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ABSTRACT In recent years, designers are trying to move part of the computing tasks involved in Internet
of Things applications from the cloud to the edge. This imposes increasing performance demands on edge
nodes, which usually clash with their limited energy budget. An effective workaround is to leverage hardware
capable of varying its computational precision at runtime, which can provide ‘‘good-enough’’ results while
significantly reducing energy consumption. Dynamic Voltage and Accuracy Scaling (DVAS) and its variants
are particularly promising methods to implement such hardware, due to their general applicability and
contained overheads. However, these methods are negatively affected by the optimizations performed by
commercial Electronic Design Automation (EDA) tools. As a consequence, when applied within a standard
design flow, they do not yield the expected results. This paper describes a synthesis tool that solves this
issue, allowing the integration of reconfigurable-precision circuits based on DVAS in standard design flows
based on commercial tools. Moreover, our tool can receive information about the relevance of different
precisions for the target application(s) that will use the circuit, and further optimize the design accordingly.
When applied to two realistic use cases (neural network inference and image compression), our tool reduces
the total energy consumption of reconfigurable-precision circuits of 20-25% compared to a straight-forward
application of DVAS.

INDEX TERMS Low-power design, approximate computing, energy-quality tradeoff.

I. INTRODUCTION
Emerging mobile and Internet of Things (IoT) applications
impose stringent constraints on the performance and energy
consumption of edge nodes. Increasingly complex tasks
(e.g. machine learning based classification, multimedia pro-
cessing, etc.) execute on cost- and power-constrained embed-
ded devices, powered by batteries with limited capacity, and
which should ideally support months or years of continuous
operation with a single charge cycle [1].

As the end of Dennard’s constant-field scaling approaches,
such tight requirements can only be met by means of
domain specialization [2]. One common feature of many
modern application domains is error resilience (or error
tolerance), defined as the capability of tolerating relax-
ations in the quality (i.e. accuracy or precision) of internal
computations, without a significant impact on the quality
of final results [1], [3], [4]. Error resilience stems from the
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characteristics of applications’ inputs, outputs and internal
algorithms. Multimedia applications produce outputs that are
meant for humans, and can therefore exploit the limited per-
ceptual capabilities of our sense organs to relax computation
quality constraints. Machine learning tasks typically receive
as inputs noisy sensors data, and process them by statis-
tical/aggregative algorithms [3], [5]; therefore, these tasks
can tolerate ‘‘errors’’ in computations as long as they are
negligible with respect to input noise or can be filtered out
by the algorithm.

Error tolerance can be exploited to trade-off computational
quality and other design metrics, most commonly energy
efficiency. In recent years, this concept has been applied
at all levels of the computing stack, from single devices to
software [1], [4], [6]. Examples of optimizations that explore
this trade-off in specialized computing systems are found in
accelerators for deep neural networks inference [7]–[13], or
video processing [14]–[16]. Tolerance to errors is however
typically time-dependent, and is affected both by the opera-
tion context (e.g. battery state of charge, input noise power)
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and by the input data (e.g. easy/difficult input to classify)
[9], [10], [12], [13]. Moreover, domain-specific accelerators
might still be used to execute multiple applications from
the same domain, each with its own output quality require-
ments, at different times. Consequently, energy-quality scal-
able designs are desirable, i.e. components and systems able
to dynamically alter their energy consumption and output
quality at runtime [17]–[21].

At the hardware level, one of the easiest yet most
effective ways to achieve multiple energy-quality points
consists in tuning the data precision used for internal
operations. In fact, reducing data precision simultane-
ously improves energy efficiency in both computing and
memory, by allowing the hardware to perform operations
on smaller bit-widths and cutting the required memory
bandwidth [10], [13], [18], [22]. Dynamic Voltage and Accu-
racy Scaling (DVAS) and its variants are design techniques
that combine precision and supply voltage scaling to improve
energy efficiency in datapath circuits for energy-quality scal-
able systems [17], [18]. While being general and potentially
very effective, however, the straight-forward application of
these techniques conflicts with the optimizations performed
by Electronic Design Automation (EDA) tools, thus yielding
very limited energy benefits when applied within a standard
integrated circuit design flow.

In this paper, which extends the work of [21], we describe
a synthesis method that enables the design of precision and
voltage scalable datapaths and is fully compatible and inte-
grated with standard EDA tools. Our flow automatically
identifies the optimal supply voltage for each target preci-
sion and constrains the synthesis accordingly, overcoming
the limitations deriving from a straight-forward application
of DVAS-like techniques. In doing so, information on the
target application is leveraged to drive the optimization, thus
making our method perfectly suited for domain specific
accelerators.

This paper extends the original work of [21] as follows:

• Providing a more detailed description of the proposed
flow and extending its application to the case of a
DVAS variant called Dynamic Voltage, Accuracy and
Frequency Scaling (DVAFS) [18].

• Evaluating its effectiveness on two realistic use cases,
i.e. neural network inference [23] and image com-
pression [14] and comparing it to that of a previous
technology-specific synthesis method for energy-quality
scalable datapaths based on runtime back-gate bias-
ing [20].

Through our experimental results, we show that our
method achieves > 25% total energy savings with respect
to a standard application of DVAS, while incurring a limited
area overhead.

The rest of the paper is organized as follows. Section II
analyzes existing work on energy-quality scalable circuits.
Section III focuses on the limitations of DVAS/DVAFS
and provides the motivation for this work. In Section IV

we describe the proposed synthesis method, whereas in
Section V we assess its performance through experimental
results. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK
A. ARCHITECTURAL-LEVEL TECHNIQUES FOR
ENERGY-QUALITY SCALABLE HARDWARE DATAPATHS
Early approaches to implement datapath circuits able to
dynamically reduce their output quality in exchange for
energy savings are based on architectural modifications.
Most of these works focus on adders and multipliers, due to
them being the fundamental building blocks of most complex
datapaths, and propose modifications to their architectures
to enable multiple modes of operation, i.e. energy-quality
points.

The majority of the proposed architectures are designed
following a common paradigm, based on two main concepts.
First, a part of the logic is disabled or replaced by a simpler
circuit when the hardware is operating in a low-quality mode,
thus reducing its dynamic power consumption and critical
delay. Second, the extra slack made available by the logic
simplification is exploited to apply voltage scaling and further
reduce both dynamic and leakage power.

In the case of adders, one popular technique is based on
enhancing an inexact (or approximate) architecture, i.e. one
that is modified at design time to produce lower-quality
outputs in exchange for energy efficiency (for example by
approximating the output LSBs). The inexact design is cou-
pled with error recovery circuitry, selectively activated when
high-quality results are needed, in the next clock cycle after
the computation of the approximate output [25]–[28]. These
designs incur critical latency penalties when operating in the
highest quality modes, as well as significant area and power
overheads due to the additional recovery logic. Another fam-
ily of adder designs is based on selective carry-chain seg-
mentation, in which the adder is split in sub-blocks and the
carry signal from each sub-block to the next can be selec-
tively replaced with the output of a simpler carry prediction
circuit [28], [31]. More recently, an energy-quality scalable
adder using both carry-chain segmentation and error recovery
is proposed in [29], which allows a more flexible selection
of quality levels at runtime. While effective, their implemen-
tation requires multiple clock cycles for accurate computa-
tions, which complicates its integration in a larger datapth,
and incurs significant area overheads. Finally, an advanced
energy-quality scalable adder is proposed in [30]. This solu-
tion implements carry prediction using part of the circuitry
already present in each sub-adder, in order to reduce over-
heads. Moreover, the carry is accurately propagated through
couples of sub-adders to improve output accuracy. Although
this work allows accurate sum computation in a single clock
cycle, it still incurs a significant area overhead compared to a
standard adder.Moreover, the delay of the circuit at maximum
precision also increases, proportionally to the number of
quality-configurations made available at design time.

