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ABSTRACT This paper considers the parameter identification for a class of nonlinear stochastic systems
with colored noise. We filter the input-output data by using an estimated noise transfer function and obtain
two identification models, one containing the parameters of the noise model, and the other containing
the parameters of the system model. A data filtering based recursive generalized extended least squares
algorithm is proposed by using the data filtering technique, and a recursive generalized extended least
squares algorithm is derived for comparison. Finally, an example is given to support the proposed algorithms.
Compared with the recursive generalized extended least squares algorithm, the data filtering based recursive
generalized extended least squares algorithm can not only reduce the computational burden, but also enhance
the parameter estimation accuracy.

INDEX TERMS Parameter estimation, bilinear system, data filtering, least squares, recursive identification.

I. INTRODUCTION
Mathematical models are the basis of controller
design [1]–[4] and system analysis [5]–[7]. Many param-
eter estimation methods have been proposed for different
systems [8]–[10] such as linear systems [11]–[13] and non-
linear systems [14]–[16]. Nonlinear systems have received
much attention in the area of signal modeling and system
identification for the past decade [17]. Ma et al studied
the hierarchical identification algorithm for multivariate
Hammerstein systems by using the modified Kalman fil-
ter [18] and filtering-basedmultistage recursive identification
algorithm for an input nonlinear output-error autoregressive
system by using the key term separation technique [19]. The
auxiliary model identification idea can handle the identifica-
tion problems in the presence of the unmeasurable variables
in the information vectors [20]. In this aspect, Guo et al. pro-
posed a recursive least squares algorithm for pseudo-linear
ARMA systems using the auxiliary model [21]; Li et al.
derived an auxiliary model based least squares iterative
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algorithm for parameter estimation of bilinear systems using
interval-varying measurements [22].

The least squares algorithms contain the least squares
based iterative (LSI) algorithms [23]–[28] and the recursive
least squares (RLS) algorithms [29], [30], which are suitable
for the off-line and on-line parameter estimation. Xu et al.
proposed an iterative parameter estimation algorithm for sig-
nal models based on measured data [31]. Wang et al. [32]
derived recursive least squares and gradient algorithms for
Hammerstein-Wiener systems. Information filtering has wide
applications in many areas, e.g., parameter identification [33]
and signal processing [34]. Some filtering based identifica-
tion algorithms have been proposed during the past decade.
Ding et al. derived an iterative parameter identification algo-
rithm for pseudo-linear systems with ARMA noise using
the data filtering technique [35]. Pan et al. [36] derived a
filtering based multi-innovation extended stochastic gradient
algorithm for multi-variable control systems.

The bilinear system is a special class of nonlinear
stochastic systems which widely exist in biological engineer-
ing [37], communication engineering [38] and nuclear engi-
neering [39], and the model structure includes the products
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of the inputs and the states. Many identification algorithms
have been proposed for the bilinear systems [40], [41].
Zhang et al. proposed several state-space recursive identifi-
cation algorithms for the bilinear systems including a state
filtering-based least squares algorithm with the hierarchi-
cal identification principle [42], a hierarchical approach for
joint parameter and state estimation algorithm [43] and a
combined state and parameter estimation algorithm [44],
which can directly provide the state-space model, but the
computational complexity increases as the dimensions of the
parameter vectors increase. Some identification methods can
be applied to many fields such as transportation and control
community [45]–[47].

The iterative identification algorithms are suitable for the
off-line parameter estimation. The state-space identification
algorithms which are suitable for on-line parameter esti-
mation can directly provide the state-space models, but the
computational complexity increase as the dimensions of the
parameter vectors increase. Different from the iterative algo-
rithms and the recursive state-space identification algorithms,
this paper derives an recursive identification algorithm using
the data filtering technique to reduce the computational bur-
den and enhance the parameter estimation accuracy. Themain
contributions of this paper are as follows.
• Using the data filtering technique, an F-RGELS algo-
rithm is presented to enhance the parameter estimation
accuracy and to reduce the computational burden, which
is suitable for on-line parameter estimation.

• The computational efficiency comparison is discussed
between the RGELS algorithm and the F-RGELS algo-
rithm to illustrate the high efficiency of the F-RGELS
algorithm.

