a signal x admits a representation in terms of the CSC model
if satisfy,

x = Dα, ‖α‖s0,∞ ≤ K (66)

where K ∈ N is the sparsity degree.
We can expand CSC model to ML-CSC, that is, given

a set of convolutional dictionaries {Dl}Ll=1 of appropriate
dimensions, a signal x admits a representation in terms of the
ML-CSC model if satisfy,

x = D1α1, ‖α1‖
s
0,∞ ≤ K1

α1 = D2α2, ‖α2‖
s
0,∞ ≤ K2

· · ·

αL−1 = DLαL , ‖αL‖
s
0,∞ ≤ KL

(67)

where Kl is the sparsity degree, l = 1, 2, · · · ,L, L is the
number of layers. Interestingly, the ML-CSC can interpret as
a special case of the CSC model. Finally, these sparse coeffi-
cients αl can be solved by the deep coding algorithm [103].

FIGURE 23. The architecture of VAE.

5) VAE
VAE is scalable and powerful generative models for unsu-
pervised representation learning, which can encode a data
sample to a latent representation and generate samples from
the latent space, respectively [104]. In this framework, see
in Fig.23, assumed that the input data set is controlled by
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a set of latent hidden variables z that are independent of each
other and obey a Gaussian distribution N (µ, σ 2), where µ
is mean, and σ 2 is variance. If we sampling z-variables with
z ∼ N (µ, σ 2), then BP algorithm cannot proceed through the
parameters of the latent distribution.

In practice, VAE can uses a trick of re-parametrization,
which can find the following variational approximation,

N (µ, σ 2) ≈ µ+ σ 2N (0, 1) (68)

where N (0, 1) is a standard Gaussian distribution. In other
words, if ε ∼ N (0, 1), then z = µ+σ 2

· ε and z ∼ N (µ, σ 2).
Therefore, parameters µ and σ 2 can also be iterative updated
by BP algorithm. More concisely, we have the following
relationship for the encoder and sample,

h = tanh(W ex + be)
µ = Wµh+ bµ
σ 2
= Wσ 2h+ bσ 2

z = µ+ σ 2ε

(69)

where ε ∼ N (0, 1), and the dimension of ε is same size to z.
For the decoder, {

ĥ = tanh
(
W ĥz+ bĥ

)
x̂ = tanh(Wd ĥ+ bd )

(70)

Further, The objective function for model optimization is
the reconstruction error between x and x̂. Generally, recon-
struction error can also use cross-entropy or MSE. Here,
we can use MSE, that is,

L(θ ) =
1
M

M∑
i=1

∥∥xi − x̂i(θ )∥∥22 + λKL(µ, σ 2) (71)

where M is the number of training samples, KL(µ, σ 2) is
to measure similarity in Eq.(68) ( KL divergence essentially
estimates how different two probability distributions are) and
can be written as,

KL(µ, σ 2) =
1
2

(
1+ log σ 2

− µ2
− σ 2) (72)

The critical takeaway is that a VAE can be trained end-to-end
using the classical BP algorithm.

6) PCANet
PCANet is an elementary deep learning network for image
classification, which comprises only the fundamental data
processing components: cascaded PCA, binary hashing,
and block-wise histograms [80]. In the PCANet, PCA is
employed to learn multistage filter banks and followed by
simple binary hashing and block histograms for indexing and
pooling.

Like most ConvNet models, the network hyperparameters
such as the number of layers, the filter size, and the number
of filters have to given to PCANet. Once the parameters
fixed, the training optimization of PCANet is effortless and
efficient, for the filter learning in PCANet does not involve
regularized parameters and does not require numerical opti-
mization solver.

7) DDL
DDL seeks multiple dictionaries at different scales to capture
complementary coherent characteristics [81]. This frame-
work can use for learning a hierarchy of synthesis dictionaries
with an image classification goal. Specifically, we can train
the dictionaries and classification parameters by a classifi-
cation objective, and extract the sparse features by reducing
a reconstruction loss in each layer. The reconstruction objec-
tives, in some sense, regularize the classification problem and
inject source signal information in the extracted features. The
performance of the proposed hierarchical method increases
by adding more layers, which consequently makes this model
easier to tune and adapt. Finally, the DDL algorithm is rela-
tively robust to adversarial perturbation and random noises.

III. FEASIBILITY ANALYSIS OF THE APPLICATION OF
NEW GENERATION DEEP LEARNING IN
IMAGE PROCESSING
With the improvement of deep learning theories and tech-
niques, the significant progress and revolution have taken
place in the field of image processing and computer vision.
Although natural images, remote sensing images, and med-
ical images do not share the same structure, deep network
classifiers can still successfully extract the semantics. This
section aims to provide an overview of the various image
application domains where deep learning has garnered much
interest.