VOLUME 7, 2019 172031



D. J. Pagliari et al.: Automated Synthesis of Energy-Efficient Reconfigurable-Precision Circuits

In the case of multipliers, one solution consists in selec-
tively ignoring some of the partial products, as proposed
in [32]. Alternatives, all partial products can be computed,
but their accumulation can be implemented by means of
inexact adders. In particular, in the work of [27], the accu-
mulation tree is built with adders able to produce an approx-
imate sum output and a secondary correction output. The
latter can be selectively used, depending on the operat-
ing mode, to reduce the accumulation error, at the cost of
additional energy consumption. This approach is improved
in [33], where the approximate accumulation is made recon-
figurable so to support more quality-configurations. How-
ever, the proposed implementation does not support fully
accurate computations. In [34] a methodology for designing
quality-configurable multipliers using a genetic algorithm is
proposed. With this method, the authors are able to generate
a large number of different Pareto-optimal multipliers, which
however only support two quality configurations (approxi-
mate and accurate) and incur large delay overheads when
performing accurate computations.

Many advanced variants of these basic schemes have been
proposed in recent years, but their detailed description is out
of the scope of this work. More in-depth information can be
found in [4], [6], [35].

In general, energy-quality scalable circuits based on archi-
tectural modifications tend to lack generality, as each mod-
ification is specific to a particular family of circuits. For
instance, [32] and [27] are limited to array multipliers only.
Additionally, these techniques either enable only few oper-
ating modes (e.g. one accurate and one approximate mode)
or tend to have significant power and area overheads when
working at maximum quality [25], [26], [36]. Finally, recent
studies have shown that these designs tend to consume
more power than the results of a simple precision scaling
obtained through bit-width truncation, for the same output
quality [17], [36]. The intuition behind this result is that cir-
cuits based on architectural modifications still invest a sig-
nificant amount of power to compute erroneous information
of limited usefulness. Conversely, bit truncation completely
avoids part of the computation, thus saving more energy.

B. DYNAMIC VOLTAGE ACCURACY (AND
FREQUENCY) SCALING
Dynamic Voltage and Accuracy Scaling (DVAS) [17] and
its variants are alternative methods to design energy-quality
scalable circuits, that take into account the aforementioned
limitations of architectural solutions. These techniques real-
ize multiple quality-modes simply by gating some of the
input LSBs to zero, thus reducing the circuit precision. DVAS
obtains energy reductions by a twofold mechanism. First,
zeroing-out some LSBs directly reduces the switching activ-
ity and hence the dynamic power of the circuit. Second,
it also deactivates some of the timing paths in the circuit,
thus (theoretically) reducing its overall delay, as the longest
timing paths withinmost datapath architectures are those con-
necting input LSBs to output MSBs. Such reduction would

in turn allow one to down-scale the supply voltage below
the value used at maximum precision, while maintaining the
same operating frequency, thus providingmuchmore relevant
dynamic and leakage power reductions [17]. An example of
using precision reduction to tune the quality of computations
is reported in [37] for a multiplier.

Despite its simplicity, DVAS has several advantages com-
pared to the methods described in Section II-A. First,
bit-width gating can be realized with a 1-bit granularity,
hence allowing for a large number of quality modes. Second,
this solution has practically zero power overheads when the
circuit works in the maximum quality mode. Third, input
gating can be applied, in principle, to any arithmetic operator,
making DAS and DVAS much more general than previous
architecture-based solutions.

As detailed in Section III, however, the aforementioned
assumption on the relation between the overall circuit delay
and the number of gated inputs stops being valid when the
circuit is synthesized with a standard EDA flow. This dramat-
ically reduces the energy benefits deriving fromDVAS, as the
supply voltage can only be reduced slightly, even at very low
precisions.

Dynamic Voltage Accuracy and Frequency Scaling
(DVAFS) [18], is a variant of DVAS, stemming from the
observation that input gating in DVAS leaves a part of the
circuit unused. While this part does not switch and hence
only consumes static power, even further benefits could be
obtained by reusing it for other computations. In practice, this
is achieved by means of sub-word parallel operations. For
example, when a 32-bit multiplier is working at a reduced
precision of 16-bit, the LSB-part of the circuit is used to
perform another 16-bit multiplication in parallel, by means
of some additional gating logic to decouple the two halves.
In this way, the critical delay of the operator is still reduced
thanks to the separation of the two sub-operations, allow-
ing supply voltage scaling as in DVAS. Moreover, thanks
to the enhanced parallelism, the clock frequency can be
halvedwhilemaintaining the original throughput, thus further
reducing the power consumption. This principle is applied
‘‘recursively’’ to generate more quality modes (e.g. four 8-bit
multiplications and eight 4-bit multiplications in the previous
example). A full chip including DVAFS-based datapaths has
been demonstrated in [13].

With respect to DVAS, DVAFS clearly permits a smaller
number of quality modes. Moreover, it is also less general,
as it does rely on some architectural modifications and can
only be applied to circuits that can be easily modified to
support subword-parallel operations (e.g. arithmetic units)
but not directly to more complex accelerators.

III. MOTIVATION
Despite its theoretical effectiveness, DVAS fails to yield the
expected energy reductions when applied to circuits that are
synthesized using a standard EDA flow [19], [20].

In fact, all synthesis and place and route (P&R) tools
for ASICs optimize the longest timing paths in a circuit
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FIGURE 1. Example of wall-of-slack: endpoint slack distribution for a
16 × 16-bit MAC with 44-bit accumulator.

for performance, whereas shorter paths are exploited for area
and power recovery [38], [39]. In particular, tools map gates
in short timing paths to slow library cells (i.e. with small
widths and high threshold voltages), since these are smaller
and consume less static and dynamic power. As a result, after
synthesis and P&R, the delays of the initially non-critical
paths tend to increase, to the point where their slack becomes
comparable to that of critical ones. From the perspective of
the synthesis tools, the ideal result is obtained when all slacks
are very close to zero, causing a phenomenon known as the
wall-of-slack (WOS) [19], [20], [40].

An example is shown in Figure 1, which reports the dis-
tribution of timing slack for the different endpoints of a
16× 16-bit Multiply and Accumulate (MAC) circuit, with
44-bit accumulator, synthesized at fclk = 1.25GHz, VDD =
0.95V , targeting a 28nm Fully-Depleted Silicon On Insu-
lator (FDSOI) technology. As shown, the great majority of
endpoints have a worst slack very close to 0s.