The rest of this paper is organized as follows. Section II
describes the identification model of a bilinear system with
colored noise. Section III proposes a RGELS algorithm by
using the auxiliary model. Section IV derives an F-RGELS
algorithm by using the data filtering technique and discusses
the computational efficiency of the proposed algorithms.
Section V provides an example to verify the effectiveness of
the proposed algorithms. Finally, we offer some concluding
remarks in Section VI.

II. SYSTEM DESCRIPTION AND IDENTIFICATION MODEL
Let us define some notations first. ‘‘A =: X ’’ or ‘‘X := A’’
stands for ‘‘A is defined as X ’’; In denotes an identity matrix
of size n× n; 1n denotes an n× 1 vector whose elements are
all unity; z denotes a unit forward shift operator with zx(t) =
x(t + 1) and z−1x(t) = x(t − 1). The bilinear system can be
expressed as

x(t + 1) = Ax(t)+ Bx(t)u(t)+ lu(t), (1)

y(t) = cx(t), (2)

where x(t) := [x1(t), x2(t), · · · , xn(t)]T ∈ Rn is the state
vector, u(t) ∈ R is the system input, y(t) ∈ R is the system
output, A ∈ Rn×n, B ∈ Rn×n, l ∈ Rn and c ∈ R1×n are the

system parameter matrices and vectors:

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 ∈ Rn×n,

l :=


l1
l2
...

ln−1
ln

 ∈ Rn×1, B :=
[
0
b

]
∈ Rn×n,

c := [1, 0, 0, · · · , 0] ∈ R1×n,

b := [−bn,−bn−1,−bn−2, · · · ,−b1] ∈ R1×n.

Based on the work in [33] to eliminate the state variables
in (1) and (2), the input-output expression of the bilinear
system can be equivalently written as

[A(z)+u(t−n)B(z)]y(t)=C(z)u(t)+D(z)u(t−n)u(t), (3)

where

A(z) := 1+ a1z−1 + a2z−2 + · · · + anz−n, ai ∈ R,
B(z) := b1z−1 + b2z−2 + · · · + bnz−n, bi ∈ R,
C(z) := c1z−1 + c2z−2 + · · · + cnz−n, ci ∈ R,
D(z) := d2z−2 + d3z−3 + · · · + dnz−n, di ∈ R.

The parameters ai, bi, li and the coefficients ci, di have the
following relations:

[cn, · · · , c2, c1] := [ln + an−1l1 + an−2l2 + · · ·

+ a1ln−1, · · · , l2 + a1l1, l1] ∈ R1×n,

[dn, · · · , d3, d2] := [bn−1l1 + bn−2l2 + · · ·

+ b1ln−1, · · · , b1l1] ∈ R1×(n−1).

As the practical processes are usually disturbed by stochastic
noises, we introduce a noise term ω(t) ∈ R to (3), and then
we obtain a bilinear system with colored noise

[A(z)+u(t−n)B(z)]y(t)=C(z)u(t)+D(z)u(t−n)u(t)+ω(t),

(4)

where ω(t) is a stochastic noise sequence with zero mean,
which may be a moving average (MA) process, an autore-
gressive (AR) process or an autoregressive moving average
process (ARMA). Without loss of generality, we consider the
stochastic noise as an ARMA noise.

Consider an ARMA noise,

ω(t) =
F(z)
E(z)

v(t), (5)

where v(t) ∈ R is a white noise sequence with zero mean,
E(z) and F(z) are polynomials in z−1, and

E(z) := 1+ e1z−1 + e2z−2 + · · · + enez
−ne , ei ∈ R,

F(z) := 1+ f1z−1 + f2z−2 + · · · + fnf z
−nf , fi ∈ R.
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Assume that the orders n, ne and nf are all known, and
y(t) = 0, u(t) = 0 and v(t) = 0 as t ≤ 0. Define the parameter
vector θ and the information vector ϕ(t) as

θ :=

[
θ s
θn

]
∈ Rn0 , ϕ(t) :=

[
ϕs(t)
ϕn(t)