A. IMAGE CLASSIFICATION
Deep learning thrives with large neural networks and large
datasets. One key ingredient for success of deep learning
in image classification is the use of convolutional archi-
tectures [105]–[109]. For example, deep CNNs has shown
state-of-art classification performance on datasets such as
ImageNet, a large visual database designed for use in visual
object recognition software research. In addition, a dramatic
2012 breakthrough in solving the imageNet challenge [26] is
widely considered to be the beginning of the deep learning
revolution (see in Fig.24). From then on, many innovative
deep frameworks based on CNNs was proposed for imagenet
classification tasks, such as AlexNet, GoogleNet, VGG, and
ResNet, etc. In other words, ImageNet large scale visual
recognition challenge (ILSVRC) greatly promotes the devel-
opment of deep CNNs.

Meanwhile, scientific researchers have put forward various
training techniques one after another. For example, to reduce
over-fitting in the globally connected layers, a new regular-
ization method dropout that proved to be very useful. Further-
more, BN is a very effective regularization method that can
accelerate the training of large conglomerate networks many
times. Further, the obtained higher accuracy can implement
by updating the residual module to use identitymappings, and
so on.

ELM has demonstrated better generalization performance
with extreme fast learning speed in many benchmarks and
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FIGURE 24. Accuracy for ImageNet datasets classification challenge with
various classical deep CNN models.

real applications. Compared with the performance of support
vector machine (SVM), the classification performance of
ELM shows that ELM has better generalization performance
with much less training time on majority cases than SVM for
both feature extraction methods.

Furthermore, the improvement algorithms, which based on
ELM-RVFL, have a significant improvement in classifica-
tion accuracy rate. For examples, the improvement algorithm
H-ELM and BLS not only achieves state-of-art results but
also shortens the training time from days (spent by deep learn-
ing) to several minutes (by ELM) in MNIST OCR dataset,
traffic sign recognition and 3D graphics application, Norb,
Fashion MNIST, SVHN, etc. However, on some complex
datasets (such as CIFAR 10/100 and ImageNet datasets),
ELM series algorithms still need further improvement and
combined with the prior of an image to achieve excellent
generalization performance, there is still a long way to go.

Though deep neural networks are robust, they have some
apparent deficiencies. One is that a massive amount of train-
ing data usually required for training deep neural networks,
which can disable few-shot learning. The other is that deep
neural networks are very complicated models and powerful
computational facilities traditionally needed for the training
process. More importantly, deep neural networks are with
too many hyperparameters, and the learning performance
depends seriously on the careful tuning of them [110]. For
small-scale datasets, the GAN series can generate more dif-
ferent style samples to promote the generalization perfor-
mance of the deep discriminative model for classification
tasks. At the same time, it also provides a practical solution
to the small sample problem. For the enormous hyperpa-
rameters, deep forest, which is a novel decision tree ensem-
ble method, can achieve better classification performance
by much fewer hyperparameters. However, the deep forest
still needs further improvement on more complex datasets.
In short, facing a variety of classification applications, a spe-
cific deep method is not omnipotent for classification tasks.
Two ways motivate the continuous development of deep
learning, one is application tasks, and data characteristics,
more training tricks (including BN, dropout, early stopping,

momentum, and so on) and suitable deep models, such as
CV-CNN, and the other is the enhancement of model expres-
sive ability that is independent of data, such as CapsuleNet.

In TABLE 4, We summarize some benchmark datasets
and corresponding deep learning methods commonly used
in image classification. Compared with the classical models,
these new generation models are intended to highlight novel
framework/architecture design and relatively excellent gen-
eralization performance.

B. STYLE TRANSFER
Rendering the semantic content of an image in different styles
is a problematic image processing task [111]. Concretely,
transferring the style from one image onto another can be
considered a problem of texture transfer. In other words,
the output must be semantically similar to the input despite
changes in texture for style transfer. The drawback of previ-
ous traditional methods (without the support of deep learning)
lies in the use of low-level features of target images to inform
the texture transfer. Ideally, a style transfer algorithm should
be able to extract the semantic image content from the target
image and then inform a texture transfer procedure to render
the semantic content of the target image in the style of the
source image.

FIGURE 25. Style transfer based on CNNs architecture with image
transform networks.