The existence of the WOS invalidates the DVAS assump-
tion that the overall slack of the circuit should increase as
an effect of gating some LSBs. Indeed, given a situation like
the one of Figure 1, it is easy to see that, regardless of the
number of gated input bits, the slack distribution will change
only marginally. This, in turn, means that VDD can barely be
reduced (without incurring timing violations), even when the
circuit works at very low precision.

The authors of [17] do mention this problem and propose
to solve it by modifications of the EDA flow, which are
however not described in their papers. A partial solution
has been presented in [20], where it was shown how the
slack distribution can be re-shaped when working at low
precision, by means of fine-grain, adaptive back-gate bias-
ing applied to selected parts of the circuit. However, that
method is specific to FDSOI, where back-gate biasing is an
extremely powerful knob for tuning the power/performance
tradeoff, and would therefore not be as effective on different
technologies.

In Section IV we will describe a more general solution,
applicable to any technology. Our method first explores the
design space to find the optimal supply voltage (VDD) to use
for each precision, then constrains the synthesis and place
and route accordingly, thus preventing the formation of the
WOS. Importantly, the initial optimization phase can also

FIGURE 2. High-level view of the proposed synthesis flow.

leverage application statistics to yield greater benefits, which
is impossible with the method of [20].

IV. APPLICATION-DRIVEN SYNTHESIS FLOW FOR
MULTIPLE PRECISION CIRCUITS
This section describes a novel tool that allows designers
to integrate DVAS- and DVAFS-based energy-quality scal-
able circuits within a standard EDA flow, overcoming the
aforementioned limitations. A high-level view of its main
operations is shown in Figure 2, where inputs and outputs are
colored in blue and green respectively.

The tool receives four inputs:
1) The gate-level netlist of the design with its correspond-

ing constraints (clock frequency, boundary conditions,
etc.). This is a standard implementation of the circuit,
that only supports the maximum precision mode, syn-
thesized at nominal VDD.

2) The set of target precisions (i.e., bit-widths) that must
be supported in the final energy-quality scalable ver-
sion of the circuit.

3) The set of available supply voltages to be used for
voltage scaling.

4) Statistics about the frequency of usage of each preci-
sion in the target application, detailed more in depth in
the following. This input is optional.

Given these data, the tool iteratively re-synthesizes
the circuit considering different combinations of precision
(obtained through LSB-gating) and VDD, using an EDA syn-
thesis tool. Its final outputs are a list containing the optimal
VDD to use for each precision, and a modified version of the
input netlist, able to support such combinations of supply
voltages and bit-widths.

The most important operation of the tool is labeled step B
and highlighted with an orange background in Figure 2.
Sections IV-A and IV-B focus in depth on the two operations
that compose this step, whereas Section IV-C describes the
overall flow of the tool. These three sections consider the
case of a circuit based on standard DVAS, while Section IV-D
describes the differences in the flow for the case of DVAFS.

A. MULTI-SCENARIO SYNTHESIS
Our tool makes use of multi-scenario synthesis (also known
as multi-corner, multi-mode, or MCMM) to simultane-
ously consider the operation of a circuit at different VDDs

VOLUME 7, 2019 172033



D. J. Pagliari et al.: Automated Synthesis of Energy-Efficient Reconfigurable-Precision Circuits

FIGURE 3. Example of case analysis constraint. Red dashed lines
correspond to false paths.

and precisions. This functionality is supported by all major
commercial synthesis and P&R tools [38]. When using a
MCMM flow, the synthesizer is instructed to simultaneously
consider multiple operating corners during its optimiza-
tions, each associated with its corresponding operating mode.
A corner is simply the description of the process, supply
voltage and temperature (PVT) point in which the circuit will
operate, while amode is a set of constraints (e.g. a target clock
frequency). MCMM is used, among others, in variability-
aware designs.

In a DVAS-based circuit, multi-scenario synthesis can be
leveraged to ensure that the circuit does not have timing vio-
lations in all target combinations of VDD and precision (bit-
width).1 This is achieved by creating a separate scenario for
each bit-width. These scenarios are generated automatically
starting from the nominal one corresponding to the original
design, as follows:
• New corners are simply copies of the original one, in
which VDD is modified to refer to the correct supply
voltage value.

• New modes are obtained by adding case analysis direc-
tives to the set of constraints of the original scenario.

Case analysis is a feature of industrial synthesis and P&R
software that forces them to only consider one particular
value or transition for some nets in the circuit when doing
timing and power analysis [38]. When this feature is used
to force a logic ‘‘0’’ on a net, for instance, the synthesizer
will assume that such net never changes its value and conse-
quently never incurs a transition. This means that the timing
paths activated by a 0-1 or 1-0 transition on that net will
be classified as false and ignored for timing optimization
and power analysis (e.g. switching activity computation).
Moreover, the EDA tool, using appropriate options, allows
propagating case analysis constraints to the transitive fanout
of the originating net. An example of the effects of a case
analysis constraint on a gate-level netlist is shown in Figure 3,
where red dashed lines correspond to disabled timing paths.

In order to inform EDA software that the circuit is working
at a reduced bit-width, our tool automatically generates a
set of case analysis directives imposing constant logic 0s
on the input LSBs, which are appended to standard con-
straints in the corresponding scenario. Importantly, we always
keep in the set of scenarios passed to the synthesizer the

1The way to associate an appropriate VDD to each precision is described
in Section IV-C. This section assumes that such association has already been
determined.

FIGURE 4. TCL script for the generation of per-bit-width scenarios.

one corresponding to the maximum precision, i.e. the one
whose constraints do not include case analysis on input
LSBs. This implies that the synthesizer will ignore false paths
when checking timing compliance and power consumption
in reduced-precision scenarios, but will not eliminate the
corresponding logic, as the same paths are not false in the
maximum-precision scenario.

Figure 4 shows a simplified version of the TCL scripts used
to generate one scenario per bit-width as just described, using
Synopsys Design Compiler’s jargon as an example. Similar
commands can be used in tools from other vendors. The
script is sourced within the synthesizer, before launching the
actual synthesis (e.g. with thecompile_ultra command).
Lines 1-2 are the input variables for the procedure, which are
actually set by our tool upon calling Design Compiler. The
first variable describes the target scenarios, represented as a
list of (precision, Vdd ) pairs. The second variable informs the
tool of the input ports whose precision should be dynamically
tuned, by providing a list of (name, bit-width) pairs. This
is needed because not all inputs of the circuit should be
considered when gating LSBs; clock, reset and other control
inputs should obviously never be gated.2

Lines 4-5 are tool-dependent settings that ensure that case
analysis constraints are propagated through sequential cells
(e.g. flip flops) and integrated clock gating (ICG) cells respec-
tively. Next, the script iterates through the list of target

2In practice, the specification of input ports in our scripts is more complex,
e.g. it also includes a multiplier for the case of ports with different LSB sig-
nificance, but these technical details are neglected to avoid over-complicating
the description.
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scenarios (lines 7-24). The scenario is created in line 10 with
a custom name; next, an external script containing common
(scenario independent) constraints is sourced in line 12. This
is simply the constraint file provided as input to our tool and
includes the definition of boundary constraints (input/output
delays, input driving cells and output loads, etc.) and of the
circuit clocks (main period, uncertainty, maximum transi-
tion time, etc.). In lines 13-20, the script integrates these
constraints with scenario-specific ones related to LSB gat-
ing. To this end it iterates over all ‘‘gateable’’ input ports,
then computes the number of LSBs that should be gated
from the target precision and port bit-width (line 15), and
finally applies one case analysis constraint per each gated bit
(line 18), specifying the logic value ‘‘0’’.