]
∈ Rn0 ,

n0 := 4n+ ne + nf − 1,

where

θ s := [a1, a2, · · · , an, b1, b2, · · · , bn, c1, c2, · · · , cn, d2,

d3, · · · , dn]T ∈ Rn1 , n1 := 4n− 1,

θn := [e1, e2, · · · , ene , f1, f2, · · · , fnf ]
T
∈ Rn2 ,

n2 := ne + nf ,

ϕs(t) := [−y(t − 1),−y(t − 2), · · · ,−y(t − n),

−u(t − n)y(t − 1),−u(t − n)y(t − 2), · · · ,

− u(t − n)y(t − n), u(t − 1), u(t − 2), · · · ,

u(t − n), u(t − n)u(t − 2), u(t − n)u(t − 3), · · · ,

u(t − n)u(t − n)]T ∈ Rn1 ,

ϕn(t) := [−ω(t − 1),−ω(t − 2), · · · ,−ω(t − ne),

v(t − 1), v(t − 2), · · · , v(t − nf )]T ∈ Rn2 .

According to the above definitions, Equation (4) can be
written as

y(t) = ϕT
s (t)θ s + ϕ

T
n (t)θn + v(t) (6)

= ϕT
s (t)θ s + ω(t) (7)

= ϕT(t)θ + v(t). (8)

Equation (8) is the identification model of the bilinear system
in (4). The objective of this paper is to develop new recur-
sive algorithms for estimating the parameter vectors θn and
θ s in (6) using the measured input-output data {u(i), y(i) :
i = 1, 2, · · · , t}.
In what follows, a RGELS algorithm is derived for the

bilinear system with colored noise. Furthermore, a F-RGELS
algorithm is presented to reduce the computational burden
and enhance the parameter estimation accuracy. A simulation
example is provided to evaluate the estimation accuracy and
the computational efficiency of the proposed algorithms.

III. THE RECURSIVE GENERALIZED EXTENDED
LEAST SQUARES ALGORITHM
In this section, a RGELS algorithm is proposed based on
the input-output representation of the bilinear system with
colored noise by using the auxiliary model.
Use the input-output data to define the stacked vector Yt

and the stacked matrix Φ t as

Yt :=


y(1)
y(2)
...

y(t)

 ∈ Rt , Φ t :=


ϕT(1)
ϕT(2)
...

ϕT(t)

 ∈ Rt×n0 .

According to (8), define a quadratic criterion function:

J1(θ ) :=‖ Yt −Φ tθ ‖
2 . (9)

Minimizing J1(θ ) and letting its partial derivative with respect
to θ be zero, we can obtain the recursive relations of
computing θ̂ (t):

θ̂ (t) = θ̂ (t − 1)+ L(t)[y(t)− ϕT(t)θ̂ (t − 1)], (10)

L(t) = P(t − 1)ϕ(t)[1+ ϕT(t)P(t − 1)ϕ(t)]−1, (11)

P(t) = [In0 − L(t)ϕ
T(t)]P(t − 1). (12)

However, the information vector ϕ(t) in (10)–(12) contains
the unmeasurable termsω(t−i) (i = 1, 2, · · · , ne) and v(t−i)
(i = 1, 2, · · · , nf ), and then Equation (10) cannot give the
estimate θ̂ (t). The solution is to replace the unknown items
ω(t− i) and v(t− i) in ϕ(t) with their corresponding estimates
ω̂(t − i) and v̂(t − i).
From (7), we haveω(t) = y(t)−ϕT

s (t)θ s. Replacing θ s with
its estimate θ̂ s(t), the estimate of ω(t) can be computed by

ω̂(t) = y(t)− ϕT
s (t)θ̂ s(t).

From (8), we have v(t) = y(t)− ϕT(t)θ . Replacing ϕ(t) and
θ with ϕ̂(t) and θ̂ (t), respectively, the estimate of v(t) can be
computed by

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t).

