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ABSTRACT This paper proposes a three-port power amplifier (PA) representation based on distinct sets of
nonlinear complex polynomials that describe a combiner, a nonlinear baseband-to-RF converter and a non-
linear RF amplifying function, for processing the PA’s input modulated signal and any envelope-dependent
dynamic biasing signal. This novel representation of PA nonlinearities simplifies computation and renders
possible analytical formulations to describe a 3-port PA system. It allows accurate prediction of the PA’s
output distortion components as a function of an input multi-tone excitation and amulti-tone dynamic biasing
signal. The representation is intended for a context proposed, to the best of the authors’ knowledge for the first
time, and envisioned as promising for future mobile communication equipment – the automatic optimization
of linearity performance in Radio Frequency Integrated Circuit (RFIC) PAs under any modulated excitation
and employing envelope-dependent biasing, through implementation of embedded self-calibration within
the transmitter front-ends. In this context, the representation introduced here compares favorably in terms
of accuracy with respect to Volterra-based approaches and allows a simpler characterization, while the
literature often points to the complexity inherent to Volterra-based approaches. The proposed representation
allows the optimization of the PA’s dynamic biasing for linearity improvement from one mobile unit
to another through embedded self-calibration starting from quasi-static measurements alone of the PA’s
input/output power. Its applicability is highlighted through benchmarking against experimental results
demonstrating accurate PA characterization for multiple PA platforms under different dynamic biasing
techniques. In one implementation using an industry-designed GaAs PA, it accurately predicts the dynamic
biasing adjustments to achieve more than 4dB reduction in the output intermodulation distortion (IMD3).
In another implementation using the recently introduced positive envelope feedback linearization scheme,
the proposed representation allows, for the first time, analytically predicting the condition of closed-loop
stability and the requirements for the feedback components with experimental verification.

INDEX TERMS Dynamic biasing, embedded self-calibration, linearity, multi-tone signals, positive envelope
feedback, power amplifier, three-port representation.

I. INTRODUCTION
The principle of dynamic biasing plays an important role in
the design of many RFIC PA architectures. Dynamic biasing
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commonly involves variation of the bias signal of the PA’s
RF transistors around its quiescent DC level as a function
of a control signal, for improving its linearity-power effi-
ciency trade-off. The control signal may be a function of
the PA’s average or instantaneous power level. For exam-
ple, average power-dependent dynamic biasing is used to
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improve the power added efficiency (PAE) of RF amplifiers
in [1]–[4] and for PA gain regulation and efficiency opti-
mization in [5]. Various open-loop and feed-forward imple-
mentations illustrated in [6]–[11] use a dynamic bias signal
varying as a function of the PA’s envelope power level. The
recently proposed positive envelope feedback technique [12]
demonstrates the use of instantaneous dynamic biasing in a
closed-loop system to improve the PA’s linearity-efficiency
trade-off. Reference [13] shows the use of active FET ele-
ments to provide dynamic feedback for compensating the
PA’s gain compression at high power levels. Examples of
closed-loop systems that use dynamic feedback are not lim-
ited to PAs. References [14] and [15] are examples of gain
control through closed-loop negative feedback in variable
gain amplifier (VGA) implementations.

The PA’s response to an envelope varying RF signal is
governed by complex nonlinear mechanisms. Dynamically
changing the PA’s bias as a function of the envelope adds fur-
ther complexity to the PA’s response. Moreover, the increas-
ingly complex front-end PA modules in mobile transceivers
may make use of different hardware states as part of a
reconfiguration scheme (e.g. [16]). Such complex mecha-
nisms inevitably introduce variations in the PA performances
from one mobile unit to another. In this context, a self-
calibration technique embedded within the mobile unit that
would allow optimizing the dynamic biasing taking into
account the performance variation from one unit to another
would be of interest for current and future mobile wireless
equipment. An example where embedded self-calibration
would be useful is when the PA is subjected to dynamic
biasing through the envelope-dependent modulation of the
gate bias [12], [13] to improve the PAE-linearity trade-off.
Embedded self-calibration within the mobile unit would then
allow performing the necessary adjustments on each PA to
reduce the spread in performance from one mobile unit to
another, hence ensuring the best PAE-linearity trade-off in
every unit.

To the best of the authors’ knowledge, a method specif-
ically for embedded self-calibration of envelope-dependent
dynamic biasing in a PA module within a mobile unit has
not been reported. Fig. 1 shows the embedded RF front-end
self-calibration application that is envisioned in this paper.
Here, the control signal Vctrl determines the value of the PA’s
dynamic bias signal to be used at a particular power level. Its
value is computed using a sufficiently accurate PA represen-
tation (X in Fig. 1).X (and hence the value ofVctrl) is adjusted
from one mobile unit to another starting from a minimum
number of quasi-static power measurements over a narrow
power range only, using Input Probe and Output Probe (the
design of which is not addressed here). In this and other
contexts that would require self-calibration, a simple PA rep-
resentation X which accounts for a sufficiently high order of
PA nonlinearity, which is straightforward to extract and store
and which is suitable for embedding into mobile equipment
for self-calibration (hence excluding commercially available
tools/software) offers interesting possibilities.

FIGURE 1. Proposed embedded self-calibration technique within the
mobile unit in the RF front-end using the PA representation X . The control
signal Vctrl is synthesized using X , and determines the value of the
dynamic bias signal at different power levels.

Among the nonlinear PA representations found in the
literature [17]–[20], frequent references are drawn to the
Volterra series given by the multi-dimensional time-domain
convolution in (1) [18]. The full Volterra series (1) is well
known for its ability to model memory effects arising from
weakly nonlinear mechanisms in PAs and represents an exact
mathematical model in theory.

y(t)=
∞∑
n=1

+∞∫
−∞

. . .

+∞∫
−∞

h (τ1, . . . , τn)
{x (t − τ1) . . . x (t − τn)}dτ1 . . . dτn

(1)

However, higher-order Volterra kernels h (τ1, . . . , τn)
in (1), which are required to perfectly capture the PA’s mem-
ory effects, present significant difficulties to extract due to the
inherent complexity of the Volterra series [19]. Due to such
difficulties, works based on Volterra series for representing
PAs often limit themselves to first-order Volterra kernels only,
under the assumption that higher-order Volterra kernels can
be ignored without sacrificing the necessary accuracy. For
example, the first-order approximation of (1) is used for the
modified Volterra series applied to a multi-tone excitation
in [18], as shown in (2).

y (t) ∼= F [x (t)]+

+∞∫
−∞

g1 (x (t) , τ 1)
{x (t − τ1)− x (t)}dτ1

(2)

where F [x (t)] represents the PA’s quasi-static nonlinearity
only.
In the context of embedded self-calibration, the advan-

tages of PA representations using first-order Volterra series
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over other equations-based representations is debatable. The
need for simplicity in the calibration steps and the com-
putation algorithms outweighs the requirement for math-
ematically exact formulations in this context. Moreover,
even the extraction of first-order Volterra coefficients have
been shown to present challenges [21], and the extrac-
tion of higher-order Volterra kernels can quickly become
laboriously complex. Additionally, the use of higher-order
Volterra-based PA representations in the context of re-tuning
(during operation) from one mobile unit to another present
difficulties in terms of complex training sequences starting
from the low-order through to higher-order Volterra kernel
extractions [22, Ch. 4]. Another key consideration is that the
applicability of Volterra-based approach for closed-form ana-
lytical representation of closed-loop feedback systems such
as [12]–[15] has not been demonstrated.

Here again, to the best of the authors’ knowledge, a 3-port
nonlinear PA representation that provides a viable alternative
to the Volterra approach in the context of self-calibration of
envelope-dependent dynamic biasing of a PA within a mobile
unit, while offering comparable accuracy and with the added
advantage of allowing a closed-form analytical representation
of the 3-port embedded PA system, has not been demon-
strated. The nonlinear PA representation we propose in this
paper [23] addresses these needs by demonstrating:

(i) a 3-port analytical PA representation based on two
distinct sets of nonlinear complex polynomials that describe
a combiner, a nonlinear baseband-to-RF converter and a
nonlinear RF amplifying function. It accurately captures
the effects of dynamic biasing including memory effects
under multi-tone excitation, and allows predicting linearity
improvement in terms of IMD3, as well as ACP reduction
with a modulated signal.

(ii) the simplification of the computational requirements
for PA characterization under envelope-based dynamic bias-
ing, in particular for high-order nonlinearity and with
comparable accuracy to earlier proposed Volterra-based
approaches.