Next, we introduce a framework of style transfer based on
the deep CNN (see in Fig.25), concretely, how the generic
feature representations learned by CNN can be used to inde-
pendently process and manipulate the content and the style of
natural images. As shown in Fig.25, the framework consists
of two components; one is image transform network fW ,
the other is loss network (here is VGG-16) that is used to
define style/feature loss functions. For style transfer tasks,
each input image x correspond to a content target yc and
style target ys. In addition, the content target yc is the input
image x, that is, yc = x. Generally, the image transform
network is a deep ResNet with parameters W , which can
transform x into output images y via the mapping y = fW (x).
Further, to measure differences in content and style between
y and yt = (yc, ys), feature reconstruction loss lfeat and style
reconstruction loss lstyle can be defined. The right half of
Fig.25 is a classical VGG-16 network, which is pre-trained on
the ImageNet dataset. Further, The image transform network
can be trained using stochastic gradient descent to minimize
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TABLE 4. Some classical benchmark datasets and models for image classification.

the following weighted combination of loss functions,

min
W

J (W ) =
1
4

4∑
i=1

λil(i)
(
y(i), y(i)t

)
(73)

where y(i) and y(i)t is the output image and target image of
i-th layer for loss network, respectively. And l(i) is the loss
function of i-th layer for loss network, that is,l

(i) ,
(
l(i)style, l

(i)
feat

)
y(i)t ,

(
y(i)style, y

(i)
feat

) (74)

For i = 0, we have y , y(0) = fW (x) and yt , y(0)t .
In addition, for the definition of feature reconstruction loss
and style reconstruction loss, please refer to the correspond-
ing references.

Unlike the previous style transfer with image trans-
form network, let’s introduce a simple style transfer algo-
rithm [112] based on CNN in Fig.26. First, the style image is
passed through the Fig.26 network and its style representation
on all layers included are computed and stored. The content
(or input) image passed through the same network, and the
content representation in one layer (such as the fourth layer’s
feature maps) is stored. Second, a random white noise image
also passed through the same network, and its style features

FIGURE 26. Style transfer based on CNN architecture.

and content features can be computed. On each layer included
in the style representation, style loss can obtain, and the
content loss in one layer can also compute.

Finally, the total loss is a linear combination of the con-
tent loss and the style loss, and its derivative concerning
the pixel values of noise image can be computed using the
BP algorithm. This gradient is used to iteratively update
the noise image until it simultaneously matches the style
features of the style image and the content features of the
content image. Indeed, many CNNs frameworks can be used
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to extract abstract feature maps [113]. Therefore, the scheme
of CNN can be used to transfer image style between arbitrary
images is feasible.

C. OBJECT DETECTION
Object detection is one of the critical problems to be solved
for the development of a complete scene understanding sys-
tem, which has been recently successfully addressed with
deep CNN giving a significant breakthrough [114], [115].
In particular, recent advances are mainly driven by the suc-
cess of region proposal methods and region-based CNN
(R-CNN). Furthermore, the R-CNN can train CNN end-to-
end to classify (SVM classifier) the proposal regions into
object categories or background, in which detection accuracy
depends on the performance of the region proposal module.
Further, Fast R-CNN, which is the improvement version of
R-CNN, using ultra-deep networks with a softmax classifier
to classify the proposal regions.

Generally, the selective search is one of the most popular
methods for region proposal module and consumes in much
running time as the detection network. Region proposal net-
works (RPN [89]) is designed to predict region proposals
efficiently and to improve region proposal quality. By uni-
fying RPN with Fast R-CNN, the obtained Faster R-CNN
can significantly reduce the running time of previous detec-
tion networks. Besides, In ILSVRC and COCO 2015 com-
petitions, Faster R-CNN and RPN are the basis of several
1st-place entries in the tracks of ImageNet detection.

Further, Mask R-CNN, which based on Faster R-CNN, can
predict binary segmentation mask on each region of interest,
was proposed to fix the pixel-to-pixel misalignment between
network inputs and outputs for Faster R-CNN. Based on
ResNet-101, Mask R-CNN [55] surpasses the winner of the
2016 COCO key-point competition, and achieve an average
mask precision of 35.7 and running at 5 fps on the COCO
test sets.

As is known to all, the two-stage object detection method
represented by the R-CNN series has performed well in terms
of accuracy. This kind of network model conducts object
detection in two steps. Firstly, all candidate object regions are
selected, and then classification and regression are conducted
for each candidate region. However, the main disadvantage
of those two-stage methods is its slow detection speed.
Different from the idea of two-stage target detection, the one-
stage method is to divide the region directly on the original
image and carry out classification and regression prediction.
However, the main disadvantage of the one-stage method is
that the positive and negative samples of the bounding box
(bbox) are extremely unbalanced, resulting in poor accuracy.
To effectively control the ratio of positive and negative sam-
ples and prevent the occurrence of imbalance, researchers
proposed a new classification loss function Focal loss based
on the cross-entropy loss function.

To further verify the validity of Focal loss, researchers
further designed RetinaNet [149]. RetinaNet is a single,
unified network composed of a backbone network and two

task-specific subnetworks, The backbone is responsible for
computing a convolutional feature map over an entire input
image and is an off-the-self convolutional network. The first
subnet performs convolutional object classification on the
backbone’s output; the second subnet performs convolutional
bounding box regression. The structure of the RetinaNet
network is very concise. Note that the original intention of
researchers is not to innovate the network structure, but to
verify the effectiveness of Focal Loss. Experimental results
show that RetinaNet can achieve an excellent balance in
recognition accuracy and speed.

