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ABSTRACT Computer-aided diagnosis (CAD) has a wide range of clinical applications, and medical image
segmentation is essential in CAD. In medical image segmentation, due to the high anatomical variability of
the pancreas and the weak contrast of the environment, the segmentation of the pancreas has always been the
most challenging task. This study proposes a novel segmentation method for pancreatic segmentation. On the
basis of complete convolution, an attentional mechanism is added to enhance the information exchange
between downsampling and upsampling. By using the ring residual module, the proposed segmentation
method can yield satisfactory results via deep convolution and can consolidate the characteristics of
traditional deep learning networks. At the same time, compared to previous methods that used the dice
coefficient (DICE) as a loss function, this study proposes a new loss function in the proposed method. This
new loss function focuses not only on the area coincidence degree but also on the focus shape similarity. In the
present work, ten-fold cross-validation computed tomography (CT) data (82 samples) from the NIH public
pancreas dataset was conducted. The average dice similarity coefficient (DSC) of the results is 88.32±2.84,
which is higher than the most advanced available methods and corresponds to higher robustness. Therefore,
in practical applications, these methods can be used to provide more reliable auxiliary diagnostic data in the
application of clinical medicine.

INDEX TERMS Attentional mechanism, deep neural networks, pancreas segmentation and ring residual
module.

I. INTRODUCTION
Medical images contain a substantial amount of information
that is highly useful for CAD. Hence, this has become a
research hotspot in recent years. To apply this information,
the organ segmentation of medical images is necessary. The
present study mainly investigates the segmentation of a small
organ— the pancreas—in abdominal computed tomography
(CT). Pancreatic segmentation is an important component of
CAD [1], [2], which has been used mainly for the quantitative
imaging analysis of diabetic patients and the detection of
pancreatic cancer.

With the improvement of deep learning algorithms [3], [4],
convolutional neural networks (CNNs) have been increas-
ingly used in medical image processing. For the organ
segmentation of medical images, there are three general
methods: manual segmentation, semiautomatic segmenta-
tion, and automatic segmentation. Manual segmentation
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requires the operator to have a high level of professional
knowledge. Furthermore, the quality of themanual segmenta-
tion result depends mainly on the subjective judgment of the
technician. Forming this judgment requires a long period of
experience accumulation. In addition, manual segmentation
is a highly time-consuming task. These shortcomings hinder
the practical application of manual segmentation [5]. Semi-
automatic segmentation requires various degrees of artificial
intervention, which may cause subjective errors and biases in
the segmentation result. This is an overprovisioning scheme
that is mainly applied due to immaturity of the automatic seg-
mentation method. For accelerating diagnosis and develop-
ing treatment plans, the demand for automatic segmentation
methods is growing.

Excitingly, in the field of automatic segmentation, many
other organs in CT, such as the lungs [6], [7], heart [8], [9],
and kidneys [10], are segmented by deep learning algorithms.

Satisfactory results can be obtained, and the DSC can reach
the level of>90% [11]–[13]. Regrettably, the segmentation of
small organs, such as the pancreas, from CT scans has been
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FIGURE 1. (a) The position of the pancreas is marked in green in the CT
three different viewpoints. This is a small organ. (b) The pancreas is
marked in green. It is an organ with an irregular shape and boundary.

challenging. This is mainly due to changes in the pancreas
in large spaces, such as CT scans [14]. The primary factor
is that the pancreas is only a small fraction of the entire
CT image (Figure 1a), and the pancreas is a relatively small
organ. Furthermore, the shape and behavior of the pancreas
can be altered by changes in the motion of adjacent organs
(Figure 1b), and the boundaries of the pancreas become
blurred due to the surrounding organs. In addition, the limited
number of available labeled medical images also limits the
accuracy of the segmentation algorithm.