(iii) the simplification of the training sequence within the
mobile unit for embedded self-calibration of the dynamic
biasing mechanism.

(iv) a method for embedded optimization of dynamic bias-
ing performances from one mobile unit to another.

(v) a closed-form analytical representation of open-loop
and closed-loop envelope-based dynamic biasing, enabling
the determination of closed-loop feedback parameters to
ensure stability and optimal linearity.

The 3-port PA representation is derived with the use of a
multi-tone input excitation and a multi-tone dynamic biasing
signal, with arbitrary amplitude and phase for each tone,
which allows taking into consideration high degree nonlin-
earities. It is well known that multi-tone representations may
be strongly correlated to spectral regrowth under modulated
excitations [24]–[26], and is also shown in a later section.
Additionally, though the proposed 3-port representation is
demonstrated for the PA’s dynamic gate biasing here, it can be

used to represent other nonlinear dynamic mechanisms (such
as supply modulation [18]).

Note that the formulations in [27] are based on a simple
variable gain control, using only a linear processing of a
multi-tone biasing signal and are applicable only for lim-
ited peak-to-average envelope power (∼2.5dB). They are
intended only for estimating IMD levels in feedback ampli-
fiers during the PA’s engineering development phase. Hence
they do not suit embedded self-calibration during the opera-
tion of the mobile equipment. The 3-port PA representation
proposed here is fundamentally different. It is based on the
use of a combiner, a nonlinear baseband-to-RF converter and
a nonlinear amplifying function, for the nonlinear processing
of the dynamic bias signal. This allows accurate prediction
of PA performances under larger peak-to-average excitation,
with a distinct representation of the nonlinear transfer func-
tion from the baseband dynamic bias signal to the RF output
signal, as required for embedded self-calibration.

In Section II, the proposed 3-port PA representation is
described conceptually. In Section III, the mathematical form
of the proposed PA representation is derived and the steps
to extract the polynomial coefficients are given. Section IV
verifies the exactness of the proposed 3-port representation
through its bench-marking against an RFIC PA design within
a simulation test-bench. The use of the 3-port representa-
tion for PA linearization under multi-tone as well as mod-
ulated input RF excitation is shown. The proposed concept
of embedded self-calibration is also demonstrated. In one
experimental implementation described in Section V, the pro-
posed 3-port representation accurately predicts the neces-
sary adjustment in dynamic biasing to achieve more than
4dB reduction in IMD3 for an industry-designed GaAs PA.
Section VI highlights the differences of the proposed PA rep-
resentation with other state-of-the-art PA representations for
dynamic biasing. It describes the relatively simple yet accu-
rate characterization process of the proposed representation
which favors its inclusion in embedded self-calibration appli-
cations. In a second experimental implementation described
in Section VII, the proposed 3-port representation is applied
to the recently introduced positive envelope feedback tech-
nique for PA linearization [12]. The proposed representation
allows predicting the conditions for system stability as well as
the design requirements of the feedback system components
for optimum closed-loop PA performance. Section VIII is a
brief discussion on some possible embedded self-calibration
applications of both open-loop and closed-loop PAs using the
3-port representation.

II. DESCRIPTION OF THE PROPOSED 3-PORT PA
REPRESENTATION FOR DYNAMIC BIASING
The block diagram shown in Fig. 2 represents a PA with its
envelope-dependent control signal (e.g. supply modulation
or dynamic biasing) held at Vctrl = Vdc i.e. under constant
DC supply and biasing. A complex nonlinear polynomial G
represents the PA’s RF transfer function, and the output multi-
tone signal Vo can be derived from the input multi-tone signal
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FIGURE 2. PA circuit under multi-tone excitation Vin and with Vctrl = Vdc
(under constant DC supply and biasing). Vo represents the PA’s output
multi-tone signal. G is characterized with Vctrl held at Vdc .

Vin with the help of (3).

vo (t) = a1vin (t)+ a3v3in (t)+ a5v
5
in (t)+ . . . (3)

There is an inherent assumption that the PA output has a band-
pass filter to limit the RF output spectrum to the frequency
range of interest around ωc. Therefore, the odd-order terms
only are needed.

The complex coefficients a1, a3, a5 etc. of polynomial G
account for the PA’s dynamic AM-AM and AM-PM behavior
under Vctrl = Vdc. It is shown in [28] that the memory effects
of a PA and its impact on the PA’s IMD characteristics in
response to a multi-tone input excitation can be accurately
captured using its dynamic AM-AM and AM-PM responses.
Such memory effects are dependent on the carrier frequency
ωc, on the envelope amplitude variations of the modulated
RF signal, and on the envelope frequency set by the two-tone
frequency spacingωx . The set-up shown in Fig. 2 uses a three-
tone excitation, hence the approximations detailed in [28]
remain valid and the experimental set-up shown in [28, Fig. 2]
can be used for the extraction of the PA’s dynamic AM-AM
and AM-PM, and therefore the complex coefficients of
polynomial G.
The PA’s RF transfer function G may be varied by mod-

ifying Vctrl . Gain control by dynamically adjusting the PA’s
current through electronic control of its bias/supply circuit is
one example of such a variation of G.
We now focus on dynamic biasing specifically, as an

envelope-dependent mechanism. Fig. 3 shows an implemen-
tation where a dynamic bias signal Ve varying at the fre-
quency of the input excitation tone spacing ωx (as well
as containing its higher-order harmonics) is applied to the
PA. Such a dynamic bias signal is encountered in PA
envelope-dependent biasing schemes [6]–[13].

Let us consider this change in the bias signal from Vctrl =
Vdc to Vctrl = Vdc + Ve. The input excitation Vin remains
unchanged, and the change in the output multi-tone from Vo
to V ′o under dynamic bias is captured by the change in the PA
polynomial from G to G′ (Fig. 3). G′ therefore captures the
PA’s nonlinearities arising not only from an envelope modu-
lated input signal, but also that due to a bias signal varying
with the frequency of the PA’s input/output envelope signal.
However, any subsequent change in the PA’s multi-tone bias

FIGURE 3. 2-port PA representation of Fig. 2 under dynamic bias. Ve is
the dynamic multi-tone component of the bias signal and V ′o represents
the PA’s new multi-tone output signal. G′ is the new complex polynomial
characterized with the bias node excited by the dynamic bias signal
Vctrl = Vdc + Ve.

signal Vctrl would necessitate the characterization of another
new polynomial G′′, which reflects the PA’s nonlinearities
with this new bias control.

Therefore, a PA representation that accounts for the PA’s
nonlinearities arising out of a change in its bias without
resorting to a polynomial extraction routine with every such
change offers an attractive alternative. It also provides an
analytical means to understand the PA’s nonlinearities as a
function of its bias.

FIGURE 4. Proposed 3-port representation of PA under the dynamic
biasing conditions shown in Fig. 3. Port 3 represents the PA’s bias port.
G is the same complex polynomial in Fig. 2 characterized with the PA’s
bias node held at Vctrl = Vdc .

Fig. 4 shows our proposed 3-port representation for the
PA under the dynamic bias of Fig. 3. The change in the
polynomial from G to G′ as described in Fig. 3 (resulting
in a change of the output IMD tones from Vo to V ′o) is
equivalently accounted for in our proposed representation
by an incremental change 1Va in the multi-tone input to
the original polynomial G, where G is characterized with
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Vctrl = Vdc, i.e. Ve = 0. 1Va is derived from the dynamic
biasing signal Vctrl = Vdc + Ve using a second nonlinear
polynomial P (comprising a set of complex coefficients p,
that define amulti-tone baseband tomulti-tone RF conversion
gain), and this 1Va signal, summed with Vin and applied
to G, results in the new output signal V ′o. The summer and
the node 1Va in Fig. 4 are not physically present in a typical
PA architecture, but only represent an analytical equivalence.

It is worthwhile to note that PA tests and analysis based
on multi-tone analysis are of significant help to design-
ers [17]–[18], [24]–[26]. When limited to a few number of
tones, such analyses offer intuitive insight and a relatively
simple but accurate description of PA performances with-
out dealing with the more complicated calculations involved
when complex modulated excitation signals are used. Mea-
surement data of multi-tone tests additionally allow easy and
fast benchmarking using widely accepted PA performance
measurements (such as IMD3). Besides, the correlation of
multi-tone measurements such as IMD3 with other measure-
ments used for modulated excitation signals (such as ACPR,
EVM) is also documented [24], [25].