In TABLE 5, We summarize some benchmark datasets
and corresponding deep learning methods commonly used
in object detection. Compared with the classical models,
these new models are also intended to highlight novel frame-
work/architecture design and relatively excellent generaliza-
tion performance. In addition to the target detection methods
described above, the H-ELM-based fast detection algorithm
consists of two parts [97]; one is that a sliding window
is used to extract a fixed-size image patch, the other is to
design classifier based on H-ELM. It is worth pointing out
that this framework can achieve excellent performance on
some simple object detection datasets without any additional
samples preprocessing. For practical and complex computer
vision applications, the ELM series still need to explore the
functions of robust feature extraction and classifier.

D. SUPER RESOLUTION
Single image super-resolution (SR) aims to reconstruct a
high-resolution (HR) image from one single low resolu-
tion (LR) input image. As the pioneer CNN model for SR,
SRCNN predicts the non-linear LR-to-HR mapping function
via a FCN and significantly outperforms classical non-deep
learning methods [53]. However, one fundamental problem
remains unsolved mainly: how does one recover the finer tex-
ture details when super-resolution at large up-scaling factors?

In recent years, GANs can provide a robust framework
for generating plausible-looking natural images with high
perceptual quality. Naturally, SRGAN [116] (see in Fig.27),
which is a GAN-based network optimized for a new percep-
tual loss, can recover photo-realistic textures from heavily
down-sampled images of public benchmarks. Further, a dis-
criminator network D which can optimize in an alternating
manner along with G to solve the following adversarial min-
max problem:

min
θG

max
θD

EILR∼Ptrain(ILR)
[
log

(
1− DθD (GθG (I

LR))
)]

+EIHR∼Ptrain(IHR)
[
log

(
DθD (I

HR)
)]

(75)

Generally, it allows training a generative model G to fool
a differentiable discriminator D that is trained to distinguish
SR (or generated) images from real images. Without loss
of generality, for training samples IHRn with corresponding
ILRn , n = 1, 2, · · · ,N . θG can be solved by the following
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TABLE 5. Some classical benchmark datasets and models for object detection.

FIGURE 27. The framework of SRGAN for super resolution.

loss function,

min
θG

1
N

N∑
n=1

lossSR
(
IHRn ,GθG (I

LR
n )

)
(76)

where lossSR is perceptual loss function, it can be divided
into content loss and adversarial loss. Moreover, the gen-
erator model is the core of SRGAN, which illustrated
in Fig.27 are residual blocks with an identical layout.
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FIGURE 28. The training procedure of LAPGAN [95].

Finally, extensive quantitative and qualitative evaluations
on benchmark datasets show that SRGAN can recover the
finer texture details when super-resolution at large up-scaling
factors.

Besides, based on the idea of CGAN, LAPGAN can gener-
ates high-quality pictures based on GAN to solve the problem
of poor quality of data generated by GAN [95]. The frame-
work of LAPGAN is illustrated in Fig.28. Starting with a
64 × 64 input image I from training set, we take I = I0 and
blur and downsample it by a factor of two to produce I1, then
we can up sample I1 by a factor of two, giving a low-pass
version l0 of I0. Further, we compute high-pass h0 = I0l0,
h0 is input to the discriminative model D0 that computes the
probability of it being real vs generated. The same procedure
is repeated at scales 1 and 2, using I1 and I2. At level 3,
I3 is an 8 × 8 image, simple enough to be modeled directly
with a standard GANs G3 and D3. Note that the models at
each level can be trained separately. Moreover, the most sig-
nificant difference between the PGGAN [150] and SRGAN
and LAPGAN are that the structure of the latter two is fixed,
but the structure of PGGAN is continuously changing as the
training progresses. The most significant benefit of this is that
most of the iterations of PGGAN are completed at a lower
resolution, and the training speed is 2-6 times higher than
that of traditional GANs. The main advantage of PGGAN is
that it can generate high-quality samples. There are many HD
pictures in our daily life, the application value of PGGAN is
quite a significant promising.

E. IMAGE COMPRESSION
Image compression plays a crucial role in the transmission
and storage. To reduce storage requires considerable memory,
and degrade transmission requires high bandwidths, previ-
ous methods mainly focus on compressive sensing, which
is a technology-based on sparse coding. Recently, image
compression systems based on deep CNN architecture have
become an active area of research. For example, ADMM-Net
with convolution and non-linear transform can achieve high

FIGURE 29. Global generative compression based on GAN architecture.

reconstruction accuracy for compressive sensing magnetic
resonance imaging, and keeping the computational efficiency
of the ADMM algorithm [101].