In deep learning segmentation, networks such as fully
convolutional networks (FCNs) [15] andUNet [16] have been
used for the segmentation of medical images. Zhou et al. [17]
applied predictive segmentation masks to fixed-point mod-
els to narrow the input region. The average DSC of the
segmentation increased to 83.18%. This segmentation DSC
is much higher than the 81.14% segmentation DSC that
was reported by Roth et al. [14], [18] in 2015 and 2016.
In the latest pancreas segmentation task in 2018, Cai et al.
[19] used the deep CNN method and obtained an average
DSC value of 83.7%. In the study that was conducted by
Zhu et al. [20], a coarse and thin network was used, and the

coarse network was trained to obtain coarse segments and to
remove the background regions. After this, the coarse regions
were passed to a fine network for precise segmentation to
obtain the average DSC. An improvement of 84.59% was
realized. In contrast to the method that was used by Zhu et al.,
Ma et al. [21] proposed a new Bayesian model, which was
combined with the segmentation method of a deep neural net-
work and a statistical shape model and improved the average
DSC to 85.32%.

From the perspective of current research, due to the rapid
increase in the number of medical images, the use of manual
segmentation or semiautomatic segmentation has become an
almost-impossible task. In the field of automatic segmen-
tation, many researchers have conducted studies. However,
because the pancreas appears too small in a CT image and
the pancreas is easily squeezed by other organs, the grayscale
of the image is highly variable. Therefore, the above research
performance is unsatisfactory, and the methods are not sensi-
tive to the edge features of the pancreas. In the present study,
the large deformationmethodwas used to transfer the features
that were extracted in the downsampling to the upsampling
using the attention mechanism, which improved the accuracy
of the segmentation results. Then, the ring residual module
was used to extract additional features in the deep part of
the network, which were used to address the boundary blur
problem of the pancreas.

The remainder of this paper is organized as follows:
Section 2 explains how the attention module and the ring
residual module are integrated into UNet to obtain a new
network structure. Section 3 describes the experimental pro-
cess and the experimental results. Section 4 presents the
conclusions of this study.

II. MATERIALS AND METHODS
A. THE ATTENTION MECHANISM AND THE
CONVOLUTION BLOCK ATTENTION MODULE
The development of CNNs has substantially advanced the
performance of computer vision tasks [22]–[24]. According
to recent studies, the three main factors that affect the per-
formance of a CNN are the depth, width, and cardinality
of the network. LeNet [25] and VGGNet [26] have shown
that a deeper network structure can yield improved perfor-
mance. Resnet [27] overcomes the problem of gradient dis-
appearance, which is caused by deep networks, by making
the network more deeply designed, thereby improving the
performance of CNNs. In GoogleNet [34], the network width
is also a major factor that affects the CNN performance.
Xception [28] and ResNeXt [29] increase the cardinality of
the network and reduce the total number of parameters by
increasing the cardinality. However, in addition to these three
factors, in recent years, it was found that attention is also
one of the main factors that affect the performance of a
CNN. The attention mechanism determines the focus of the
algorithm and improves the representation of the features.
This process renders the CNN more similar to the human
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FIGURE 2. Overview of the CBAM.

eye when receiving image information. Although the human
visual system does not process the information of the entire
image at one time, human beings perform well at focusing on
the local information of the image, thereby more effectively
capturing the overall information structure.

The results of the experimental study that was conducted
by Woo et al. [30] demonstrated that combining the attention
mechanism with CNNs can improve the overall performance
of the CNN, and they proposed a convolution block atten-
tion module (CBAM) (Figure 2). The convolution attention
module mainly implements learning enhancement or reduces
the influence of information by sequentially arranging the
channel and space of two attention modules. The channel
attention module solves the problem of learning ‘‘what’’,
while the spatial attention module solves the problem of
learning ‘‘where.’’ The whole process can be expressed as
follows:

In the channel attention module, global maximum and
global average pooling operations were performed on the
input feature map based on the width and height, and two
spatial context descriptions were generated. Then, these two
sets of descriptions were entered into the same fully con-
nected network, which contains a hidden layer. After passing
through the shared network, these two sets of descriptions
were summed element by element and activated using the
sigmoid function to form a new feature map. The calculation
process is as follows:

Mc (F) = σ (MLP (AvgPool (F))+MLP (MaxPool (F)))

= σ
(
W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcmax

)))
(1)

where F is an input feature and Mc (F) is the corresponding
output feature; W1 and W0 are the fully connected network
weights, and the ReLU activation function is followed byW0;
Fcavg is the feature after average-pooling; F

c
max is the feature

after max-pooling; σ is the sigmoid function; and MLP is the
fully connected network.