Additionally, it is well known that a PA representation that
accounts for higher-order nonlinear contributions enhances
the representation’s accuracy; however, the difficulty of
extracting higher-order kernels when using Volterra series
(and given the challenges associated with even extracting
first-order Volterra coefficients [21]) makes it prohibitively
complex to use for embedded self-calibration. The 3-port PA
representation proposed here overcomes this limitation by
capturing higher-order contributions of the dynamic bias to
the PA output with the help of lower-order polynomials that
are easy to extract, thereby enhancing its accuracy.

For the purpose of illustrating this, consider our proposed
3-port PA representation in Fig. 4 limited to 3rd-order G
(hence with coefficients a1, a3 only) and a 2nd-order P(hence
with coefficients p1, p2) polynomials. Additionally, to sim-
plify our analysis and without any loss of generality, consider
a 1-tone RF excitation Vin at RF frequency ωc and a 1-tone
dynamic bias signal Ve (in addition to the quiescent DC
value) at envelope frequency ωx . As shown in Fig. 4, the
output of the polynomial P being itself applied as input to
the polynomial G, allows capturing an overall sixth-order
nonlinear dependence of the PA’s output signal V ′o on the
dynamic bias Ve. It can be shown through expansion and sim-
plification of (3) that the value of the third-order output tone
V ′o (ωc + 2ωx) shows this sixth-order nonlinear dependence
as given by expression (4) below.

V ′o (ωc + 2ωx)=k2V 2
e + k3V

3
e +k4V

4
e + k5V

5
e + k6V

6
e (4)

where complex constants k2, k3, k4, k5 and k6 stem from the
coefficients of P and G. For example, the dependence of k6
on a3 and p2 is shown in (5).

k6 = (9/4) · a3 · p
3
2 (5)

Therefore, solving for a1, a3 and p1, p2 simultaneously
allows capturing up to a sixth-order dependence of the PA’s

output signal on Ve, despite P being limited to 2nd-order
and G being limited to 3rd-order. The presence of even-order
terms in (4), althoughG contains odd-order terms only, is due
to the fact that P includes both even-order and odd-order
baseband-to-RF contributions of the dynamic bias signal Ve
to 1Va. These contributions are summed with Vin and then
processed by G, resulting in odd as well as even-order terms
in (4) that contribute to V ′o (ωc + 2ωx). On the other hand,
extracting the same 6th-order nonlinear dependence on the
dynamic bias signal Ve when using Volterra-based PA repre-
sentations would require increasing the order in equation (2),
with the significant added complexity discussed before.

III. 3-PORT MATHEMATICAL REPRESENTATION
A. DERIVATION OF EQUATIONS
The three-tone input signal vin (t) applied to the PA input is
represented by (6), and its equivalent bilateral form by (7).

vin (t) =
1∑

i=−1

Vin (ωc+iωx) ·cos((ωc+iωx) t+θωc+iωx ) (6)

vin (t) =
1
2

∑
ωr=ωc,−ωc

(
1∑

i=−1

Vin (ωr + iωx) ·ejθωr+iωx

· ej(ωr+iωx )t ) (7)

where Vin (ωc + iωx) and θωc+iωx represent the magnitude
and phase respectively for each tone of vin (t). Note that
Vin (−ωc − iωx) = Vin (ωc + iωx), θ−ωc−iωx = −θωc+iωx
and j is the complex imaginary unit.

The multi-tone dynamic bias signal ve (t) applied to the PA
bias terminal (and added to Vdc) is represented by (8).

ve (t) =
m∑
i=1

Ve (i) ·cos(iωx t +8i) (8)

Here,m refers to the number of significant tones (excluding
DC) present in the bias signal. For example, m equals 4 in
Fig. 4 since the number of tones is 4, ranging from ωx to 4ωx .
Ve (i) and8i represent the magnitude and phase respectively
for each tone of ve (t).

The nonlinear baseband-to-RF transformation of ve (t)
through polynomialP gives the incremental RF signal1va (t)
as expressed by (9), and its bilateral form by (10).

1va (t)=
s∑

i=−s

1V a (ωc+iωx) ·cos((ωc+iωx) t+γωc+iωx )

(9)

1va (t)=
1
2

∑
ωr=ωc,−ωc

(
s∑

i=−s

1V a (ωr+iωx)·ejγωr+iωx

· ej(ωr+iωx )t ) (10)

where 1V a (ωc + iωx) and γωc+iωx represent the mag-
nitude and phase respectively for each tone of 1va (t).
Also, 1V a (−ωc − iωx) = 1V a (ωc + iωx), γ−ωc−iωx =
−γωc+iωx and j is the complex imaginary unit. Here, s is
related to the number of significant tones present in the
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1va (t) signal, e.g. s = 4 indicates that there are 9 tones in the
1va (t) signal, at frequenciesωc−4ωx ,ωc−3ωx . . . 0 . . . ωc+
3ωx , ωc + 4ωx . The tones 1Va (ωr + iωx) ·ejγωr+iωx present
in (10) are now expanded in terms of amplitude and phase to
show the relationship of these tones to themulti-tone dynamic
bias signal ve (t). With the help of coefficients piql of P,
the value of the 1va (t) tones is given by (11).

{1Va (ωr + iωx) ejγωr+iωx }|ωr=ωc

=

m∑
q=1

n∑
l=1

piql{Ve (q) · cos
(
φq
)
}
l (11)

Here, n refers to the order of the polynomial P. i varies
from−s to+s, where s is as defined in (10). Ve (q), φq and m
are defined in (8). To understand the indexing of piql in (11),
consider (for example) the coefficient p312. Here, index 2 in
p312 represents that it captures the 2nd-order contribution of
the Ve (1) tone at frequency 1 · ωx in the bias signal (given
by index 1 in p312), to the 3rd side-tone 1Va (ωc + 3ωx)
(given by index 3 in p312). The extraction procedure of the
polynomial coefficients piql is detailed in Section III-B.
The incremental signal 1va (t) is added to the input

three-tone excitation vin (t) to obtain va (t) as shown by (12).

va (t)= vin (t)+1va (t) , i.e.

va (t)=
1
2

∑
ωr=ωc,−ωc

(
1∑

i=−1

Vin (ωr+iωx)·ejθωr+iωx ·ej(ωr+iωx )t )

+
1
2

∑
ωr=ωc,−ωc

(
s∑

i=−s

(
m∑
q=1

n∑
l=1

piql{Ve (q)·cos
(
φq
)
}
l)

· ej(ωr+iωx )t ) (12)

The va (t) signal given by (12) is now applied as input
to the original complex polynomial G to obtain the output
multi-tone signal v′o (t) under dynamic biasing.

v′o (t) = a1va (t)+ a3v3a (t)+ a5v
5
a (t) (13)

By replacing va (t) in (13) with its value given by (12),
expanding the resulting expression and then grouping the
terms at each resulting frequency together gives closed-form
expressions for the value of each tone present in the PA’s
output multi-tone signal, in terms of the parameters and sig-
nals listed in (12) and (13) i.e. in terms of the coefficients
of G and P, and the signals vin (t) and ve (t). The number of
terms as well as the explicit form of v′o (t) in (13) resulting
from such an expansion being large, they are not shown here
for the purpose of conciseness. However, after regrouping the
output terms at the same frequency, a compact representation
of the resulting v′o (t) output signal and its bilateral equivalent
will have the form given by (14) and (15) respectively.

v
′

o (t)=
u∑

i=−u

V
′

o (ωc+iωx) ·cos((ωc + iωx) t+βωc+iωx ) (14)

v
′

o (t)=
1
2

∑
ωr=ωc,−ωc

(
u∑

i=−u

V
′

o (ωr+iωx)·e
jβωr+iωx ·ej(ωr+iωx )t )

(15)

where V
′

o (ωc + iωx) and βωc+iωx represent the magnitude
and phase respectively for each tone of v

′

o (t). Here again,
V
′

o (−ωc − iωx) = V
′

o (ωc + iωx), β−ωc−iωx = −βωc+iωx
and j is the complex imaginary unit. u is related to the number
of significant tones of interest present in the PA’s output RF
signal v

′

o (t), e.g. u = 4 in Fig. 4 since the number of tones
is 9, ranging from ωc − 4ωx , ωc − 3ωx . . . 0 . . . ωc + 3ωx ,
ωc+4ωx . (15) represents the system of equations that relates
the PA’s output IMD levels V ′o with the three-tone input RF
signal Vin and the dynamic bias signal Ve for the 3-port PA
representation proposed here.

The mathematical formulations of the proposed 3-port PA
representation are now complete.