Replacing ϕ(t) in (10)–(12) with its estimate ϕ̂(t), we can
derive the following recursive least squares relations:

θ̂ (t) = θ̂ (t − 1)+ L(t)[y(t)− ϕ̂T(t)θ̂ (t − 1)], (13)

L(t) = P(t − 1)ϕ̂(t)[1+ ϕ̂T(t)P(t − 1)ϕ̂(t)]−1, (14)

P(t) = [In0 − L(t)ϕ̂
T(t)]P(t − 1). (15)

Combining (10)–(15), we can summarize the recursive gen-
eralized extended least squares (RGELS) algorithm for the
bilinear system as

θ̂ (t) = θ̂ (t − 1)+ L(t)[y(t)− ϕ̂T(t)θ̂ (t − 1)], (16)

L(t) = P(t − 1)ϕ̂(t)[1+ ϕ̂T(t)P(t − 1)ϕ̂(t)]−1, (17)

P(t) = [In0 − L(t)ϕ̂
T(t)]P(t − 1), (18)

ϕ̂(t) =
[
ϕs(t)
ϕ̂n(t)

]
, (19)

ϕs(t) = [−y(t − 1),−y(t − 2), · · · ,−y(t − n),

− u(t − n)y(t − 1),−u(t − n)y(t − 2), · · · ,

− u(t − n)y(t − n), u(t − 1), u(t − 2), · · · ,

u(t − n), u(t − n)u(t − 2),

u(t − n)u(t − 3), · · · ,

u(t − n)u(t − n)]T, (20)

ϕ̂n(t) = [−ω̂(t − 1),−ω̂(t − 2), · · · ,−ω̂(t − ne),

v̂(t − 1), v̂(t − 2), · · · , v̂(t − nf )]T, (21)

ω̂(t) = y(t)− ϕT
s (t)θ̂ s(t), (22)

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t). (23)

The multiplications and additions of the RGELS algorithm is
given in Table 1. The computation procedures of the RGELS
algorithm in (16)–(23) are listed in the following.
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TABLE 1. The flop amounts of the algorithms.

1) Initialize: let t = n0, θ̂ (0) = 1n0/p0, P(0) = p0In0 ,
ω̂(t − i) = 0 (i = 1, 2, · · · , ne) and v̂(t − i) = 0
(i = 1, 2, · · · , nf ), and p0 is taken to be a large number,
e.g., p0 = 106.

2) Collect the input-output data u(t) and y(t). Form ϕs(t),
ϕ̂n(t) and ϕ̂(t) by (20), (21) and (19), respectively.

3) Compute the gain vector L(t) by (17) and the covari-
ance matrix P(t) by (18).

4) Update the parameter estimate θ̂ (t) by (16).
5) Compute ω̂(t) by (22) and v̂(t) by (23).
6) Increase t by 1 and go to Step 2.

The methods proposed in this paper can be extended to study
the parameter estimation problems of time-varying systems,
nonlinear systems and multi-variable systems [48]–[51], and
can be applied to other literatures [52]–[55].

IV. THE FILTERING BASED RECURSIVE GENERALIZED
EXTENDED LEAST SQUARES ALGORITHM
Using the rational fraction E(z)

F(z) to filter the input-output
data of the bilinear system can change the structure of the
noise model and enhance the parameter estimation accuracy.
As E(z)F(z) is unknown, its estimate Ê(z)

F̂(z)
is generally used to filter

the input-output data. The identification method based on the
filtered data is called the F-RGELS algorithm.

For the bilinear system in (4), define the filtered input uf (t)
and the filtered output yf (t) as

uf (t) :=
E(z)
F(z)

u(t), yf (t) :=
E(z)
F(z)

y(t).

Multiplying the both sides of (4) by E(z)
F(z) , we have

[A(z)+u(t−n)B(z)] yf (t)= [C(z)+u(t−n)D(z)] uf (t)+v(t).

(24)

Define the filtered information vector ϕf (t) as

ϕf (t) := [−yf (t − 1),−yf (t − 2), · · · ,−yf (t − n),

− u(t − n)yf (t − 1),−u(t − n)yf (t − 2), · · · ,

− u(t − n)yf (t − n), uf (t − 1), uf (t − 2), · · · ,

uf (t−n), u(t−n)uf (t − 2), u(t − n)uf (t − 3), · · · ,

u(t − n)uf (t − n)]T ∈ Rn1 .

Thus, the filtered model in (4) can be written as

yf (t) = ϕT
f (t)θ s + v(t). (25)

Define the stacked vector Yft and the stacked matrix Φ ft as

Yft :=


yf (1)
yf (2)
...

yf (t)

 ∈ Rt , Φ ft :=


ϕT
f (1)
ϕT
f (2)
...