In the spatial attention module, focus was no longer
directed to the effects of the channel. For the input feature
map to perform the global maximum and global average
pooling operations based on the channel, the generated two-
pooling-layer information was linked. After a convolution
operation by a 7-by-7 convolution kernel, the spatial attention
feature was generated by the sigmoid function.

Ms (F) = σ
(
f 7×7 ([AvgPool (F) ;MaxPool (F)])

)
= σ

(
f 7×7

([
F savg;F

s
max

]))
(2)

FIGURE 3. Overview of the ring residual model.

where F is the input feature and Ms (F) is output feature,
Fcavg is the feature after average-pooling, F

c
max is the feature

after max-pooling, σ is the sigmoid function, and f 7×7 is the
7-by-7 convolution.

B. RING RESIDUAL MODEL
A deep network would cause gradient degradation problems,
which would reduce the performance of the CNN. The ring
residual module can overcome this problem because it can
more effectively use the spatial information of the context and
strengthen the learning mode of the CNN. This would further
solve the degradation problem and ensure that the extracted
feature image would not be weakened due to the depth of
the network. The ring residual module (Figure 3) consists of
two parts: a forward residual module and a reverse residual
module. The equation is as follows:

yb = G
(
F
(
xf , {Wi}

)
+Ws ∗ xf

)
+ xb (3)

where xf is the input characteristic of the forward residual
block, Wi is the weight of the i-th layer, function F (x, {Wi})

represents the mapping that must be learned, Ws is a linear
projection, F is a mapping function, xb is the input charac-
teristic of the reverse residual, yb is the output characteristic
after the reverse residual module, and G is a linear projection.

In the back-propagation of deep neural networks, due to the
chain-based differentiation rules, the gradient in the network
can easily disappear. This is similar to the curve of human
learning and learning: Humans forget old knowledge in the
process of learning new knowledge. The process of forgetting
is similar to the disappearance of the gradient. To overcome
this problem, it is necessary to review the old knowledge to
reinforce the old memory. In the deep network, the residuals
were used to compensate for the disappearance of the gradient
that is caused by the chain differentiation. The addition of
the previous convolution and the nonlinear operation after the
convolution operation (Figure 4) would slow the degradation
of the network. This addition is the human review process.
Forward convolutions are introduced after the convolution
and nonlinear operations. The equation is as follows:

yf = F (x, {Wi})+Ws ∗ x (4)
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FIGURE 4. Overview of the forward residual propagation.

FIGURE 5. Overview of the reverse residual propagation.

where x is the input characteristic of the forward residual
block and yf is the output feature; Wi is the weight of the
i-th layer; function F (x, {Wi}) represents the mapping that
must be learned; and Ws is a linear projection that changes
the x-size to match the size after the execution of the mapping
function over F.

However, since the forward residual cannot make the spa-
tial context information continuous and stable, the investi-
gators propose a reverse residual for reinforcing the input
information. The inverse residual (Figure 5) is an automated
learning method. The equation is as follows:

yb = G
(
yf
)
+ x (5)

where x is the input characteristic of the reverse residual
and yb is the output characteristic after the reverse residual
module; yb is the feature vector after passing through the
forward residual module; and G is a linear projection, which
changes the size of yf .
As an automated learning method, the inverse residual

takes the features that were obtained by the forward residual
output as inputs, examines these features, and stabilizes the
information, thereby rendering continuous the characteristics
that were obtained by the forward residual and suppressing
required feature information. This accelerates the conver-
gence of the entire network.