Based on deep CNN, a novel CNN architecture can
be designed for semantic perceptual image compression,
which can generate a map that highlights semantically-salient
regions so that they can encode at a higher quality as com-
pared to background regions. To train a deep compression
system with significantly lower bitrates, we can design a
GAN framework (see in Fig.29), which is global generative
Compression, which can be designed to learn a generative
model over images, which viewed as a decoder for image
compression [117]. Besides, Global generative Compression
can be considered to be a combination of GANs and learned
compression. Concretely, with an encoder E and quantizer q,
we can encode the real image x to a compressed representa-
tion c, that is,

c = q
(
E(x)

)
(77)

Then this latent code c can be concatenated with noise v
drawn from a fixed prior distribution Pv, to form the input
vector z = [c, v] of generator G. Further, G can generate an
decompress image x̂ = G(z) that is consistent with the real
image distribution Px . This process can be expressed by the
following loss function,

min
E,G

max
D

Ex∼Px
[
log(D(x))

]
+Ev∼P(v)

[
log(1− D(G(z)))

]
+ λE

[
d(x,G(z))

]
+ βH (c) (78)
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where β balances the distortion term against the GAN loss
function and entropy terms, and d is a loss that measures
how perceptually similar x̂ to x, H is entropy to estimate
the average number of bits on representation vector c. Also,
a finite quantizer q given in advance.

Finally, Global generative compression based on GAN can
significantly accelerate the convergence of the network, and
preserving the overall image content while generating the
structure of different scales [118].

F. SEMANTIC SEGMENTATION
Semantic segmentation understands an image at the pixel
level, i.e., assign each pixel in the image an object class.
For the semantic segmentation, one of the popular initial
deep learning approaches was patch classification, where
each pixel was separately classified using a patch of the
image around it. However, the computational efficiency of
this patch-wise training is too low. Furthermore, the required
fixed size patch images are also very hindrance. To address
these issues, FCN allows segmentation maps to be generated
for the image of any size and is also much faster compared
to the patch classification approach. The main advantages
of FCN framework are that replace fully connected layers
with convolutional layer and implement end-to-end train-
ing. Almost all the following state of the art approaches on
semantic segmentation adopted this design method. Next,
we introduce the following two representative improvements
on FCN architecture.

First, apart from fully connected layers, one of the main
problems with using CNN for segmentation is pooling lay-
ers, which can make the where information was discarding.
To tackle this issue, SegNet is designed to be an efficient
encoder-decoder architecture for pixel-wise semantic seg-
mentation [119]. In Fig.30, for the encoder part, we can
discard the fully connected layers in favor of retaining
higher resolution feature maps at the deepest encoder output.
In addition, each encoder layer has a corresponding decoder
layer. Then the final output of SegNet is fed to a softmax
classifier to produce class probabilities for each pixel inde-
pendently. Notably, the main advantage for SegNet is using
pooling indices transferred to the decoder to improve the
segmentation.

FIGURE 30. The framework of SegNet for object segmentation.

Second, themajor disadvantage of FCN is a lack of suitable
strategy to utilize global scene category clues. To incor-
porate appropriate comprehensive features, spatial pyramid

pooling can embed in the FCN-based network, the obtained
PSPNet [120] can capture both local and global context infor-
mation to make the final prediction more reliable.

Most deep networks architecture on semantic segmenta-
tion use natural image datasets can not directly applicable
to biomedical images. The U-Net can achieve outstanding
performance on biomedical image segmentation, which can
view as the extent of FCN architecture. Notably, the main
idea of U-Net is to supplement a usual contracting network by
successive layers, where pooling operators can replace by up-
sampling operators. MOreover, the main advantage of U-Net
is that it works with very few training images and yields
more precise segmentation [121]. Meanwhile, U-Net applies
to various biomedical segmentation tasks.

In TABLE 6,We also summarize some benchmark datasets
and corresponding deep learning methods commonly used in
semantic segmentation. Compared with the classical models,
these new generation models are also intended to highlight
novel framework or architecture design and relatively excel-
lent generalization performance.

G. IMAGE DENOISING
Image denoising can be described as the problem of mapping
from a noisy image to a noise-free image. The best currently
available denoising methods approximate this mapping with
cleverly deep learning algorithms. Deep learning technolo-
gies can be chosen for image denoising based on the follow-
ing three reasons. First, deep network architecture can learn
more extractions. Second, BN and ReLU can accelerate the
training speed of deep networks. Third, deep learning models
can train more samples and improve efficiency employing
GPU [35].