The rest of the script is devoted to the definition of
the corner for each scenario. The most relevant operation
in this section is the definition of the operating condi-
tions libraries (line 21), which depend on the target VDD.
Notice that each scenario also includes a common fast cor-
ner library (‘‘ff28_1.30V_m40C’’ in this example) for hold
time optimization. Following this definition, several other
scenario-related operations are performed (line 23), such as
reading VCD/SAIF files for switching activity annotation,
setting scenario options etc. However, these are identical
to the ones performed in a regular synthesis flow and are
therefore not reported here.

We use the multiple scenarios constructed as shown in
Figure 4 to perform an incremental re-synthesis on the input
netlist, that is a modification of the gate-level mapping with
which the EDA tool attempts to respect the newly provided
constraints. Thanks to the MCMM flow, the tool will be
forced to concurrently ensure timing compliance in all VDD
and bit-width combinations.
If the VDD associated with one of the reduced bit-width

scenarios is too low to ensure timing compliance only by
exploiting the additional slack deriving from LSB gating,
the EDA tool will then replace some of the logic cells
belonging to the active paths of the circuit (i.e. those cor-
responding to not-gated inputs) with larger/lower thresh-
old voltage equivalents. This will shorten the corresponding
paths, thus reshaping the overall slack distribution of the
circuit and contrasting the wall-of-slack. If the tool succeeds
in resolving all timing violations during the re-synthesis
step, the circuit will then be able to operate at the tar-
get VDD for that bit-width, thus possibly consuming less
power.

Clearly, the effect of incremental re-synthesis is to increase
the area occupation of the circuit, as well as the power con-
sumption in higher precision modes (especially at maximum
precision), due to the insertion of larger and more consuming
cells. Fortunately, in many applications, maximum preci-
sion is only seldom required [14], [18], [22], [41]; there-
fore, although the power consumption at maximum precision
increases, this solution will be beneficial in terms of energy,
as the least power consuming instances will be used more
frequently.

B. APPLICATION-DRIVEN ENERGY ESTIMATION
After each re-synthesis step, our tool must evaluate the
expected energy consumption of the resulting netlist, con-
sidering the contribution of all target scenarios. However,
as anticipated, not all scenarios have the same importance
for the final design, especially if the circuit is going to be
included in a custom hardware accelerator. In fact, we do
not aim at optimizing the power consumption of individual
precision configurations, but rather the overall energy con-
sumption of the circuit. In the typical case of some precision
configurations being usedmore often than others by the target
application (or set of applications), it is clear that themost fre-
quently used precisions should be more carefully optimized.

As explained in Section IV-A the problem is not trivial,
as there is typically a trade-off between reducing the con-
sumption at one precision (by lowering the corresponding
VDD) and increasing the power of other configurations (due
to using larger/lower threshold voltage cells). Therefore, our
tool evaluates each intermediate solution during its optimiza-
tion by computing a proxy of the final metric to be optimized
(total energy) as follows:

Eest =
N∑
i

wiPi(9,VDD,i, bi) (1)

where N is the number of bit-width configurations and Pi
is the power in each configuration. Pi is in general a func-
tion of the set 9 of standard cells that compose the cir-
cuit (note that 9 is common to all configurations), of the
supply voltage applied to the circuit in that configuration
(VDD,i) and of the corresponding bit-width bi. The latter has
an influence as it determines the activation of some of the
cells in 9. Each re-synthesis step changes both 9 and Vdd,i,
thus possibly influencing in opposite ways different precision
configurations.

Weights wi are optional, and can be set to wi = 1 ∀i to give
the same ‘‘importance’’ to the power consumption at all pre-
cisions, e.g. if the target design is a general-purpose energy-
quality scalable platform. In case of application-specific
hardware, however, we propose to assign to each wi a value
proportional to the frequency at which precision i is used. For
example, if an application uses three precisions (e.g. 4, 8 and
16-bit) for the 50%, 30% and 20% of the time respectively,
we could assign weights 0.5, 0.3 and 0.2 to Equation (1)
during re-synthesis.

The statistics on the usage frequency of each precision
can be gathered from software simulations. Alternatively,
in some relevant domains (e.g. neural network inference),
such frequencies are roughly data independent (e.g. for a
given neural network architecture and classification task)
hence the weights can be directly obtained from ‘‘pen-and-
paper’’ considerations [18], [22], [41].

C. OPTIMAL VDD selection
In Sections IV-A and IV-B we described how our tool
optimizes an existing circuit to support multiple VDD and
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FIGURE 5. Proposed greedy algorithm for the selection of the optimal
VDD for each bit-width.

bit-width configurations and how it evaluates the energy
consumption resulting from such optimization. This section
completes the description by detailing the remaining opera-
tions shown in Figure 2 and focuses in particular on how to
select the appropriate VDD for each bit-width. In this work,
we perform such selection using a greedy algorithm, as shown
in the pseudo code of Figure 5.

In the pseudo-code, the + symbol used with scenar-
ios (lines 8, 14, 15, 16) corresponds to the list con-
catenation operation. Initially (lines 2-5) the procedure
considers the input circuit in its original synthesis sce-
nario, i.e. nominal supply voltage (Vstart ) and maximum
precision (bmax).

The core of the algorithm spans the available set of
supply voltages, starting from the nominal value and pro-
gressively decreasing it. While doing so, it adds one
bit-width mode at a time to the considered set, in decreas-
ing order of precision (line 6, corresponding to step A in
Figure 2).

For each new bit-width, the first step (line 8) is an assess-
ment of the energy consumption of the circuit when the new
scenario uses the same supply voltage as the previous one, i.e.
the only difference between the two is in the number of zeroed
LSBs. Energy estimation is performed with Equation (1) and
accounts for all currently-considered bit-width modes with
their appropriate weights. Next VDD is decreased (line 12)
and the circuit is re-synthesized with the new scenario, so that
the EDA tool can attempt to restore timing compliance with
the lower VDD. Re-synthesis is performed as described in
Section IV-A and accounts for all currently considered bit-
widths thanks to MCMM. The energy of the resulting circuit
is evaluated again using Equation (1) in line 15.

The result of re-synthesis is then also inspected with a
Static Timing Analysis (STA) tool (line 16 or step C in
Figure 2), to check if all timing violations have been resolved;

failures may occur when the selected VDD is too low.
STA checks for positive setup and hold slacks in all con-
sidered bit-width modes. The progressive scaling of VDD is
continued until it results in a reduction of total energy, and
the tool is able to avoid timing violations (line 17 or step
D). The lowest VDD that satisfies these two conditions is
selected as final supply voltage for the considered bit-width,
and the corresponding scenario is saved (line 18). Then, a new
bit-width is added to the set, and the procedure is repeated
starting from the last considered VDD, i.e. Vstart .