C. SPLIT NETWORK STRUCTURE
In the present study, the UNet network structure was used as
the basis, without pretraining. The input to the network and
the eigenvectors after each layer are convolved and are all
three-dimensional arrays of size h×w×d . h and w represent
the height and width of the feature vector, and d represents
the dimension of the channel (Figure 6). The convolution
operation is based on translation invariance and includes

FIGURE 6. Overview of RRA-UNet network.

mainly convolution, pooling and activation functions.

yij = fks
({
Xsi+δi,sj+δj

}
0 ≤ δi, δj ≤ k

)
(6)

where yij is the output characteristic after each layer of con-
volution operation, Xij is the input vector for each layer of
special position, k is the size of the convolution kernel, s is
the convolution step, and fks determines the type of convolu-
tion operation for each layer, such as matrix multiplication,
averaging of the pooling function or multiplication of the
maximum pooling function and the final activation function.

The deconvolution operation, or upsampling, is a backward
convolution operation. Upsampling can be thought of as a
normal convolution operationwith an input step of 1/f , where
f is an integer.

Based on the problems that are encountered with the
available pancreas segmentation approaches that are dis-
cussed in the previous section, regardless of whether upsam-
pling or downsampling is being conducted, we will add the
ring residual module and CBAM to the downsampling under
the original UNet network.

In the medical image segmentation, the DICE loss function
was the most commonly used metric and loss function. The
DICE loss function mainly represents the ratio of the actual
result to the total area of the predicted result intersection area.
The present study improves the loss function, and the investi-
gators named this improved function the complex-coefficient
(CPCE) loss function. The CPCE loss function focuses not
only on the ratio of the coincident area to the total area but
also on the shape similarity between the real result and the
predicted result. Hence, the CPCE loss function consists of
two parts.

The first part is the area coincidence, and the equation is,
as follows:

L
(
Y , Ŷ

)
=
−2

∑
i yiŷi∑

i yi +
∑

i ŷi
(7)

where yi ∈ Y , ŷ ∈ Ŷ , Y is the ground truth, Ŷ is the pre-
diction, and L is area coincidence function. However, prob-
lems are encountered in evaluating the segmentation results
based only on the coincidence rate of the area. Therefore,
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the actual results were compared with the shape of the pre-
diction results, with the objective of obtaining a segmentation
result that is more in line with the actual results. The degree
of similarity between these two vectors was determined by
determining whether the directions of the two vectors are
consistent or similar and by calculating the cosine angle of
these two vectors. The real results and the prediction results
were flattened into two vectors, and the cosine similarity
calculation method was used to calculate the shape similarity
of these two results as the second part of the CPCE loss
function. The equation is as follows:

shape similarity = cosin
(
Y , Ŷ

)
=

Y · Ŷ

‖ Y ‖ · ‖ Ŷ ‖
=

∑
i yi × ŷi√∑

i y
2
i ×

√∑
i ŷ

2
i

(8)

where: yi ∈ Y , ŷ ∈ Ŷ , Y represents the ground truth, Ŷ
represents the prediction, and cosin is the shape similarity
function. Therefore, the CPCE loss function is defined as:

C
(
Y , Ŷ

)
= λ ∗ L

(
Y , Ŷ

)
+ ξ ∗ cosin

(
Y , Ŷ

)
(9)

where λ is the penalty coefficient of the area coincidence, ξ
is the penalty factor for the shape similarity, L is area coinci-
dence function, and cosin is the shape similarity function. In
the present study, we set λ to 0.8 and ξ to 0.2.

III. EXPERIMENTAL RESULTS
A. DATASET AND EXPERIMENT SETUP
The public NIH pancreatic dataset [14] was selected for the
present experiment. The NIH pancreatic dataset included
82 abdominal contrast-enhanced 3D-CT data with a CT
size of 512×512×D (D∈[181,146]). With 10-fold cross-
validation, the bounding box was used to cut the clips, and the
margins for the annotations were selected from the margins
of the filled original image data that were reported in the
literature [17]. The HU value of the cropped image was in the
interval [−100, 240], and the image was scaled to the range
[0, 1]. The DICE loss function and the CPCE loss function
were used as the loss functions to conduct the two sets of
controlled trials. The dice coefficient was also to evaluate the
similarity between the present segmentation results and real
results. DSC = 2

(
|Y ∩ Ŷ |

)
/
(
|Y ∪ Ŷ |

)
.