B. STEPS FOR EXTRACTING POLYNOMIALS G AND P
The following steps are followed to extract the coefficients of
polynomials G and P. This sequence of steps may be used by
the RFIC PA manufacturer at an advanced engineering phase
of the development. The extracted coefficients may then be
provided to a mobile equipment manufacturer as parame-
ters of our proposed PA representation (represented by X
in Fig. 1) that describe the typical behavior of the PA, and
used for our proposed self-calibration (described with details
in Section IV-D, Section VIII) embedded within the mobile
unit.
Step 1: Using a three-tone Vin and with the PA’s bias held

at Vdc, the magnitude and phase of the output multi-tone
signal Vo is measured. This measurement is repeated for a
set of three-tone input signals that define the PA’s input power
range of interest. Using each of theseVo vs.Vinmeasurements
in (3), a system of equations is now derived, the solution of
which gives the coefficients a1, a3, a5 etc. of the complex
polynomial G.
Step 2:With the PA input excited with any one of the three-

tone Vin values from Step 1, the PA’s bias node is now excited
with amulti-tone signalVe i.e. its bias is nowVctrl = Vdc+Ve.
The magnitude of the power levels of the multi-tone signal V ′o
at the PA’s output is measured.
Step 3: Step 2 is now repeated for different values of the

multi-tone dynamic bias signal Ve. The values of Ve chosen
define the range of interest for the PA’s dynamic bias signal.
The PA’s input three-tone signal Vin is held constant at the
value used in Step 2. The corresponding PA output power
levels for this set of Ve signal values are measured.
Step 4: With G already known from Step 1, the V ′o vs. Ve

measurements of Step 2 and Step 3 are used in equations (12)
to (15) to derive a new system of equations. The solution of
this system of equations is the set of complex coefficients
of the nonlinear polynomial P (piql as defined in (11)) that
relates Ve with1Va, and which translates into the PA’s output
signal V ′o under dynamic biasing.
The extraction of the PA representation is now complete.
Centering the range of the measurement values of Step 1,

Step 2 and Step 3 significantly aids in solving the system
of equations of Step 1 and Step 4. This is explained with
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greater detail in Appendix A, as well as ways to handle the
asymmetry of the PA’s upper and lower IMD3 levels.

IV. VALIDATION OF PROPOSED 3-PORT
REPRESENTATION THROUGH COMPARISON
WITH ADSTM SIMULATION
A. DESCRIPTION OF SIMULATION TEST-BENCH
The formulations of the proposed representation are now
validated through its benchmarking against an RFIC PA
design within a simulation test-bench. The PA used is a
5GHz SOI CMOS PA in 0.18um technology from Tower-
Jazz. It is a 3-stage design with a cascode structure and
designed for flip-chip assembly on a 6 layer multi-chip
module (MCM) further assembled on a PCB. Decoupling
capacitors are present on all DC lines. The simulation soft-
ware used is ADSTM Dynamic LinkTM. All results shown
for this design are performed using PEXTM extracted views
(for active devices) and post-layout simulations using the
electromagnetic extraction tool EMXTM. Design details of
this PA are given in [12]. Its schematic is provided here in
Section VII, Fig. 17. For the open-loop operation described
in the present Section, resistance Ra in Fig 17 is kept open and
the quiescent value of the PA’s third stage gate bias is held at
Vdc = 0.355V. Dynamic biasing is performed by externally
applying an envelope signal Ve directly to the gate of the
NMOS in the third stage (node g in Fig. 17 (a)) via 15nH
inductors, using a baseband signal generator component in
ADSTM. The input excitation Vin is a three-tone RF signal
with the two side-tones held 5dB lower than the center tone.
The RF center frequency is fc = 5.4GHz and a spacing of
fx = 50MHz is used.

B. PA LINEARIZATION THROUGH DYNAMIC GATE BIAS
With the PA’s gate bias held at Vdc = 0.355V and by varying
Vin over the input power range of interest, the polynomial
G given by (16) below is extracted. As shown in Fig. 5,
an excellent match between the PA’s simulated and predicted
output tones is observed (less than 0.12dB error for the
fc- 2fx tone, which itself is ∼26dB below the fc tone, at the
characterization power level of 14dBm). A 5th-order polyno-
mial is sufficient for G and unlike other PA representations
(e.g. [18]), the coefficients remain unchanged over the power
range of interest.

vo (t) = (8.19+ j · 1.48) · vin (t)+ (−4.98− j · 1.56)·v3in (t)

+ (3.40+ j · 2.14) · v5in (t) (16)

The increase of the error at lower average output power
levels does not affect the proposed representation’s accuracy
at 14dBm, since this error pertains to the G block only (not
the P block). It will be shown in Section IV-C that the full
representation (i.e. including bothG and P blocks) accurately
captures the PA’s IMD performance over a significant range
across the characterization power level.
With G extracted, a dynamic bias tone Ve at frequency

fx is added to the PA’s DC bias. By varying the amplitude

FIGURE 5. Simulated values (solid traces) and predicted values (circular
marker traces) of the PA’s output signal including the output tones at
fc − 2fx and fc + 2fx which are due to the PA’s nonlinearity under
quiescent bias.

of Ve, noting the corresponding output multi-tone signals
and solving the system of equations (12)-(15), the complex
coefficients of the second-order polynomial P as represented
in (11) are extracted and given by (17).

1va (t)

=
1
2
(1.27−j · 0.07) · ve (t) · cos (ωct)+

1
2
(1.09− j · 0.31)

· ve (t) · cos ((ωc+ωx) t)

+

{
1
2
(0.56−j·0.31)·ve (t)+

1
4
(−1.85+j·0.12)·ve (t)2

}
· cos ((ωc+2 · ωx) t)+

1
2
(1.13+j · 0.12) · ve (t)

· cos ((ωc − ωx) t)

+

{
1
2
(0.69+ j·0.15)·ve (t)+

1
4
(−1.16−j·0.50)·ve (t)2

}
· cos ((ωc − 2 · ωx) t) (17)

Fig. 6 shows a comparison of the PA’s simulated IMD3 with
that predicted using our proposed 3-port representation as a
function of Ve at the PA’s characterization power level Pout =
14dBm. The proposed representation predicts with negligible
error that setting Ve to 40mV, 6 0◦ yields a 4dB improvement
in IMD3. The 0◦ phase translates the fact that the delay
through the driver stages and the bias interfacing (having
minimal reactances) in the specific PA design of Fig. 17 is
negligible for baseband signals. It is sufficient to truncate
P to 2nd-order here, and the extracted P and G accurately
captures the PA’s performance over the range of interest of
the PA’s operating power and dynamic bias levels. Note that
experimental results shown in Section V will demonstrate a
comparable IMD3 improvement of∼4dB, using our proposed
representation and starting from experimental measurements.
A comparison of the simulated and predicted time domain
form of the PA’s output envelope signal with Ve = 40mV
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FIGURE 6. Simulated values (solid traces) and predicted values (circular
marker traces) of the PA’s output IMD3 under dynamic bias at
Pout(avg)=14dBm.

FIGURE 7. Simulated and predicted time domain form of the PA’s output
envelope signal under dynamic bias. The time domain form predicted
using only the quasi-static representation is also shown.

in Fig. 7 further highlights the accuracy of the proposed
3-port PA representation.

C. APPLICATION EXAMPLE 1: FEED-FORWARD DYNAMIC
BIASING FOR OPTIMIZING PA LINEARITY
We now demonstrate an application, illustrated in Fig. 8,
where the vin (t) − vo (t) − ve (t) multi-tone relationships
(16) and (17) of the extracted 3-port PA representation X
is used to build a pre-distortion function F embedded as
a signal processing element within the baseband chipset of
a transmitter front-end. Note that the baseband processor
also generates Envin, which is the envelope signal of the
PA’s input modulated signal Vin. The parameters of X may

FIGURE 8. Implementation of feed-forward dynamic biasing embedded
within mobile unit for linearization of PA. F is extracted using our 3-port
representation X of the PA module, and applied to the PA module to
optimize its output linearity.

be provided by the PA manufacturer in a real implementa-
tion. The function F is aimed at performing the necessary
embedded adjustment (performed within the mobile unit) on
Ve to minimize the PA’s output IMD3 through feed-forward
dynamic biasing. F therefore gives the relationship between
the PA’s input envelopeEnvin and its bias signalVe that allows
achieving optimum PA output linearity. In this example, F is
determined using MATLABTM starting from the same 3-port
representation X used for Fig. 6 and that was characterized at
Pout = 14dBm.
Note that though F is extracted using our proposed 3-port

representation X , the PA’s improved performance using the F
block that is shown next is evaluated by applying F (defined
using the frequency-domain defined device FDD functional
block in ADSTM) to the 5GHz SOI CMOS PA design itself
(represented by ‘PA module’ in Fig. 8) within the ADSTM

circuit simulation environment, and not by merely applying
F to the extracted 3-port representation X of this PA module.
Fig. 9 shows the PA’s output IMD3 vs Pout without and with

the feed-forward dynamic biasing (using the F processing
block) applied to the PA schematic. The value of the IMD3
at the characterization power level Pout = 14dBm in Fig. 9 is
−26dBc, which is identical to the optimum improved IMD3
value given in Fig. 6 (also simulated at Pout = 14dBm)
and which was obtained by externally applying a dynamic
biasing signal Ve. The exact match of the improved IMD3
value in Fig. 6 and Fig. 9 at the characterization power level
of the 3-port PA representation clearly validates the accu-
racy and usefulness of the proposed 3-port representation for
implementing the embedded feed-forward dynamic biasing
aimed at PA linearization as shown in Fig. 8.
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FIGURE 9. PA’s simulated output IMD3 vs. Pout without and with F .