ϕT
f (t)

 ∈ Rt×n1 .

Define the criterion function:

J2(θ s) :=‖ Yft −Φ ftθ s ‖
2 .

Minimizing J2(θ s) and letting its partial derivative with
respect to θ s be zero, we can obtain the following recursive
least squares relations:

θ̂ s(t) = θ̂ s(t − 1)+ Ls(t)[yf (t)− ϕT
f (t)θ̂ s(t − 1)], (26)

Ls(t) = Ps(t − 1)ϕf (t)[1+ ϕ
T
f (t)Ps(t − 1)ϕf (t)]

−1, (27)

Ps(t) = [In1 − Ls(t)ϕ
T
f (t)]Ps(t − 1). (28)

Note that the polynomials E(z) and F(z) are unknown, so are
the filtered input-output data uf (t) and yf (t), and the filtered
information vector ϕf (t). Thus, the estimate of θ s(t) is impos-
sible to compute directly. Here, we replace the unknown
variables with their estimates to implement the recursive
computation.
Use the estimates of noise states to define the stacked

vectorWt and the stacked matrix Φnt as

Wt :=


ŵ(1)
ŵ(2)
...

ŵ(t)

 ∈ Rt , Φnt :=


ϕ̂
T
n (1)
ϕ̂
T
n (2)
...

ϕ̂
T
n (t)

 ∈ Rt×n2 .

According to the noise model in (5), define the criterion
function:

J3(θn) :=‖ Wt −Φntθn ‖
2 .

Minimizing J3(θn) and letting its partial derivative with
respect to θn be zero, we can obtain the following recursive
least squares relations:

θ̂n(t)= θ̂n(t−1)+Ln(t)[w(t)−ϕT
n (t)θ̂n(t−1)], (29)

Ln(t)=Pn(t−1)ϕn(t)[1+ϕ
T
n (t)Pn(t−1)ϕn(t)]

−1, (30)

Pn(t)= [In2−Ln(t)ϕ
T
n (t)]Pn(t−1). (31)
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Replacing the parameter vector θ s and the information vector
ϕ(t) with their estimates θ̂ s(t) and ϕ̂(t), respectively. The
estimates ω̂(t) and v̂(t) can be computed by

ω̂(t) = y(t)− ϕT
s (t)θ̂ s(t),

v̂(t) = y(t)− ϕ̂T(t)θ̂ (t).

Use ω̂(t) and v̂(t) to construct the estimate of ϕn(t):

ϕ̂n(t) = [−ω̂(t − 1),−ω̂(t − 2), · · · ,−ω̂(t − ne),

v̂(t − 1), v̂(t − 2), · · · , v̂(t − nf )]T.

Using the parameter estimate θ̂ (t) to construct the estimates
of E(z) and F(z):

Ê(t, z) = 1+ ê1(t)z−1 + ê2(t)z−2 + · · · + êne (t)z
−ne ,

F̂(t, z) = 1+ f̂1(t)z−1 + f̂2(t)z−2 + · · · + f̂nf (t)z
−nf .

Filtering u(t) and y(t) with Ê(t, z) and F̂(t, z), we can obtain
the estimates ûf (t) and ŷf (t):

ûf (t) = u(t)+
ne∑
i=1

eiu(t − i)−
nf∑
j=1

eju(t − j),

ŷf (t) = y(t)+
ne∑
i=1

eiy(t − i)−
nf∑
j=1

ejy(t − j).

Using ûf (t) and ŷf (t) to construct the estimate of ϕf (t):

ϕ̂f (t) = [−ŷf (t − 1),−ŷf (t − 2), · · · ,−ŷf (t − n),

− u(t − n)ŷf (t − 1),−u(t − n)ŷf (t − 2), · · · ,

− u(t − n)ŷf (t − n), ûf (t − 1), ûf (t − 2), · · · ,

ûf (t−n), u(t−n)ûf (t−2), u(t − n)ûf (t − 3), · · · ,

u(t − n)ûf (t − n)]T.