1) OPTIMALITY CONSIDERATIONS
Identifying the optimal VDD for each precision requires sev-
eral re-synthesis steps. In order to limit the number of re-
synthesis we adopt a greedy approach, stopping the VDD
decrement at the first minimum of Equation 1 although
in general, that point might not correspond to the global
optimum.

In fact, it could happen that a particular combination
of VDD and bitwidth causes the value of Equation 1 to
increase, while a further decrement of VDD might reduce
the metric. Whether this happens depends on many fac-
tors, such as: the values of weights wi, the topology of the
considered circuit, the re-synthesis algorithm used by the
EDA tool (which is typically proprietary and not modifi-
able) and the synthesis constraints (especially fclk ). In prac-
tice, however, when considering the use cases detailed in
Section V such situation never occurs, and the greedy
and exhaustive solutions coincide, with the former requir-
ing a smaller number of re-synthesis steps (at maximum
equal to the number of different Vdd s considered in the
optimization).

With the same rationale of keeping the execution time as
small as possible, our optimization is performed at gate-level
rather than after P&R. Although the latter solution would
yield more accurate results, post layout optimizations take
much longer to execute than gate-level re-synthesis. More-
over, the P&R tool also has less freedom to optimize the
circuit; for instance, performing the incremental steps after
placement would preclude gate resizing, and only allow rout-
ing optimizations, which are less effective in contrasting the
wall-of-slack. Finally, another important reason why it is
preferable to use the proposed tool at gate-level is that its
output, i.e. the modified netlist and corresponding set of con-
straints can be freely embedded in the P&R of a larger circuit.
In contrast, executing the flow at P&R level would imply
that each individual reconfigurable-precision module is sep-
arately placed and routed, and then inserted in a larger design
as a macro, causing large area and routing overheads. In sum-
mary, as long as power estimations after synthesis and P&R
are correlated [38], it makes sense to select the appropriate
VDD for each precision post-synthesis, and then enforce these
VDDs during P&R. In such a way, a single (multi-scenario)
P&R is performed, using the previously selectedVDD for each
bit-width and the corresponding case analysis directives as
constraints.
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FIGURE 6. Schematic of a 32-bit multiplier able to perform two 16-bit
operations in parallel.

D. SUPPORT FOR DVAFS
As detailed in Section II, DVAFS uses sub-word parallel
operations to increase the throughput of a circuit operating
at reduced bit-width, then restores the original throughput by
appropriately dividing the clock frequency. Therefore, while
DVAS does not require any architectural modification of the
circuit, besides some minimal logic to allow LSB gating,
DVAFS does require a customized architecture.

As an example, Figure 6 shows a basic implementation
of a DVAFS-compatible multiplier, able to perform one
32× 32-bit operation or two 16×16-bit operations per clock
cycle. Red blocks and connectors in the figure represent
the additional elements of the architecture compared to a
standard multiplier. As shown, depending on the value of
the additional full control bit, the architecture isolates the
multiplication of the MSB-halves (AH and BH ) and of the
LSB-halves (AL and BL) of the two inputs. This is obtained
through the output multiplexer, which selects either the nor-
mal 64-bit product or the concatenation of the two 32-bit
half-products. Moreover, the inputs of the unused partial
products (AL · BH and BL · AH ), as well as the inputs of the
accumulation adders are zeroed-out when full is 0 to reduce
the dynamic power. In order to support smaller precisions
(e.g. four 8 × 8-bit operations), the same modifications can
be implemented recursively to the two 16×16-bit multipliers
that compute AH · BH and BL · AL. Clearly, the resulting
circuit will then have additional control inputs to select the
operating mode.

Notice that, although there are clearly four 16×16multipli-
ers in Figure 6, the circuit only supports two 16-bit operations
in parallel. The reason is twofold. First, the inputs to the four
multipliers are not independent. Therefore, feeding themwith
eight independent inputs would require replacing the AND
gate arrays with multiplexers, which are typically slower and
bigger, thus increasing the overheads. Second, the number of
I/Os of the circuit would increase for each precision mode,
e.g. 64 inputs plus 64 outputs for one 32-bit operation versus
128 + 128 for eight 16-bit operations, etc. The total number
of connections would become very large if lower precisions
(8/4-bit) are supported. Consequently, all the circuitry sur-
rounding the multiplier (registers, control logic, etc.) would

FIGURE 7. TCL script for the generation of per-bit-width scenarios in the
case of a DVAFS circuit.

have to be sized for the maximum number of I/Os, with a
dramatic impact on area occupation and power consumption
(especially leakage). For these reasons, it is preferable to
sacrifice the full utilization of the 16 × 16 multipliers and
only support two parallel operations.

The most significant difference for our tool when dealing
with a DVAFS circuit is in the definition of case analysis
constraints. In fact there are no gated LSBs in DVAFS, and
what changes between two precision configurations is the
value of the control inputs that enable sub-word parallelism
(e.g. full in Figure 6). Figure 7 shows the differences in the
TCL script for the automatic creation of multiple scenarios
with respect to the case of standard DVAS. In the definition
of the target scenarios provided to the synthesizer (line 1),
after the precision and VDD, each list element now contains an
integer clock period multiplier for frequency scaling (1, 2 and
4 for the 3 scenarios in the example). Then, each element also
contains a list of (name, value) pairs defining all the control
signals that should be set to a fixed value when optimizing
that scenario (full and half in the example).

After reading the scenario independent constraints (line 8),
the script now overrides the clock period definition in each
scenario, multiplying the period by the appropriate factor
(lines 11-13). Finally, case analysis constraints are set by
simply applying the specified values to all the control inputs
defined in the target_scenarios (lines 15-20). In prac-
tice, our tool uses a single TCL script to generate scenarios,
and discerns between DVAFS and DVAS depending on the
presence/absence of clock multipliers and control inputs def-
initions in the input list. Besides these differences, the rest of
the flow described in Section IV-C is identical to the case of
DVAS.

Clearly, the wall-of-slack effect is less critical for DVAFS,
as the additional slack for voltage scaling at reduced precision
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mainly derives from the clock frequency reduction, rather
than from disabled timing paths. However, our tool is still
useful to determine the optimal VDD for each operating mode
of the circuit. Without this association, in fact, a designer
could only synthesize the circuit without imposing multi-
scenario constraints, and then identify the minimum voltage
for each bit-width a posteriori through STA. While the loss in
power saving opportunities would be less relevant than in the
case of DVAS, it could still be sizable. In fact, especially when
the usage frequency of different scenarios is non-uniform, our
tool optimizes the netlist to allow lower-voltage operation for
the most relevant bit-widths, finding the best balance with the
power increase in other configurations due to gate remapping,
all of which is not possible using a standard synthesis flow.