FIGURE 10. PA’s simulated output ACPR vs. Pout without and with F .

The PA’s Pout values for which using F achieves significant
IMD3 improvement (2dB to 8dB improvement) ranges from
its maximum output power (Pout ∼20dBm) and up to 8dB
back-off (Pout ∼12dBm). It may be observed that this 8dB
power range for which significant IMD3 improvement is
achieved using F is shifted slightly towards the higher range
of PA output power levels with respect to Pout = 14dBm,
the characterization power level of X . A similar shift is also
observed in the power range where PA linearity is improved
when it is excited with a modulated signal (Fig. 10), and will
be explained in the succeeding paragraphs.

The same PA schematic is now excited using a mod-
ulated signal in ADSTM and its output linearity, calcu-
lated using ACP Reduction (ACPR) values, is measured
without and with the F block applied to it. The excita-
tion used is an RF carrier modulated by a Forward Link
CDMA signal with a signal bit rate of 1.2288MHz, with
4 samples/bit and 256 total number of symbols. It is gener-
ated using the PtRF_CDMA_IS95_FWD component in the

Sources-Modulated library in ADSTM. The F block itself
remains unchanged from the preceding discussion and is not
determined using a modulated signal; as described earlier, F
is determined using X derived using multi-tone signals and
characterized at Pout = 14dBm. The PA’s input modulated
signal is processed by this computed F block.

As shown in Fig. 10, an ACPR improvement of ∼2dB to
∼5dB is achieved for output power levels ranging from its
maximum output power (Pout ∼20dBm) to Pout ∼15.5dBm.
The modulated output signal centered at the RF carrier fre-
quency for Pout(average)=18.3dBm is also shown in Fig. 11,
and clearly demonstrates the linearization that is achieved
using the F block.

FIGURE 11. PA’s simulated output signal (centered at carrier frequency)
under modulated excitation at Pout(avg)∼18.3dBm, without and with the
F block.

The significant improvement in the PA’s linearity at higher
output power levels compared to the improvement at the
PA characterization power Pout = 14dBm as observed
in Fig. 9 and Fig. 10 is specific to this PA design and its
nonlinear characteristics. The increased level of nonlinearity
at these higher power levels for this specific PA design causes
a heightened linearizing effect, dependent also on the specific
pre-distortion function F implemented, as per Fig. 8. This
results in the observed IMD3 and ACPR improvement for
the higher range of output power levels. Such an improved
linearity may be attributed to the phenomenon of sweet spots
[29], [30] that is well known among PA designers, and which
the proposed pre-distortion in Fig. 8 facilitates achieving for
this specific PA design at power levels close to its maximum
power. It is also worthwhile to note that there is a ∼3.5dB
shift in the output power levels where significant ACPR
improvement is achieved with a modulated signal (starting at
Pout ∼15.5dBm), when compared to the power levels where
significant IMD3 improvement is achieved with a multi-tone
signal (starting at Pout ∼12dBm). This shift stems from the
difference between the PA’s nonlinear behavior that is cap-
tured during characterization with a 3-tone (sine wave)∼6dB
peak-to-average envelope variation, and the PA’s resulting
nonlinear behavior due to the CDMA envelope pattern (of the
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modulated signal) with a ∼7.5dB peak-to-average envelope
variation. Such a shift, however, may be compensated for by
computing F based on our proposed 3-port PA representation
X characterized at different output power levels, and which
allows ensuring optimum PA linearity in the power range of
interest where ACPR improvement is sought.

Therefore, the above results demonstrate the pertinence
of our proposed PA representation derived from a 3-tone
characterization in the context of embedded adjustment of the
applied dynamic biasing within the mobile unit, for linearity
improvement under modulated excitation.

D. APPLICATION EXAMPLE 2: USE OF PROPOSED PA
REPRESENTATION FOR PERFORMANCE COMPENSATION
WITHIN EMBEDDED SELF-CALIBRATION AGAINST
PART-TO-PART VARIATIONS
A second application example is now presented where
the proposed 3-port PA representation X extracted in
Section IV-B is used to predict the embedded pre-distortion
F necessary for linearity optimization of a new PA. This new
PA exhibits some level of performance variation with respect
to the original PA that was characterized and linearized in
Section IV, sub-sections B-C, and the degree of this perfor-
mance variation shown here may be typically expected from
one PA part to another within different mobile equipment.
We demonstrate that by using an adjusted version of the
original X , to compute an adjusted value of the pre-distortion
F that is then applied to the new PA as part of the embed-
ded optimization within the mobile unit shown in Fig. 8,
enables a significant improvement of the new PA’s linearity.
This adjustment, performed using quasi-static measurements
alone of the new PA’s input and output power, accounts
for the performance variation of the new PA with respect
to the original PA, and the simple probing circuitry shown
in Fig. 8 that is necessary for these measurements makes
it suitable for implementation in embedded self-calibration
applications within the mobile communication equipment
(Fig.1).

As noted in Section IV-C, the parameters of the 3-port rep-
resentation X that describe the original PA may be extracted
by the PA manufacturer during an advanced engineering
phase, and provided to the mobile equipment manufacturer.
The automatic embedded adjustment (within the mobile
equipment) of these original X parameters, to account for
part-to-part PA performance variation, is what we refer to as
our proposed embedded self-calibration.

For our demonstration here, the PA performance variation
is introduced by changing the bias of the original PA, to force
a change of 0.9dB in the output referred P1dB (PA1 in Fig. 12).
In an actual implementation, a measurement of the ratio
between the outputs of the same simple probing circuitry at
the PA’s input and output (Fig. 8) should allow detecting such
part-to-part variations in the PA’s compression with respect
to an original PA specification. Table 1 shows PA1’s IMD3hi
values under constant DC bias obtained using simulation of
the PA1 schematic in ADSTM for an output power range

FIGURE 12. Comparison of Gain vs. Pout profile for the original PA and
the new PA examples of Table 1 and Table 2.

TABLE 1. Simulated vs predicted values of optimum dynamic bias for PA1.

of 0.8dB around Pout = 14.4dBm. IMD3lo values are not
shown to keep Table 1 concise. Pout = 14.4dBm is chosen
for our analysis since it is the output power level where the
gain of PA1 has compressed by ∼0.75dB (hereafter referred
to as P0.75dB), and X for the original PA was extracted at
Pout = 14.0dBm in Section IV-B, which is also the P0.75dB
for the original PA. This P0.75dB point is expected to be in
the lower range of power levels where linearization through
pre-distortion using F is effective, as observed in Fig. 9.

We now proceed with adjusting the original 3-port PA
representation X , to account for the performance variation of
PA1 compared to the original PA, to be used for predicting
the adjusted pre-distortion F necessary to optimize PA1’s
linearity. For this, it is only required to adjust the coefficients
of polynomialG (i.e. a1, a3 and a5 within X in Fig. 8) starting
from their original values provided by the PA manufacturer,
by measurement of the amplitudes only of PA1’s input three
tones and the output three tones (i.e. at frequencies fc − fx ,
fc and fc + fx) and only at the power level of interest (i.e.
at Pout = 14.4dBm). In an actual implementation, this would
be done through the input-output probes in Fig. 8, over the
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TABLE 2. Simulated vs predicted values of optimum dynamic bias for PA2.

narrow power range of envelope variation of the 3-tone sig-
nal. This requires only simple envelope detector circuitry.
Such simplicity holds promise for its use in embedded self-
calibration applications that are based on incorporating the
calibration set-up within the mobile equipment.