Replacing ϕf (t), ω(t) and ϕn(t) in (26)–(31) with their esti-
mates ϕ̂f (t), ω̂(t) and ϕ̂n(t), respectively, the filtering based
recursive generalized extended least squares (F-RGELS)
algorithm can be summarized as

θ̂ s(t) = θ̂ s(t − 1)+ Ls(t)[ŷf (t)− ϕ̂
T
f (t)θ̂ s(t − 1)], (32)

Ls(t) = Ps(t − 1)ϕ̂f (t)[1+ ϕ̂
T
f (t)Ps(t − 1)ϕ̂f (t)]

−1, (33)

Ps(t) = [In1 − Ls(t)ϕ̂
T
f (t)]Ps(t − 1), (34)

ûf (t) = u(t)+
ne∑
i=1

eiu(t − i)−
nf∑
j=1

eju(t − j), (35)

ŷf (t) = y(t)+
ne∑
i=1

eiy(t − i)−
nf∑
j=1

ejy(t − j), (36)

ϕ̂f (t) = [−ŷf (t − 1),−ŷf (t − 2), · · · ,−ŷf (t − n),

− u(t − n)ŷf (t − 1),−u(t − n)ŷf (t − 2), · · · ,

− u(t − n)ŷf (t − n), ûf (t − 1), ûf (t − 2), · · · ,

ûf (t − n), u(t − n)ûf (t − 2),

u(t − n)ûf (t − 3), · · · , (t − n)ûf (t − n)]T, (37)

θ̂n(t) = θ̂n(t − 1)+ Ln(t)[ω̂(t)− ϕ̂
T
n (t)θ̂n(t − 1)], (38)

Ln(t) = Pn(t − 1)ϕ̂n(t)[1+ ϕ̂
T
n (t)Pn(t − 1)ϕ̂n(t)]

−1,

(39)

Pn(t) = [In2 − Ln(t)ϕ̂
T
n (t)]Pn(t − 1), (40)

ϕ̂n(t) = [−ω̂(t − 1),−ω̂(t − 2), · · · ,−ω̂(t − ne),

v̂(t − 1), v̂(t − 2), · · · , v̂(t − nf )]T, (41)

ω̂(t) = y(t)− ϕT
s (t)θ̂ s(t), (42)

v̂(t) = (t)− ϕ̂T(t)θ̂ (t), (43)

ϕs(t) = [−y(t − 1),−y(t − 2), · · · ,−y(t − n),

− u(t − n)y(t − 1),−u(t − n)y(t − 2), · · · ,

− u(t − n)y(t − n), u(t − 1), u(t − 2), · · · ,

u(t − n), u(t − n)u(t − 2), u(t − n)u(t − 3), · · · ,

u(t − n)u(t − n)]T, (44)

ϕ̂(t) =
[
ϕs(t)
ϕ̂n(t)

]
, (45)

θ̂ s(t) = [â1(t), â2(t), · · · , ân(t), b̂1(t), b̂2(t), · · · , b̂n(t),

ĉ1(t), ĉ2(t), · · · , ĉn(t),

d̂2(t), d̂3(t), · · · , d̂n(t)]T, (46)

θ̂n(t) = [ê1(t), ê2(t), · · · , êne (t),

f̂1(t), f̂2(t), · · · , f̂nf (t)]
T. (47)

The computation procedures of the F-RGELS algorithm
in (32)–(47) are listed in the following.

1) Initialize: let t = n0, and set the initial values θ̂ s(0) =
1n1/p0, Ps(0) = p0In1 , θ̂n(0) = 1n2/p0, Pn(0) = p0In2 ,
ω̂(t − i) = 0 (i = 1, 2, · · · , ne) and v̂(t − i) = 0
(i = 1, 2, · · · , nf ), and p0 is taken to be a large number,
e.g., p0 = 106.

2) Collect the input-output data u(t) and y(t). Form ϕs(t),
ϕ̂n(t) and ϕ̂(t) by (44), (41) and (45), respectively.

3) Compute ω̂(t) and v̂(t) by (42) and (43). Compute
the gain vector Ln(t) and the covariance matrix Pn(t)
by (39) and (40).

4) Update the parameter estimate θ̂n(t) by (38).
5) Compute ûf (t) and ŷf (t) by (35) and (36), respectively.