DnCNNs can use BN and ResNet to perform image denois-
ing [151]. This framework not only deals with blind image
denoising, but also addresses image super-resolution task,
and JPEG image deblocking. Fig.31 illustrates the architec-
ture of the DnCNN. The input of our DnCNN is a noisy
observation of y = x + z, where z is additive noise, and x is a
clean image. One can adopt the residual learning formulation
to train a residual mapping R(y) ≈ z, and then we have a
clean image of x = y − R(y). For N noisy-clean training
image (patch) pairs (xi, yi)Ni=1, then we have the following
optimization object function,

J (θ ) =
1
2N

N∑
i=1

‖R(y, θ)− (yi − xi)‖2F (79)

where θ denotes the trainable parameters in DnCNNs, exper-
iments demonstrate that DnCNN can exhibit high effective-
ness in several general image denoising tasks.

Many other typical methods also obtain excellent perfor-
mance for image denoising. For example, the fusion of the
dilated convolution and ResNet is used for image denoising,
and this framework is fit for combing disparate sources of
experts of image denoising [152]. FFDNet can uses noise
level map and noisy image as an input to deal with different
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TABLE 6. Some classical benchmark datasets and models for semantic segmentation.

FIGURE 31. The architecture of DnCNNs [151].

noise levels [153]. IRCNN can fuses the model-based opti-
mization method and CNN to perform image denoising,
which can deal with different inverse problems and multiple
tasks with one single-mode [154].

H. OTHER IMAGE PROCESSING TASKS
In addition to the above image processing tasks, we will
briefly introduce some of the successful applications of deep
learning technology.

First, let us start with the image retrieval task. CBIR is one
of the fundamental research challenges extensively studied in
the multimedia community for decades. However, the seman-
tic gap issues that exist between low-level image pixels
captured by machines and high-level semantic information

perceived by a human is still one of the most challeng-
ing problems in current CBIR research. Among various
techniques, deep CNN has been actively investigated as a
promising direction to bridge the semantic gap in the long
term [122]. On the one hand, deep CNN can obtain useful
high-level feature representations of images using large-scale
network architecture. On the other hand, a deep CNN model
on classification or similarity loss function can be retrained
easily since the features extracted by the pre-trained deep
CNN model may not be better than the traditional hand-
crafted features [123].

Second, for the change detection, it means two images
of the same area can be captured at two different time
instances, and then these two images are processed to
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identify the changes part, the output is a binary change
map, which indicates the location of the changes. Generally,
the goal of change detection is to detect significant changes
while rejecting unimportant ones by preprocessing operations
(i.e., geometric and radiometric adjustments). In recently,
Deep learning has a powerful ability to learn abstract fea-
tures. In particular, as the unsupervised deep learning meth-
ods successively proposed, such as GAN, VAE, ML-CSC,
therefore researching the application of deep learning tech-
niques to change detection has become a promising research
direction [124], [125].

Third, for face recognition, that is a relatively mature appli-
cation direction for deep learning. In particular, CNN has
achieved promising results in face recognition recently. From
deep hidden identity feature (deepID [126]) to faceNet [127],
CNN plays a very important role in feature extraction. On the
widely used Labelled Faces in the Wild dataset, faceNet can
even achieve a new record recognition accuracy of 99.63%.

IV. CONCLUSION
A. OPEN ISSUES AND COPING STRATEGIES
In practice, the lack of large training datasets with labels
has been repeatedly mentioned for various image processing
application tasks. Therefore this is one of a challenge to apply
large-scale deep learning algorithms [128]. Also, the class
imbalance is a common problem that has comprehensively
studied in classical machine learning, yet minimal systematic
analysis is available in deep learning. Generally, the class
imbalance can degrade the generalization performance of
deep learning. Furthermore, under the specific application
tasks, the prior or spatial correlation of image has not been
fully utilized. As a result, the robustness of the deep network
is weak. Below, we mainly discuss the practical solutions to
these problems and the research directions of the deepmodels
from the following three aspects.

1) FEW-SHOT LEARNING FOR DEEP LEARNING
In general, when the amount of training images with labels
is not large enough, the deep networks can effectively avoid
over-fitting phenomena using the following standard four
methods [128].

• The first is data augmentation; we canmanually increase
the size of the training images; that is, one can produce a
batch of new image sets from the available small training
images by shift, rotation, noise addition, flipping, color
jittering, and random crop.

• The second is regularization; over-fitting can be sup-
pressed by adding a regularization term after the loss
function. However, the disadvantage is the introduction
of a hyper-parameter that requires manual adjustment.

• The third is a dropout; in essence, this is also a regu-
larization method, which can be achieved by randomly
zeroing the output of some neurons in a hidden layer.

• The fourth is adopt the unsupervised layer-wise pre-
training and fine-tuning; that is, layer-wise unsupervised

pre-training can achieve by using AE or RBM, then
adding classification layer to perform supervised end-
to-end fine tuning [129], [130].