The optimum dynamic bias values predicted by pre-
distortion through the adjusted F computed using this
adjusted 3-port PA representation are also shown in Table 1
(in blue). IMD3 improvement 1 of 2.02dB to 3.30dB over
the constant bias case is possible for the targeted power
range when using these predicted dynamic bias values, and
represents a significant improvement in PA1’s linearity. This
demonstrates the effectiveness of the set-up embedded within
the mobile unit (Fig.8) for our proposed embedded self-
calibration. The difference in the IMD3 improvement at its
P0.75dB power level between the original PA (∼4dB at Pout =
14dBm, Fig. 9) and PA1 (2.65dB at Pout = 14.4dBm, Table 1)
is a result of the two PAs operating with different bias condi-
tions, which translates into the applied pre-distortion having
a different degree of linearizing effect.

A more drastic change in the PA’s performance is now
considered by forcing a change of 1.4dB in the PA’s output
referred P1dB (PA2 in Fig. 12). This time, both the bias and
the output matching network are changed. The comparison
of IMD3 levels of PA2 with or without pre-distortion through
F is again made at the P0.75dB output power level (12.5dBm
for PA2) and is shown in Table 2. It can be seen that the
IMD3 levels are significantly improved (by more than 5dB)
compared to the constant bias case, by pre-distortion using
the adjusted X to account for the performance variation
of PA2 compared to the original PA. The higher levels of
IMD3 improvement for PA2 in Table 2 compared to PA1
in Table 1 may be attributed to PA2 operating under stronger
nonlinearities, given the change in both the bias and the output
matching network for PA2, and the heightened linearization
effect due to the sweet-spot phenomenon.

Note that the resulting improvement in IMD3 through pre-
distortion in Tables 1-2 is function of the assumption of
updating theG coefficients only, and using very simple probe
circuitry. We restrict our analysis in this paper to the use of
such simple probes only, within an embedded self-calibration

set-up in the mobile unit. However, simulations show that
by additionally adjusting the coefficients of P in X allows
even further improvement of the IMD3 levels. This suggests
an interesting possibility of using our proposed PA represen-
tation to further optimize PA linearity while accounting for
part-to-part variation. It would require a one-time measure-
ment followed by adjustment, based on computation using
the proposed 3-port representation. A potential approach to
accomplish this is to use more precise envelope detectors in
the probing circuitry, but over a narrow power range only, for
the measurement of two additional output tones (at intermod-
ulation frequencies fc − 2fx and fc + 2fx) for the new PA,
therefore allowing an adjustment of the P polynomial coef-
ficients. The G coefficients may be left to the earlier values
obtained through the 3-tone quasi-static measurements. This
measurement of the two additional output tones is performed
with a 1-tone dynamic bias signal at frequency fx applied
to the PA’s bias node. It can be performed from one mobile
equipment to another, and it is sufficient to perform the
measurement at the rated power only.

V. EXPERIMENTAL VALIDATION
A. POWER AMPLIFIER AND DEVICE TECHNOLOGY
For experimental validation of the proposed 3-port PA rep-
resentation, we use the SE5003 WiFi PA from Skyworks
Solutions, Inc., but modified by Skyworks to allow access to
the internal biasing circuitry specifically for our tests. This
enables the application of an envelope-dependent dynamic
bias signal to the second and/or third PA stages. The PA is
fabricated using Indium Gallium Phosphide (InGaP) Hetero-
junction Bipolar Transistor (HBT) technology. It is capable
of better than 3% EVM at 25dBm output power (802.11a
signals) from 5.15GHz to 5.9GHz, has a P1dB of about 32dBm
and a gain of about 32dB [31].

B. TEST SET-UP
Fig. 13 shows the test set-up schematic of the PA dynamic
biasing experiment. The RF and Baseband Generator is used
to synthesize the RF and the baseband signals applied to
the input node (port 1) and bias node (port 3) respectively.
The spectral content at nodes 1, 2 and 3 are measured with
spectrum analyzers, while power measurements at nodes 1
and 2 are done using a power meter.

An important requirement for the testbench in Fig. 13 is
that the phase of the baseband multi-tone signal at port 3 be
precisely known, calibrated and controlled to extract phase-
coherent relationships between the signals at ports 1, 2 and 3,
in addition to allowing their precise amplitude control. While
amplitude control is easily achieved, phase control must be
achieved such that at any instant of time, the phase at nodes
1, 2 and 3 are calibrated using a single time reference. The RF
and Baseband Generator achieves this using the oscilloscope
measurements of the signals at ports 1, 2 and 3 (shown by
blue dotted arrows in Fig. 13) together with MATLABTM

algorithms running on the computer that controls the
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FIGURE 13. Test set-up for experimental validation of proposed 3-port PA
representation.

equipment. This enables adjusting the phase at nodes 1, 2
and 3 with respect to one single time reference.

C. MEASUREMENTS AND VALIDATION
The procedure detailed in Section III-B to extract the
proposed 3-port PA representation is now applied to the
SE5003 WiFi GaAs HBT PA using a 3-tone RF signal with
a frequency spacing of 1.5MHz (i.e. total signal bandwidth
of 3MHz) and for Pout(average)=29.2dBm. The PA is there-
fore being operated in the vicinity of its maximum rated
linear output power (P1dB ∼32dBm). The representation is
characterized with the multi-tone dynamic bias signal Vctrl
applied to the HBT base in the PA’s third stage, since it is
observed to have a greater effect on the linearity than applying
it to the second stage. The extracted representation is similar
in form to (16)-(17) but with different coefficients, and is not
shown here for conciseness.

Note, however, that a third-orderP polynomial is necessary
to accurately capture the PA’s nonlinearity under dynamic
biasing for the experimental validation here. This increase in
order of P accounts for the larger nonlinearities associated
with the particular HBT PA design used here compared to the
CMOS PA discussed in Section IV.

With the extraction of the proposed 3-port PA represen-
tation complete, it is now used to predict the necessary pre-
distortion through dynamic bias, i.e. the necessary Vctrl signal
in Fig. 13, to linearize the DUT at the characterized power

FIGURE 14. Photograph of experimental test set-up shown in Fig. 13.
A photograph of the SE5003 PA test-board (DUT) is also shown.

FIGURE 15. Measured values (dotted markers) and predicted values
(solid traces) of the PA’s IMD3 under dynamic bias Ve. Ve is the Vctrl tone
at ωx with the phase kept constant at 80◦. Other tones are present in Vctrl
but are not varied. The PA’s Pout(average) is 29.2dBm.

level. Because the variation of the tone Ve (at frequency ωx)
in Vctrl has the greatest impact on PA linearity, the plots in
the discussion that follows shows the variation of the output
IMD3 with the magnitude and phase of this Ve tone only, even
though higher frequency tones (at 2ωx , 3ωx , 4ωx) are present
in Vctrl during both PA characterization and in the test-cases
described next.

As shown in Fig. 15, the proposed PA representation allows
accurately predicting the pre-distortion through the dynamic
bias tone Ve required to improve the IMD3 by up to 3dB,
using amplitude control only of the Ve tone. Further IMD3
improvement is also possible by additionally varying the
phase of the Ve tone. As shown in Fig. 16, the proposed 3-port
representation allows accurately predicting the amplitude and
phase (0.09V, 6 100◦) of Ve that is necessary to achieve more
than 4dB of IMD3 linearization.

VI. COMPARISON WITH MODIFIED VOLTERRA SERIES
Of the recent advances in analytical PA representations, [18]
describes a 3-port Volterra-based representation for supply-
modulated RF PAs, derived with a 2-tone excitation. Because
of its apparent similarity to our proposed 3-port representa-
tion, it is useful to discuss the significant differences between
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FIGURE 16. Measured values (dotted markers) and predicted values
(solid traces) of the PA’s IMD3 under phase variation in addition to
amplitude variation of its dynamic bias, at Pout(average)=29.2dBm.

the two approaches in terms of their intended application,
the advantages and the disadvantages.

Reference [18] uses a first-order truncation of the full
Volterra series in order to reduce the complexity of extracting
the higher-order kernels. The first-order kernel values in [18]
are shown to vary as a function of three variables - the
RF Input Power, the DC supply and the modulation signal
bandwidth [18, Figs. 5–7]. Since the kernels are derived for
a large range of these three variables, they remove the neces-
sity for real-time coefficient updates that may be associated
with tuned PA representations [18, p. 9, Paragraph 1], tuned
PA representations according to [18] being those that are
valid only when used under identical operating conditions
as during characterization. This is an interesting feature of
the PA representation in [18]. On the other hand, such a
large number of kernel values require being stored in some
form (for example, as look-up tables) which allows them to
be structured as nonlinear filters which nonlinearly change
versus time [18, p. 6]. Dynamically addressing and updating
look-up tables which are functions of three separate variables
(the RF Input Power, the DC supply and the modulation
signal bandwidth), as part of a training sequence, makes it
too complex for use in our proposed context of embedded
self-calibration within mobile equipment to account for part-
to-part variations (Fig. 1). This is because of the complexity
of the probing interfacing and training sequence that would
be required to implement a dynamic updating of the look-up
table that is a function of these three separate variables.