The hardware that was used in the present study was a
12-core Intel core i7-8700k CPU 3.70 GHz with GeForce
RTX 2070. During the training, the learning rate was set to
0.0001, the number of epochs was set to epochs= 20, and the
size of each batchwas set to 2. The size of the cross-validation
set was set to 10, and it took approximately six hours to
fully train the entire network structure. It took approximately
45 seconds to predict a case.

TABLE 1. Comparison of experimental results.

B. EXPERIMENTAL RESULTS AND ANALYSIS
Ten-fold cross-validation was used on the NIH dataset to
compare the experimental results. The results are presented
in Table 1.

According to the results in Table 1, the highest average
DSC of the ring residual UNet with an attention mechanism
(RRA-UNet) was 88.32%, and the standard deviation of only
2.84 was the smallest. The worst and best segmentation
results were 80.50% and 93.88%, respectively. In the same
case where the DICE loss function was also used, the present
segmentation result is increased by five percentage points on
the averageDSC compared to that reported by Zhou et al. [17]
by using the predicted segmentation mask to apply the fixed-
point model. Compared with the results that were reported
by Cai et al. [19], the present FCN-based method improved
the data of the most difficult to segment pancreatic cases by
20.88 percentage points. The segmentation results of UNet
[16] and DenseUNet [21] have demonstrated that the seg-
mentation network of UNet is a reliable method for medical
images, especially for pancreas segmentation. Ma et al. [21]
integrated the Bayesian model into the deep neural network
and statistical shape model to fine-tune the UNet network
structure, thereby increasing the segmentation result of the
pancreas to 85.32%, but this study was conducted a long time
ago. In the most successful segmentation method, compared
with that reported by Ma et al., the average segmentation
result of the present biomedical segmentation method was
still 2.83 percentage points higher. In the worst case and best
cases, the performance of the proposed segmentation method
is higher by 8.84 and 2.39 percentage points, respectively.
Rotha et al. [32] proposed a general method for medical
image segmentation. According to the experimental results,
the segmentation performance was much poorer than that of
the proposedmethod in pancreatic segmentation. The average
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TABLE 2. Comparison of experimental results of the worst case and best
case assessed by DSC.

TABLE 3. Comparison of experimental results assessed by AUC.

segmentation DSC was 11.35 percentage points lower than
that of the proposed method. Furthermore, compared to all
the methods, the proposed method has the lowest standard
deviation; hence, the proposed segmentation method has a
similar segmentation performance on each cross-validation
set, thereby demonstrating that the proposed segmentation
method has higher stability. Therefore, for the segmentation
of the pancreas, the proposed method is a superior solution.

As presented in Table 2, when using the DICE loss
function, the segmentation performance on case #50 was
the poorest, and after switching to the CPCE loss function,
the segmentation performance increased by 6.16 percentage
points.

DSC is a commonly used evaluation index for medical
image segmentation models. However, we believe that by
relying solely on DSC, one cannot fully evaluate the seg-
mentation performance of our model and the role of our loss
function in the improvement. Therefore, we also use the area
under the ROC curve (AUC) to assess our model and loss
function.

According to Table 3, the segmentation performance of our
model is highly satisfactory. Moreover, using the CPCE loss
function, the mean AUC is increased by 0.0007 compared to
the DICE loss function. In case #74, the AUC is increased by
0.0131. The CPCE loss function improves the segmentation
performance.