Apart from the above four commonly used methods, more
optimization designs framework for deep learning have also
been proposed and applied to few-shot learning. Below,
we introduce some of the most representative network frame-
works.
• The first is the deep generative model, which is a power-
ful way of learning any data distribution function using
unsupervised learning, which can generate a new image
with some variations. Two of the most commonly used
and efficient approaches are VAE and GAN. Notably,
these two approaches have achieved tremendous success
in just a few years. However, an open problem is still
worth exploring is how to generate more detailed and
high-quality images under the premise of guaranteeing
network convergence.

• The second is a recursive cortical network (RCN) [131],
which is a probabilistic and-or graph model in essence.
RCN can acquire the learning ability on small samples
by hierarchical and production modeling. Concretely,
through the separation modeling of the edges and planes
of objects and the hierarchical modeling of complex
changes such as textures and scales, the whole model
has a strong ability of generalization and robustness to
changes in appearance. Naturally, the combination of
probabilistic and graph models and deep networks may
be a promising research direction.

• The third is transfer learning, which focuses on stor-
ing knowledge gained while solving one problem
and applying it to a different but related problem
[132], [133]. For example, we have a classification task
in one domain of interest, but sufficient training image
sets in another domain. If transfer learning can be trained
successfully, then significantly improve the perfor-
mance of learning by avoiding many expensive samples.
Generally, transfer learning works in two similar
domains, and the performance is excellent. However,
the standard of measuring the difference between the
two domains has not improved. Nevertheless, this does
not seem to affect its combination with deep learning
may become the next research hotspot.

• The fourth is bayesian CNN [134], which placing a
probability distribution over the CNN’s kernels, can
offer better robustness to over-fitting on small sample
learning.

2) CLASS IMBALANCE FOR DEEP LEARNING
Classification of imbalanced data sets is a significant research
problem as many real-world image sets have skewed class
distributions in which most images belong to a few majority
classes, and the minority classes contain a limited amount of
other image sets [135]. Many approaches have been proposed
for tackling this issue, and these approaches can be roughly
divided into two categories,

VOLUME 7, 2019 172257



L. Jiao, J. Zhao: Survey on the New Generation of Deep Learning in Image Processing

• The first is data manipulation techniques that target
changing the data distribution to make data sets less
imbalanced. For example, the most common approach
is the sampling, which can operate on the data itself
to increase its balance. However, over-sampling can
quickly introduce undesirable noise with over-fitting
risks, and under-sampling is often preferred to remove
valuable information [136].

• The second is algorithm/model-oriented approaches,
which aim to develop new learning mechanisms to
work for imbalanced images datasets. For example, cost-
sensitive learning, which can assign higher misclassifi-
cation costs to the minority class than to the majority.
More common class imbalanced methods in machine
learning can refer to literature [137], [138].

Although deep learning has reached great success in many
research topics, as mentioned earlier, very few approaches
have been made to target it for imbalanced image data.
Undoubtedly, applying deep learning directly on imbalanced
images datasets may result in poor performance. Below,
we introduce four approaches that may help improve the
performance of deep learning in class imbalance.

• The first is a deep generative model, which can gen-
erate more new images with some variations from the
minority classes. For example, HexaGAN, a generative
adversarial network framework that shows promising
classification performance for class imbalance prob-
lem [155]. However, the convergence of deep generative
models based on minority class image datasets becomes
an insurmountable challenge.

• The second is the deep forest, which can give full play
to the superiority of its basic unit decision tree in class
imbalance. For example, class weights random forest
can be assigned individual weights for each class instead
of a single weight [156]. The validation test on UCI
data sets demonstrates that for imbalanced medical data,
class weights random forest enhanced the overall perfor-
mance of the classifier while producing high accuracy in
identifying both majority and minority class.

• The third is to combine deep CNN with bootstrapping
strategy, and during the bootstrapping process, a set of
pseudo balanced training batches are generated based on
the properties of the data set and fed into the deep CNN
for classification [139].

• The fourth is active learning, which is a more effi-
cient alternative to resampling methods to form a
balanced training image datasets. Naturally, a model
that combines deep learning with active learning can
be one of the most promising direction for class
imbalance [140], [141].

3) PRIOR KNOWLEDGE FOR DEEP LEARNING
With the disappearance of data dividends, deep learning has
increasingly demonstrated its limitations, particularly in rely-
ing on large-scale image datasets with labels and the inability

to use prior knowledge effectively, et., these limitations hin-
der the further development of deep learning [142]. How to
effectively apply a large amount of prior knowledge/rules?
How to make the result of the deep learning model consis-
tent with prior knowledge [143]? Based on the prior knowl-
edge or rules is what bridges the gap between large neural
networks and relatively small datasets, these problems have
gradually become one of the mainstream research directions.