In contrast, it was shown in Section IV that with our proposed
representation, a relatively small number of coefficients (of
G and P) require being stored. These are extracted (and
adjusted) using a simple training sequence based on a min-
imum number of relatively simple measurements performed
using a low-complexity probing circuitry, and successfully
answers the requirements of our embedded self-calibration
application within mobile equipment.

It was also shown in Fig. 6 that our proposed 3-port
PA representation allows predicting with negligible error an
improved IMD3 of −26dBc via pre-distortion for the SOI
CMOS PA in Section IV. Similarly, the experimental values
in Fig. 16 shows that our proposed representation accurately
captures the nonlinearities and allows the prediction of the
pre-distortion necessary to achieve an improved IMD3 of
less than −25dBc for an industry-designed GaAs PA. The
error in prediction of the IMD3 for this GaAs PA using our
proposed representation is negligible (< 0.1dB, Fig. 16) when
the PA is tested at power levels in the vicinity of its P1dB (i.e.
when PA nonlinearity is significant). These error values are
comparable to those associated with using the Volterra-based
PA representation in [18] for predicting output IMD3 levels,
while operating the PA under similar degrees of nonlinearity
and comparable IMD3 under dynamic conditions (IMD3 ∼

−25dBc in [18, Fig. 9(a)]). Therefore, our proposed 3-port
PA representation allows accurately capturing PA nonlin-
ear behavior that is of the same degree as that discussed
in [18], but without the significantly more complex training
sequences associated with extracting Volterra kernels.

Additionally, it has been shown in Section V-C that it was
necessary to increase the order of P from two to three in
order to capture with minimal error (<0.1dB) the effect of
the dynamic biasing signal on a GaAs HBT PA’s nonlinearity,
when the PA is operating in a significantly nonlinear region
(Pout ∼29.2dBm). Increasing to the third-order the kernels
in (2) for the Volterra-based representation in [18] has not
been demonstrated, nor the accompanied complexity that
would ensue for such higher-order Volterra characterization,
given the considerable challenges associated even with the
extraction of first-order Volterra kernels [21].

VII. APPLICATION TO CLOSED-LOOP PA WITH
EXPERIMENTAL VERIFICATION
Closed-loop PA architectures relying on feedback have been
widely demonstrated to improve PA performances. For exam-
ple, [13] improves PA linearity by using negative feedback
through active elements for gain compensation when the
PA’s compression is significant. References [14] and [15]
use negative feedback in VGA architecture to regulate the
system’s overall gain. Our proposed 3-port PA representation
is useful for both PAs andVGAs under closed-loop operation,
using either negative or positive feedback.

In this section, its usefulness is highlighted by applying it
to the recently proposed positive envelope feedback lineariza-
tion scheme, where the PA’s output envelope signal is applied
in positive feedback to the bias node [12], [32], [33]. To the
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FIGURE 17. (a) Simplified schematic showing closed-loop PA using positive envelope feedback (b) Prototype system with PA and Envelope
Detector [12].

best of the authors’ knowledge, for the first time, an analytical
approach using a 3-port representation is used to predict the
conditions for closed-loop stability in an envelope feedback
system as well as the design requirements of the feedback
elements for optimum linearity, without relying solely on trial
and error.

While this is demonstrated here in the context of positive
envelope feedback through sub-sections A-E, the proposed
PA representation may also be used for closed-loop PAs
within an embedded self-calibration set-up in the mobile unit
(such as the set-up in Fig. 1) to verify PA stability as well as
optimize linearity. This is discussed in Section VIII.

A. DESCRIPTION OF DEVICE UNDER TEST
The device under test (DUT) is shown in Fig. 17 [12]. Both
simulation results of the PA schematic (Fig. 17(a)) and mea-
surements on the prototype (Fig. 17(b)) are referred to here.
The 5.4GHz PA and the envelope detector are fabricated using
SOI-CMOS 0.18um technology from TowerJazz. The three-
stage flip-chip PA is interfaced to the PCB via a 6 layerMCM.
The reader may refer to [12], [32], [33] for further details.

FIGURE 18. Closed-loop PA under positive feedback, and equivalent
open-loop form using proposed 3-port PA representation.

Fig. 18 gives a schematic representation of the closed-loop
PA using positive envelope feedback on the left, and converts
it into an open loop system using our proposed 3-port PA
representation (indicated by X ) on the right. The feedback

circuit in Fig. 18 is the high input impedance system com-
posed of an envelope detector and a voltage shifter as shown
in Fig. 17 and detailed in [12]. Two parameters critical to
the implementation shown in Fig. 17 are the threshold and
the slope of the detector used in the feedback circuit. The
underlying circuit operation and characteristics are described
in [12, Fig. 5]. The values of these two parameters are voltage-
controlled, represented by signals A and B in Fig. 14. Signal
A corresponds to signal Va in Fig. 17, which sets a threshold
at the source of an NMOS comparator. Signal B corresponds
to signal Vb in Fig. 17, which controls the gain of an output
PMOS stage.
X is first extracted using the procedure given in

Section III-B. At the end of this extraction procedure,
the coefficients of complex polynomials G and P that consti-
tute X in Fig. 18 are known for power levels where the PA is
under gain compression, andwhere the application of positive
envelope feedback is effective at improving PA performance.
The extracted representation is similar in form to (16)-(17),
and is not shown here for conciseness.

B. EXPRESSION FOR CONVERSION GAIN
For determining the expression of loop stability, the PA’s
conversion gain (C) from the dynamic bias signal at node
Vctrl to the output envelope signal at node Vo in Fig. 18 is
first calculated. For this, the 3-port PA representation
(X in Fig. 18) is excited using a single baseband tone of
amplitude Ve (at frequency ωx) at the bias node, a single RF
tone of amplitude Vi at the input node and measuring the
amplitude of the resulting output multi-tone signal Vo. The
value of Vi is chosen such that the PA is operating under gain
compression. For Vo, the measurement of amplitudes alone
and limited to that of the three primary tones (i.e. at frequen-
ciesωc−ωx ,ωc andωc+ωx) is sufficient, given that the IMD3
tones have a negligible contribution to the conversion gain.
With the help of the formulations in Section III-A, the PA’s
conversion gain (C), when the input excitation is Vi and bias
tone is Ve, is given by (18). Its detailed derivation is given in
Appendix B.
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C (Vi,Ve) = a1 · p111 + a1 · p112 · Ve + a3 · f1(Vi)

+ a3 · f2(Ve)+ a3 · f3 (Vi,Ve) (18)

C. FEEDBACK CIRCUIT TRANSFER FUNCTION
A mapping of the feedback circuit’s transfer function (from
RF input Vo to baseband output Vf ) as a function of A and B is
now performed. For this mapping, the input of the feedback
block is excited with the same multi-tone signal Vo as in
Section VII-B. Leaving the feedback circuit connected to
the PA output ensures that the feedback circuit’s transfer
function is evaluated with the right input conditions, while
also ensuring the correct load conditions at the PA’s output.
For a particular value of A and B, the transfer function of the
feedback block is given by (19).

Vf (ωx)
Env(V o)

= f (A,B) (19)

where Vf (ωx) is the amplitude value of Vf at the frequency
ωx and Env(V o), also at frequency ωx , refers to the envelope
of the PA’s modulated output RF signal Vo. By repeating the
measurement given by (19) for various values of A and B,
the mapping of the feedback circuit’s transfer function is
generated and stored as a look-up table.

D. CONDITIONS FOR LOOP STABILITY
The conditions for stability of the closed-loop system
in Fig. 18 is based on the well-known Barkhausen gain mar-
gin and phase margin stability criteria. However, only the
gain margin is considered since the positive feedback nec-
essarily introduces a ∼360◦ phase shift across the PA band-
width. Hence it leaves no possibility of phase margin design.
Accordingly, the condition for stability is given by (20).