Construct ϕ̂f (t) by (37).
6) Compute the gain vector Ls(t) and the covariance

matrix Ps(t) by (33) and (34).
7) Update the parameter estimate θ̂ s(t) by (32).
8) Increase t by 1 and go to Step 2.
The computational efficiency of the F-RGELS algorithm

are shown in Table 2. The proposed methods proposed in
this paper can combine other methods [56]–[59] to study
the parameter estimation problems of different systems with
colored noises [60]–[69] such as signal modeling and com-
munication networked systems [70]–[72].

The computational efficiency is usually counted by the
flop (the floating point operation). Here, an addition, a mul-
tiplication, a subtraction, a division all is a flop. In general,
a division is considered as amultiplication and a subtraction is
considered as an addition. Thus, the computational amount of
an identification algorithm can be expressed by adds andmul-
tiplications. The total flop numbers of the RGELS algorithm
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TABLE 2. The computational efficiency of the F-RGELS algorithm.

TABLE 3. The flop amounts of the algorithms.

TABLE 4. The RGELS estimates and their errors with σ2 = 1.02.

TABLE 5. The F-RGELS estimates and their errors with σ2 = 1.02.

and the F-RGELS algorithm are N1 = 4n20 + 8n0 + 2n1 and
N2 = 4n21 + 4n22 + 10n0 + 2n2 + 4, respectively.

The flops of the RGELS algorithm and the F-RGELS
algorithm are listed in Table 3, where n0 = n1 + n2, and
the flop difference between the RGELS algorithm and the
F-RGELS algorithm is

N1 − N2 = 8n1n2 − 4n2 − 4

= 4n2(n1 − 1)+ 4(n1n2 − 1) > 0.

N1 > N2 means that the F-RGELS algorithm is more
flop-efficient than the RGELS algorithm.

V. EXAMPLE
Consider the following bilinear system:

[A(z)+ u(t − n)B(z)]y(t)

= [C(z)+ u(t − n)D(z)]u(t)+ ω(t),E(z)ω(t)

= F(z)v(t),

A(z) = 1+ a1z−1 + a2z−2 = 1+ 0.71z−1 + 0.63z−2,

B(z) = b1z−1 + b2z−2 = 0.2z−1 − 0.18z−2,

C(z) = c1z−1 + c2z−2 = 0.9z−1 − 2.3z−2,

D(z) = d2z−2 = 0.16z−2,

E(z) = 1+ e1z−1 = 1− 0.2z−1,

F(z) = 1+ f1z−1 = 1+ 0.2z−1.

In simulation, the input signal {u(t)} adopts a persistent
excitation sequence with unit variance and zero mean. {v(t)}
is a white noise sequence with zero mean and variance
σ 2
= 1.02 and σ 2

= 3.02, respectively. Applying the
RGELS algorithm in (16)–(23) and the F-RGELS algorithm
in (32)–(47) to compute the parameter estimate θ̂ (t) of the
bilinear system. The parameter estimates and their errors are
shown in Tables 4–7, where δ(t) := ‖θ̂ (t) − θ‖/‖θ‖ is the
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TABLE 6. The RGELS estimates and their errors with σ2 = 3.02.

TABLE 7. The F-RGELS estimates and their errors with σ2 = 3.02.

FIGURE 1. The estimation errors δ versus t with σ2 = 1.02.

parameter estimation error. The estimation errors δ versus
time are shown in Figures 1 and 2.

In order to validate the parameter estimation accuracy,
we use the RGELS estimates and the F-RGELS estimates to
construct the estimated model, respectively, that is

ŷ(t) = y(t)− [Â(z)+ u(t − n)B̂(z)]
Ê(z)

F̂(z)
y(t)

+ [Ĉ(z)+ u(t − n)D̂(z)]
Ê(z)

F̂(z)
u(t). (48)

Define ŷf (t) :=
Ê(z)
F̂(z)

y(t) and ûf (t) :=
Ê(z)
F̂(z)

u(t), and then
Equation (48) can be expressed as

ŷ(t) = y(t)− [Â(z)+ u(t − n)B̂(z)]ŷf (t)

+ [Ĉ(z)+ u(t − n)D̂(z)]ûf (t).