Actually, there are many ways to incorporate prior knowl-
edge into deep neural networks [144], [145]. The simplest
type of prior knowledge often used is weight decay, which
assumes the weights come from a normal distribution with
zero mean and some fixed variance. Then this type of prior
knowledge is added as an additional term to the loss func-
tion. Especially, weight decay can view as the same as the
Bayesian approach to modeling prior knowledge. Similar to
weight decay, it is possible to construct other loss terms
that penalize mappings contradicting our domain knowledge.
However, integrating prior knowledge into deep learning is
not always easy, the main reason is that the main description
of knowledge representation is not an abstract quantitative
feature, but a relationship between features [146]. Also, deep
learning places too much emphasis on the independence of
the system and exclude general prior knowledge. Therefore,
deep learning combined with prior knowledge/rules of the
image may become a breakthrough in solving small sample
problems, but this promising direction still needs further
research.

B. FUTURE TRENDS OF DEEP LEARNING
IN IMAGE PROCESSING
Although deep learning has achieved excellent performance
in some image processing applications, it still needs consider-
able effort to tackle the openness mentioned above problems.
In particular, it would be precious to develop a safe and
efficient deep learning-based image processing system. In the
process of image processing and analysis, security issues
related to deep learning seem to have rarely mentioned. The
security problem here refers to the degradation of general-
ization performance caused by the vulnerability of the model
to several malicious attacks [157]. Of course, there are many
kinds of malicious attacks, such as forging data sets that are
not consistent with the image representation, tampering with
the statistical characteristics of some hidden layer parameters,
abusing the evaluation index of the model, and so on. It is
worth pointing out that the security problem of deep learning
is not unrelated to the black box characteristics of this model.
Once someone attacked the deep learning system, the pos-
sibility of this system repair will decrease [158]. We expect
that security issues will become an essential ingredient and
future trend for designing a deep learning system in image
processing [159].

For complex image processing tasks, simple models do
not seem to be effective, and useful models are often not
simple. Effective models here means that the model can
obtain relatively excellent generalization performance, and
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simple models imply that the capacity of the model is rela-
tively low. For example, ResNet can quickly get more than
90% or even higher test accuracy in CIFAR 10/100 classifi-
cation task but deep stacked auto-encoder network can only
hover around 60% [160]. It is generally accepted that the
ResNet has a more extensive model capacity than the deep
stacked auto-encoder network. Here, the concept of model
capacity involves the number of parameters of the model,
the topological structure of the model, and the complexity of
the model. Note that model complexity is not the only factor
that can determine the performance difference between the
two deep learning models. It should also include parameter
optimization learning mode, training skills, and parameter
initialization. However, the quantification of model capacity
is still a potential research direction in the future. Then the
research result will help us to summarize the models related
to deep learning in specific image processing tasks. Further,
similar to the wavelet base library, the deep learning library
can help us to make an appropriate model selection.

Since it is usually expensive to obtain sufficient annotated
data in several image processing tasks, unsupervised deep
learning have been considered as promising research direc-
tions at all time. The recent breakthroughs in unsupervised
deep learning like the GAN series can provide a gateway
to harness the massive amount of unlabelled image datasets.
In more image compression processing tasks, there is a
higher requirement for the reversibility of the system, which
is different from the deep learning model, including GAN.
Therefore, the development of the reversible deep learning
model is still a potential research direction in the field of
unsupervised learning in the future.

C. CONCLUSION
Nowadays, deep learning has dramatically promoted the
research progress of image processing. Correspondingly, var-
ious applications related to image processing are also helping
the rapid development of deep learning in all aspects of net-
work structure, layer design, and training tricks. Therefore,
the development of deep learning in image processing is in
the ascendant, and there is still a vast space for the future
of AI. However, the deeper structure makes BP algorithm
more difficult. At the same time, the scale of training images
without labels is also rapidly increasing; this urgently requires
more new deep models and a new parallel computing system
to more effectively interprets the content of the image and
form a suitable analysis mechanism. In this context, we have
summarized a new generation of deep learning methods used
in image processing, but also presents the dedicated discus-
sion on open challenges, unsolved problems, and potential
future trends. There are a large number of new developing
deep learning techniques and emerging deep models each
year, here, we provide a comprehensive framework for com-
prehensive understanding towards the critical aspects of this
field, clarify themost important advancements and shed some
light on future studies. More importantly, this survey aims
to help or arouse other researchers to catch a glimpse of the

state-of-the-art deep learning methods in the field of image
processing and facilitate the applications of these deep learn-
ing technologies in their research tasks. By further studying
the relationship between deep learning and image processing
applications, it can not only help us understand the reasons for
the success of deep learning but also inspire new deep models
and trainingmethods.We also hope that our theoretical under-
standing of the properties of deep learning will continuously
improve in the nick of time, as it currently lags far behind the
practice.
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