To determine whether our proposed technique avoids over-
fitting, we also use stratified 10-fold cross-validation. Our
experimental results are as follows:

Comparing Table 4 with Table 1 and Table 3, the experi-
mental results differ by amaximum of 0.0008 and aminimum

TABLE 4. Comparison of experimental results assessed by stratified
10-fold cross validation.

FIGURE 7. Segmentation results of the worst case under the RRA-UNet
with the DICE loss function.

of 0.0003. No overfitting occurs in our model, and the exper-
imental results demonstrate that our method is the best-
performing method at present.

However, in case #4, which is challenging for the CPCE
loss function, the division performance of the CPCE loss
function was one percentage point lower than the division
performance of the DICE loss function. However, in case
#72, both loss functions performed equally well. Hence,
the proposed segmentationmethod is amore effectivemethod
for the segmentation of the pancreas. After switching to the
CPCE loss function, the algorithm obtains more accurate
segmentation results. In Table 1, the average DSC value
increased by 0.17 percentage points, while the standard devi-
ation decreased.

In Figure 7, the segmentation results in case #50 are com-
pared. DICE represents RRA-UNet with the Dice-coefficient
loss function, while CPCE represents the RRA-UNet seg-
mentation network with the CPCE loss function. The selected
slices are located in the middle and back of case #50. When
using the DICE function, the slices in each part of case
#50 had an overfitting effect, thereby resulting in A lack of
segmentation results. However, after switching to the CPCE
loss function, the effect of overfitting was reduced. With the
reduction, the result of the segmentationwas closer toMASK.

In Figure 8, the segmentation results on case #04 are
compared. Case #04 is the most challenging case of the
RRA-UNet segmentation network using the CPCE loss
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FIGURE 8. Segmentation results of the worst case under the RRA-UNet
with the CPCE loss function.

FIGURE 9. Segmentation results of the best case under the RRA-UNet
with the DICE loss function and the RRA-UNet with the CPCE loss function.

function. Compared to the DICE loss function, the improved
loss function is segmented. Furthermore, the effect of over-
segmentation was reduced, which resulted in a smaller calcu-
lation of DSC coincidence, while subjectively, the shape of
the segmentation was closer to MASK.

In Figure 9, the segmentation network of the two loss
functions performed well in case #72, which proves that
RRA-UNet outperforms other segmentation networks in pan-
creas segmentation. At the same time, after using the CPCE
loss function, the segmentation result did not have more
overfitting, and the segmentation result in the detail part was
closer to the real result.

IV. SUMMARY
In pancreas segmentation, manual segmentation and segmen-
tation are not the focus of our research due to their ineffi-
ciency. Automatic segmentation is a more reasonable choice,
and our automatic segmentation method has been proven to
outperform othermethods in pancreatic segmentation. Hence,
it can be applied to clinical medicine to facilitate doctors
when determining a diagnosis, thereby reducing the total
workload of doctors. This is the objective of our research.

However, pancreatic segmentation has always been one
of the most challenging tasks in medical image segmenta-
tion. The main reason is that the pancreatic organ is small.
Hence, the area of the CT that corresponds to the pancreas
in the abdominal cavity is small, and this area is affected
by the compression of the surrounding organs. Furthermore,
the shape is highly diverse, and the gray-scale information
of the pancreas in CT is similar to that of the surrounding
environment, which increases the difficulty of segmentation.
In the present study, a new segmentation network is proposed.
Based on the UNet segmentation network, the CBAM was
used to add an attention mechanism at the time of segmen-
tation, which increased the context linkage in the segmenta-
tion network. In addition, the ring residual module was also
added to the segmentation model, which made the whole
segmentation network look forward and improved the seg-
mentation performance of the network. These experimental
results prove that the proposed method is more advanced and
accurate than other methods.

Therefore, we believe that continuing along this research
direction will be fruitful. In future research, our focus should
be on improving the CBAM attention mechanism or replac-
ing CBAM with other attention mechanisms. The method
of context measurement will be used to calculate the shape
similarity of the image. We think that this approach will more
accurately compare the mask and our segmented image, and
we will integrate this part of the method into our CPCE loss
function.
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