V. EXPERIMENTAL RESULTS
In this section, we assess the impact of our tool on two
DVAS-based circuits of different sizes and complexity, which
have been assumed to be part of hardware accelerators for
realistic error tolerant applications, i.e. Convolutional Neural
Network (CNN) inference [23] and image compression using
Discrete Cosine Transform (DCT) [14]. We then show exam-
ples of the effectiveness of our tool for two other circuits,
not related to a specific application, in order to show the
generality of the proposed methodology: a 32-bit multiplier
based on DVAFS and a 16-bit non restoring divider. Overall,
these benchmarks internally include most of the components
found in digital datapaths (adders, multipliers, registers, glue
logic, etc.). Therefore, they serve as examples to show the
effectiveness of our proposed flow on most datapaths, and
on both DVAS and DVAFS. Finally, we compare the pro-
posed synthesis modifications with the technology-specific
methodology proposed in [20] to synthesize DVAS-based
circuits.

A. SETUP
All experiments were performed starting from VHDL
descriptions of the circuits, synthesized targeting a 28nm
FDSOI technology library from STMicroelectronics. The
nominal VDD was set to 0.95V for all benchmarks and the
clock frequency was selected so to guarantee a positive worst
timing slack smaller than 100ps. Unless specified otherwise,
we instructed our tool to consider supply voltages from 0.95V
to 0.60V in steps of 0.05V.

For logic synthesis (both the initial run to get the nominal
circuit, and the multiple re-synthesis performed by our algo-
rithm) we used Synopsys Design Compiler L-2016.03. Place
and Route was executed with Cadence Innovus 16.1, while
Static Timing Analysis and power analysis were performed in
Synopsys PrimeTime L-2016.06. The algorithm of Figure 5
was implemented in Python 3.5 and uses the subprocess pack-
age to invoke Design Compiler and PrimeTime. However,
the functionality of the tool is not tied to the specific EDA
tools used in this setup, and can be made compatible with
other vendors simply by replacing the adapter Python meth-
ods that translate generic tool commands into TCL scripts.

TABLE 1. Number of MAC operations performed at each bit-width during
the classification of one image with LeNet-5 [23] and corresponding
objective function weights in the proposed synthesis tool.

The Python code is made available in [24]. Throughout our
experiments, we kept all synthesis tool options (such as the
optimization effort, the use of topographical synthesis, etc.)
constant, and set to the most appropriate values for the target
technology. This is because our goal is to propose an opti-
mization that is fully compatible with the pre-existing EDA
flows used by a designer or company, without requiring any
tweak of tool-specific options or algorithms.

B. USE CASE 1: MAC FOR CNN INFERENCE
This first use case focuses on a Multiply-and-Accumulate
(MAC) circuit, i.e. the most important arithmetic component
in hardware accelerators for neural networks inference [18].
We have considered a scenario in which this circuit has to be
included in an accelerator for handwritten digit recognition,
using a LeNet-5-like CNN architecture [23].

Previous research has shown that hardware accelerators for
CNN inference can leverage reduced bit-width fixed-point
MACs to gain performance and reduce energy consumption,
with a small impact on classification accuracy [18], [22], [41].
The authors of [18] have also shown that a better accuracy is
obtained if different bit-widths are used for the MAC opera-
tions relative to different layers of a CNN. In this experiment,
we have targeted the same bit-widths proposed in [18] for
the MAC operations required by the Convolutional layers of
LeNet-5. We have also assumed that the Fully Connected
(FC) layers of the CNN use 16-bit MACs, in accordance
with [22]. Combining these assumptions with the architec-
tural details of each layer (number of convolutional filters/FC
nodes, filter sizes, etc.), we have computed the number of
MACs that require a given bit-with in LeNet-5, when per-
forming a single image classification; the results of this analy-
sis are reported in the first two columns of Table 1. As shown,
the MAC circuit must support three precision configurations,
i.e. 4-bit, 8-bit and 16-bit. Notice that the impact of using
these precisions for MACs on the final accuracy of the neural
network has already been evaluated in [18] and is out of the
scope of this work. Herein, we use their results as a starting
point and focus on the design of an appropriate datapath for
achieving that accuracy.

We have considered the impact of three different
DVAS-based synthesis flows on the same initial VHDL
description of the circuit:

• Conventional: a standard flow that does not include
specific optimizations to facilitate DVAS, i.e. LSB gat-
ing and voltage scaling are applied a posteriori, to the
outputs of a normal synthesis and P&R.
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TABLE 2. Reduced bit-width VDD and area overhead (normalized to the
conventional version) of the three MAC versions.

FIGURE 8. Power consumption in different bit-width modes for the three
MAC versions.

• Uniform: an execution of the proposed flow (Figure 2)
in which the power weights for different precision con-
figurations of Equation 1 are all set to 1, i.e. the target
application is not taken into account.

• Weighted: an execution of the proposed flow in which
the power weights are set to values proportional to the
usage frequency of each precision. Weight values are
reported in the rightmost column of Table 1.

The MACs have been designed with a 44-bit accumulator
and the target clock frequency for all three versions has been
set to fclk = 1.25GHz. For this benchmark, the complete exe-
cution of our tool on the server used for our experiments (Intel
Xeon E5-2630 @ 2.40GHz, 128GB RAM, Linux OS) has
taken a maximum of 30 minutes for theWeighted version. For
comparison, a standard synthesis of the MAC takes around
4 minutes.

Table 2 shows the minimum supply voltage achievable
without timing violations when the circuit is working at 8-bit
and 4-bit for the three MAC versions. The VDD for maximum
precision (16-bit in this case) is always equal to the nominal
one (0.95V) and is therefore not reported in the table. In fact,
our flow never modifies the operating conditions for maxi-
mum precision while optimizing lower-precision modes.

These values have been confirmed analyzing the final P&R
output in PrimeTime. For the Uniform andWeighted circuits,
the VDD values correspond to the optimal ones identified by
our tool during synthesis. The rightmost column of Table 2
reports the area overhead of theUniform andWeightedMACs
with respect to the Conventional version. Figure 8 shows the
total power consumption of the threeMACs at each bit-width.
Power values include both leakage and dynamic components
and are estimated using the post-P&R layouts.

As shown by the data in Table 2, down-scaling VDD of
just 0.05V (from 0.95V to 0.90V ) causes a timing violation

FIGURE 9. Energy due to MAC operations for classifying one image in
LeNet-5.

at both 8-bit and 4-bit precision in the Conventional MAC,
as an effect of the wall-of-slack (indeed, the slack distribu-
tion shown in Figure 1 corresponds exactly to this circuit).
Conversely, for the Uniform MAC, our tool is able to remap
the cells in the circuit in order to ensure timing compliance
at 0.90V for both low-precision configurations. The supply
voltage is not reduced further due to the high power overheads
that this would cause at 16-bit. However, this intermediate
solution does not take the statistics about application data into
account. In particular, it neglects the fact that 16-bit precision
is only required in about 0.5% of the MAC operations.

When provided with information about the usage of differ-
ent configurations (Weighted MAC), our algorithm selects a
much more aggressively scaled VDD for both 8-bit and 4-bit
precision. This increases the area overhead to 16%, but allows
significant savings at reduced bit-widths (27% at 8-bit, and
31% at 4-bit).

Figure 9 reports the total energy consumed by the three
MAC versions when classifying one image in LeNet-5.
Results are normalized to the Conventional implementation.