Using the RGELS estimates in Table 6 at t = 3000 to
construct the RGELS estimated model

ŷ1(t) = y(t)− [Â1(z)+ u(t − n)B̂1(z)]ŷf 1(t)

+ [Ĉ1(z)+ u(t − n)D̂1(z)]ûf 1(t),

ŷf 1(t) =
Ê1(z)

F̂1(z)
y(t), ûf 1(t) =

Ê1(z)

F̂1(z)
u(t),

Â1(z) = 1+ 0.75001z−1 + 0.64691z−2,

FIGURE 2. The estimation errors δ versus t with σ2 = 3.02.

B̂1(z) = 0.23645z−1 − 0.09430z−2,

Ĉ1(z) = 0.78739z−1 − 2.25970z−2,

D̂1(z) = 0.22653z−2,

Ê1(z) = 1− 0.16586z−1,

F̂1(z) = 1+ 0.16650z−1.

Using the F-RGELS estimates in Table 7 at t = 3000 to
construct the F-RGELS estimated model

ŷ2(t) = y(t)− [Â2(z)+ u(t − n)B̂2(z)]ŷf 2(t)

+ [Ĉ2(z)+ u(t − n)D̂2(z)]ûf 2(t),

ŷf 2(t) =
Ê2(z)

F̂2(z)
y(t), ûf 2(t) =

Ê2(z)

F̂2(z)
u(t),

Â2(z) = 1+ 0.72943z−1 + 0.63501z−2,

B̂2(z) = 0.20910z−1 − 0.18215z−2,

Ĉ2(z) = 0.78163z−1 − 2.29288z−2,

D̂2(z) = 0.19870z−2,

Ê2(z) = 1− 0.16252z−1,

F̂2(z) = 1+ 0.21578z−1.

In order to validate these estimated models, we use the rest
100 data from t = 3001 to t = 3100 to compute the predicted
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output ŷi(t). The actual output y(t), the predicted output ŷi(t)
and their error ŷi(t) − y(t) are shown in Figures 3–4 for the
RGELS algorithm and the F-RGELS algorithm. Figures 3–4
show that the predicted output are very close to the actual
output of the bilinear system. This demonstrates that the iden-
tification models capture the characteristics of the bilinear
system.

FIGURE 3. The predicted output ŷ1(t), the actual output y (t) and their
error ŷ1(t)− y (t) versus t based on the RGELS estimates.

FIGURE 4. The predicted output ŷ2(t), the actual output y (t) and their
error ŷ2(t)− y (t) versus t based on the F-RGELS estimates.

From the computational loads in Tables 1–3, and the simu-
lation results in Tables 4–7 and Figures 1–4, we can draw the
follow conclusions.
• The parameter estimation errors given by the RGELS
algorithm and the F-RGELS algorithm become smaller
with t increasing – see Tables 4–7.

• As the noise variance decreases, the parameter esti-
mation errors given by the RGELS algorithm and the
F-RGELS algorithm become small – see Figures 1 and 2
and Tables 4–7.

• Compared with the RGELS algorithm, the F-RGELS
algorithm can not only reduce the computational
amount, but also enhance the estimation accuracy effec-
tively – see Tables 1–7 and Figures 1 and 2.

• The outputs of the estimated models approach those of
the actual system – see Figures 3 and 4.

VI. CONCLUSION
A filtering based recursive generalized extended least
squares (F-RGELS) algorithm is presented to reduce the

computational burden and enhance the parameter estimation
accuracy by using the data filtering technique, and a recursive
generalized extended least squares algorithm is derived for
comparison. The proposed algorithms have the following fea-
tures. Compared with the RGLES algorithm, the F-RGELS
algorithm can not only reduce the computational burden,
but also enhance the parameter estimation accuracy. Using
the data filtering technique, the bilinear system is divided
into two subsystems and the information vector dimension
decrease significantly. Then, the F-RGELS algorithm has
lower computational burden than the RGELS algorithm. The
proposed recursive least squares estimation algorithms for a
class of nonlinear stochastic systems with colored noise using
the input-output data filtering can combine other estimation
algorithms [73]–[76] and mathematical tools [77]–[80] to
explore new parameter identification methods of linear, bilin-
ear and nonlinear stochastic systems with colored noise and
can be applied to other fields [81]–[84] such as information
processing and communication systems [85]–[88].
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