While the Uniform version only consumes ≈ 5% less
energy compared to a standard design, the Weighted solution
reduces consumption by≈ 27%. Importantly, these result are
achieved despite the additional leakage energy caused by the
area increase in the Uniform and Weighted MACs.

C. USE CASE 2: DCT
In this experiment, we have applied our tool to a DCT
accelerator. As for the CNN example, we have leveraged a
previous analysis on the impact of reduced-precision oper-
ations in DCTs. The authors of [14] studied the impact of
using different bit-widths for the computation of different
frequency components within a DCT. They used a design
space exploration framework to identify the optimal com-
binations of bit-widths for different quality (PSNR) levels.
In order to implement these combinations, a HW accelera-
tor should support 12-bit, 9-bit, 6-bit and 4-bit operations.
Table 3 reports the percentage of coefficients computed at
each bit-width for the two the solutions of [14] that use all the
four bidwidths (12, 9, 6, and 4 bits). Since the computation
of each coefficient involves the same operations, these values
also correspond to the usage frequencies of the different
precisions.

We have synthesized an open source DCT accelerator
available on OpenCores [42], targeting a clock frequency
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TABLE 3. Number of DCT coefficients computed using each bit-width in
the first two solutions of [14].

TABLE 4. Reduced bit-width VDD and area overhead (normalized to the
conventional version) of the four DCT versions.

TABLE 5. Power and normalized energy results for the DCT use case.

of fclk = 2GHz. Although this accelerator is still internally
composed of multipliers and adders (as for most arithmetic
circuits) the difference with the previous MAC benchmark
is the size of the input netlist provided to our tool (4x larger
number of cells). Therefore this second use case demonstrates
the effectiveness of our approach on larger designs.

We have synthesized the DCT in the same three versions
described in SectionV-B; however, we have implemented two
versions of the ‘‘Weighted’’ design corresponding to the two
solutions Sol1 and Sol2 reported in Table 3. For this use case,
the execution of our tool on the same server used for theMAC
has taken at most 38 minutes (for the Sol1 run).
Tables 4 and 5 show the same results described in the

previous section for this second use case. As for Table 2,
the VDD used at maximum precision is implicitly 0.95V for
all versions of the circuit and therefore it is not reported.

The results are similar to those obtained for the MAC.
Thanks to our tool, low precision VDDs are significantly
reduced, at the cost of an increase in area and power consump-
tion at 12-bit. This, in turn, guarantees significant energy
reductions when considering a complete DCT operation.
Notice that the Weighted 1 solution reduces the VDD at 9-bit
of an additional 0.05V compared to Weighted 2, due to the
higher usage frequency of this bit-width in Sol 1 (41.66%
vs. 25% – Table 3). In general, however, the difference in
usage between different bit-width modes is less marked in
this case than it was for the MAC, and the Uniform DCT
achieves similar energy reductions compared to theWeighted
ones. Nonetheless, the DCT versions synthesized with the

TABLE 6. Reduced bit-width VDD and area overhead (normalized to the
conventional version) of the three divider versions.

TABLE 7. Power and normalized energy results for the three divider
versions.

most appropriate power weights (i.e. Weighted 1 for Sol
1 and Weighted 2 for Sol 2) always achieve the smallest total
energy, highlighted in boldface in Table 5.

D. APPLICATION TO A DIVIDER
In order to further show the generality of our method, we have
applied it to a circuit that has a different internal structure
from both the MAC for CNN inference and the DCT acceler-
ator. Specifically, we have selected the 16-bit non restoring
combinational divider provided as an instantiable Design-
Ware component in Synopsys Design Compiler [38]. This
is a smaller circuit compared to the previous two, and does
not include multipliers. For this design, we have not focused
on a specific application. Rather, we have assumed a generic
scenario in which the divider has to support 16-bit, 8-bit and
4-bit precision, and we have assumed that 16-bit is only used
10% of the time, whereas 8-bit and 4-bit are used 45% of
the time each. These usage frequencies have been chosen at
random, with the only constraint that clearly, low precision
operating modes must be used frequently in order to show
the advantages deriving from our method. Otherwise, our tool
would produce a circuit that is very similar to a standard one,
as it would not spend effort optimizing low precision modes
if the latter are almost never used. For this circuit, the clock
frequency has been set to fclk = 500MHz. The execution of
our tool has taken 28 minutes.

The results of this experiment are reported in
Tables 6 and 7. Once again, the VDD at maximum pre-
cision is implicitly 0.95V for all three versions of the
divider. Energy values in this case are simply computed by
assuming 100 divisions, 10 of which use 16-bit precision
whereas the remaining 90 are equally split between 8-bit and
4-bit.

The interpretation of these results is identical to the pre-
vious two use cases, and their purpose is mainly to demon-
strate the generality of our method. Notice in particular that,
because both low-precision operating modes are very impor-
tant for energy (given the weights selected for this example),
the total savings are even larger than in the previous two
experiments.
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TABLE 8. Area, power and normalized energy results for the
DVAFS-based multiplier.

E. APPLICATION TO DVAFS-BASED CIRCUITS
To evaluate the effectiveness of our flow on DVAFS-based
circuits, we have considered a simple multiplier design sim-
ilar to the one depicted in Figure 6. We have synthesized a
32-bit version of this circuit able to support two 16-bit or four
8-bit operations in parallel, with fclk = 1.25GHz. In this case,
we have only used the Conventional and Weighted flows,
since the Uniform case would basically coincide with the
former, as explained in Section IV-D. As for the previous
experiments on the divider, when setting usage frequencies,
we have not focused on a specific application, but generically
assumed a scenario in which 8-bit precision is used 90%
of the time, whereas 16-bit and 4-bit are used 5% of the
time each. This is not an unlikely scenario, as it is not so
different from the results of Table 1. Our tool has com-
pleted the re-synthesis of this benchmark in approximately
45 minutes.

The post-P&R layout obtained with the traditional flow
can be operated at VDD = 0.70V when using 8-bit precision
and at VDD = 0.60V (i.e. the minimum available) at 4-bit.
This is mostly due to using a half (for 8-bit) or a quarter
(4-bit) of the original fclk , which allows voltage scaling even
in presence of the wall-of-slack. However, when using our
tool with power weights proportional to the aforementioned
frequencies, the VDD at 8-bit is also reduced to 0.60V thanks
to gates remapping. The area, power and energy results of
the two multipliers are shown in Table 8. Energy values have
been computed as for the previous divider example.

Similarly to the previous experiments, the power increase
at 16-bit produced by our flow comes from the resizing of
gates, performed in order to enable a more aggressive voltage
scaling at 8-bit. Moreover, in this case, the modified circuit
consumes more power than a standard one also for 4-bit
operations. The reason is that the standard circuit was already
able to use a supply voltage of 0.60V for that precision, thanks
to the frequency scaling present in DVAFS. Since 0.60V is the
minimum VDD available in our library, our tool cannot reduce
the voltage further. Therefore, due to the larger gates inserted
in the modified circuit when optimizing the 8-bit mode, the
power at 4-bit also increases compared to the original design
(since both use the same VDD).
However, both these overheads are acceptable given that

16-bit and 4-bit mode are used rarely in this example, and
consequently contribute minimally to the total energy con-
sumption. If that was not the case, our tool would have
selected a different combination of VDD and gate resizing,
e.g. one yielding a smaller power reduction at 8-bit, but also
a smaller overhead at 4/16-bit.

TABLE 9. Results with different clock frequency constraints for the MAC
circuit described in Section V-B. For each frequency the results refer to
three different MAC versions (Ver. column): Conventional (C), Uniform
(U) and Weighted (W), where the latter uses the same weights of
Section V-B.

These results show that, even if the wall-of-slack does not
prevent the application of DVAFS, our tool is still useful
to avoid missing significant energy savings opportunities.
In fact, rather than finding the minimum VDD for 8-bit opera-
tions a posteriori, our tool enforces a low supply voltage based
on power weights, and this permits a significant total energy
reduction (almost 10%) if the circuit is actually used with the
estimated distribution of bit-widths.

F. DEPENDENCY ON CLOCK FREQUENCY
In all previous experiments, the target clock frequency for
synthesis and P&R had been set to a value that ensures a posi-
tive slack < 100 ps in nominal conditions (i.e. maximum pre-
cision, nominal supply voltage and slow process/temperature
corner). However, the frequency is often determined based on
system-level latency/throughput constraints and can assume
different values for the same design and technology target.
It is therefore interesting to discuss its impact on the effec-
tiveness of our methodology. To this end, we have repeated
the experiments of Section V-B on theMAC, considering two
additional clock settings, i.e. 1.4GHz and 0.8GHz. The results
of these experiments are reported in Table 9. We do not report
the same results for the other benchmarks, but the trends are
very similar for all designs.

For each clock frequency we have synthesized the usual
three versions of the MAC, i.e. Conventional (C), Uni-
form (U) and Weighted (W), using the same weights of
Section V-B. The rows of the table report the optimal VDD
determined by our flow for each target precision and the
corresponding power consumption. The area overhead and
normalized energy consumption for the circuit (with respect
to the Conventional multiplier) are also reported.
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When fclk is increased to 1.4GHz and our flow is ran with
Uniform weights (i.e. same importance to all precisions),
it simply returns the original design (working at nominal
VDD for all precisions). In other words, the flow determines
that resizing the gates in order to scale down VDD is not
beneficial for the total energy. This is because the available
slack is so small (e.g. 3ps at 0.95V and 8-bit) that a significant
resizing of gates is needed in order to reduce VDD even just by
0.05V. This results in a very large power overhead at 16-bit,
which causes our algorithm to discard the modified circuit.
In contrast, when our flow is ran with application-aware
power weights (W), the same overhead is accepted, thanks
to the additional information available that 16-bits are sel-
dom used. Overall, the Weighted MAC reduces the energy
consumption for LeNet inference of ≈ 15% compared to
the Conventional version, at the cost of an area overhead
of 9%.

When fclk is reduced to 800MHz, the results are more simi-
lar to the ones of Section V-B. In fact, at such a low frequency,
the Conventional MAC (i.e. the result of a standard synthesis
flow) can be made timing compliant at 0.85V.3 Therefore,
our flow behaves exactly as described in Section V-B, just
starting from a ‘‘smaller nominal voltage’’ and yields very
similar results. In this specific case the area overhead and
the total energy saving of the Uniform MAC are slightly
larger than at 1.25GHz, but this is imputable to the dif-
ferent variety of small/large gate sizes available in the tar-
get library for performing resizing at low/high frequencies
respectively.

In summary, this experiment shows that our method is
equally effective over a large wide of clock frequencies
(800MHz to 1.25GHz in this example) and only becomes
less effective when the clock constraints are extremely tight
(1.4GHz), which is not common in low-power systems.
In those extreme conditions, however, the area overhead of
our method also reduces proportionally to the energy savings.
In the worst case, our flow simply returns the original circuit
when no gate-resizing and VDD scaling combination is more
beneficial for total energy.

G. COMPARISON WITH ADAPTIVE
BACK-BIASING ON FDSOI
Finally, we have compared our flow with the only other
published method, to the best of our knowledge, for the
synthesis of DVAS-based operators, presented in [20]. For
this experiment we have targeted once again a multiplier,
which was one of the circuits considered for the evaluation of
the previous method. We have run our tool considering only
the same VDD values used in [20], i.e. from 1.00V to 0.60V
in steps of 0.10V , and targeted the same clock frequency,
i.e. fclk = 1.25GHz. The standard cell library is also identical.

The main difference between the flow presented in this
paper and the one of [20] is that the latter does not change

3Not doing so would yield an unfairly favorable comparison for our flow
as the Conventional MAC would consume too much at maximum precision.

FIGURE 10. Comparison between the proposed flow and the solution
of [20] for a booth multiplier.

the synthesis process, but rather uses a technological knob
(back biasing) to adapt the slack distribution on the cir-
cuit. Consequently, that method has no way to differently
weigh different bit-widths. Considering this aspect, for a
fair comparison we have run our flow using uniform power
weights.

The other consequence of this difference is that, while [20]
is equally effective for all possible bit-widths (in steps of
1-bit), our tool only targets a set of specific precisions.4

Starting from the original 16-bit multiplier, we instructed our
tool to target 8-bit and 4-bit in this experiment.

Figure 10 shows the result of this comparison on a power
versus bit-width plane. Power values are normalized to the
consumption obtained with the proposed flow at maximum
precision. As shown, the method based on back-biasing
achieves a generally lower power consumption on those bit-
widths that were not targeted by our optimization. For the
three precisions considered by our tool, however, the two
methods obtain almost identical results (the synthesis-based
flow is slightly better at 4-bit and 16-bit). Moreover, our
method also produces a smaller overhead on this benchmark,
i.e. 10% vs the 14.5% of [20]. This is an important achieve-
ment as the proposed tool does not rely on technology-
specific knobs. Moreover, non-uniform power weights can
be used to achieve even lower consumption at selected bit-
widths, as shown in previous experiments. Finally, 1-bit pre-
cision granularity is seldom used in real applications, as it
significantly complicates data transfers to/from memory. So,
the fact that our tool cannot optimize all bit-widths might
be irrelevant for most use cases. In summary, by not relying
on technology-specific knobs, the proposed flow has a much
wider scope of applicability compared to [20] while yielding
comparable results.

VI. CONCLUSION
We have described a synthesis tool for realizing energy-
quality scalable circuits based on voltage and precision

4It is theoretically possible to include one scenario per bit-width (e.g.
16 scenarios in this example), but this would complicate the re-synthesis
process and increase the runtime of our tool.
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scaling. This tool solves the main practical limitations aris-
ing from the straight-forward application of DVAS within
a modern EDA flow, thus permitting significantly larger
energy savings at the cost of a limited area overhead. Fur-
thermore, it can accept as input a set of weighting fac-
tors, which allow users to balance the optimization effort
spent on different precisions. This makes our tool particu-
larly suitable for the synthesis of domain-specific hardware
accelerators.

The proposed method yields significant energy reductions
(10-25%) on several benchmarks. Moreover, it achieves com-
parable power savings to those of a previous solution based on
FDSOI back-biasing, despite not being limited to a particular
technological node.
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