C(Vi,Ve) · f (A,B) < 1

i.e.

f (A,B) <
1

a1 · p111 + a1 · p112 · Ve + a3 · f1 (Vi)+ . . .
(20)

(20) is the condition for stability of the closed-loop circuit
using positive envelope feedback at the input power level
corresponding to Vi and bias tone Ve. By calculatingC(Vi,Ve)
for a few more Vi levels that define the PA’s power levels
where positive envelope feedback is of interest, the condition
to maintain closed-loop stability at these power levels is also
determined. For each such calculation, Vi is kept constant
while Ve is considered a small-signal input. The conversion
gain C(Vi,Ve) given by (18) is the value of the PA’s output
envelope over Ve. The look-up table of Section VII-C is then
used to determine the values of A and B that satisfy (20) for
these calculated values of C(Vi,Ve) at different power levels,
and therefore the conditions to ensure the closed-loop PA’s
stability are known.

(18), (19) and (20) are now used to determine the limit
value for the conversion gain to ensure stability of the
closed-loop PA shown in Fig 17. Its computed value is

expressed in (21), and the limit condition on the feedback
circuit transfer function to ensure stability by (22).

C (Vi,Ve) = |a1 · p111 + a1 · p112 · Ve + . . . | = 4.71V
/
V

i.e. C (Vi,Ve) = 13.46dB (21)

f (A,B) < 1/
4.71 = 0.21 i.e.− 13.46dB (22)

(21) gives the value of C (Vi,Ve) when the PA is operating
close to approximately the lowest power level from where
the application of positive envelope feedback becomes useful.
This corresponds to the power level when the PA starts com-
pressing. The PA’s gain drops for higher power levels, and
consquently its conversion gain from the bias node Vctrl to
the RF node Vo also drops. Hence, the value of f (A,B) given
by (22) represents the critical limiting value to ensure closed-
loop stability. For higher power levels, the value of f (A,B)
may be higher without compromising the closed loop PA’s
stability.

In comparison, simulation of the circuit in Fig. 17(a) with
ADSTM gives a conversion gain of 13.1dB, which shows that
the value (21) predicted using the proposed 3-port PA repre-
sentation is quite accurate. The small error between the two
values is due to the approximation based on using a 1-tone
RF signal Vi to derive (18) (Fig. 18), while the coefficients
a1, a3 and a5 were derived using a 3-tone RF signal Vi. (22)
translates into the limits on A and B given by (23) for this
particular design. Their actual values are set with an adequate
safety margin to guarantee stable behavior of the PA with
positive envelope feedback.

Control signal for detector threshold : A >∼ 2.0V

Control signal for detector slope : B >∼ 1.1V (23)

E. ADJUSTMENT OF DETECTOR PROFILE FOR LINEARITY
IMPROVEMENT OF PA
With the 3-port representation parameters and the limiting
values of A and B that ensures the closed-loop PA’s stability
known, the following steps are followed to determine the
values of Aopt and Bopt within this range that optimizes the
positive envelope feedback PA’s linearity:
Step 1: The 3-port PA representation is used to determine

the values of the dynamic bias tone Ve at frequency ωx
required to optimize the open-loop PA’s IMD3 under a 3-tone
RF excitationVi, for values of output powerPout that lie in the
range where positive envelope feedback is useful i.e. where
the PA gain is under compression.
Step 2: The look-up table obtained in Section VII-C is used

to determine a single combination of A and B, called Aopt and
Bopt , which satisfy the following. First, Aopt and Bopt must
satisfy the stability (20). Second, A and B are adjusted to
Aopt and Bopt such that it allows matching the output of the
feedback circuit Vf (at frequencyωx) to the already computed
optimum bias valuesVe (also at frequencyωx) of Step 1, at the
corresponding values of Pout .
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With Aopt and Bopt set accordingly, the loop is now closed.
The resulting closed-loop PAwith positive envelope feedback
has an improved gain profile which translates into close to
optimum linearity, while ensuring PA stability.

By applying Step 1 and Step 2 to the PA design of Fig. 17,
Aopt and Bopt were found to be 2.6V and 1.6V respectively.
Closing the positive envelope feedback loop with A and B set
to these values, the measured values of the closed-loop PA’s
adjusted CW gain is shown in Fig. 19. The corresponding
values of the dynamic bias signal Vdyn is also shown. The
resulting gain flatness over the output power range from
16dBm to 21dBm as illustrated in Fig. 19 is achieved while
also guaranteeing closed-loop PA stability, and translates into
a linearity improvement as shown in [12, Fig. 7].

FIGURE 19. Measured gain vs Pout, Vdyn vs Pout with and without
positive envelope feedback [12, Fig. 5].

VIII. DISCUSSION ON USE OF PROPOSED 3-PORT
REPRESENTATION FOR EMBEDDED SELF-CALIBRATION
This section discusses the use of our proposed 3-port PA
representation for implementing embedded self-calibration
functions introduced for the first time in this paper, and
intended for use within the mobile unit. One such applica-
tion was extensively described in Section IV-D, that allowed
adjusting, via embedded self-calibration, the pre-distortion
applied to an open-loop PA to compensate against part-to-
part variation of PA behavior. The open-loop case is briefly
highlighted in this section, while a closed-loop PA application
is discussed in greater detail.

A. EMBEDDED SELF-CALIBRATION OF OPEN-LOOP PA
As discussed earlier, the sequence comprising Steps 1-4 of
Section III-B to extract the coefficients of polynomials G
and P of our proposed 3-port representation (X in Fig. 1,
Fig. 8), lends itself favorably for adoption by the RFIC PA
manufacturer at an advanced engineering phase of the devel-
opment. A single set of extracted coefficients, which describe
the PA’s typical behavior, may then be provided to a mobile
equipment manufacturer as parameters of our proposed PA
representation, for use in embedded self-calibration functions
within the mobile unit that enable accounting for PA part-to-
part variation.

In Section IV-C, the use of these parameters for extract-
ing a pre-distortion function F aimed at PA linearization is
shown. In Section IV-D, a method of self-calibrating this
pre-distortion function F , to account for PA performance
deviation from its typical behavior, is demonstrated, using
the set-up within the mobile unit shown in Fig. 8. Only
two probes for a minimum number of quasi-static power
measurements over a narrow power range are required. The
resulting adjustments of the 3-port representation, and conse-
quently F , enable the PA linearity improvements summarized
in Tables 1-2. Including a more precise output probe and
an additional probe to measure the bias signal (such as the
Bias Control/Probe in Fig. 20) allowed further PA linearity
improvement.

FIGURE 20. Application of proposed 3-port representation for
self-calibration embedded within the mobile unit applied to closed-loop
PA under positive envelope feedback.

The example above describes one possible self-calibration
function, and targets the open-loop PA’s linearity. We now
discuss the application of our proposed 3-port representation
for embedded self-calibration of closed-loop PAs, for the
specific case of the closed-loop PA with positive envelope
feedback.

B. EMBEDDED SELF-CALIBRATION OF CLOSED-LOOP PA
Fig. 20 shows the set-up within the mobile unit for embedded
self-calibration of the closed loop PA using positive envelope
feedback. X refers to our proposed 3-port representation, the
parameters of which gives the relationship between the sig-
nals at the nodes Vin, Vo and Ve for the typical open-loop PA.
Along with this single set of parameters, the PAmanufacturer
may also provide to the mobile equipment manufacturer a
single look-up table representing the typical transfer function
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of the feedback circuit (Fig. 20), extracted through the steps
described in Section VII-C. Knowing this single set of data,
that represents parameter values associated to one given PA
product, allows determining the value of Aopt (for optimum
value of detector threshold) and Bopt (for optimum value of
detector slope) that should be used for the typical closed-loop
PA under positive envelope feedback.

For a different PA under closed-loop operation within a dif-
ferent mobile equipment, suitable adjustments in the values of
Aopt and Bopt may be carried out to optimize linearity while
ensuring stability. We now describe an embedded adjust-
ment of the parameters of X and the look-up table stored
in the baseband processor within the mobile unit in Fig. 20,
to account for a performance deviation of the new PA com-
pared to its typical behavior.

(i) The Input Probe, Output Probe and Bias Control/Probe
in Fig. 20 are used to update the parameters of the open-loop
PA representation X for the new PA, through the steps
described in Section IV-D.

(ii) The updated parameters of X are used to update the
conversion gain parameter C(Vi,Ve) defined by (18). The
new limit value on the feedback circuit’s transfer func-
tion computed with (20) to ensure its stability is now
known.

(iii) TheOutput Probe and the Bias Control/Probe are used
to measure the RF signal Vo and the baseband signal Vf
respectively, to determine the adjusted values of the feedback
circuit’s transfer function f (A,B) (19). This accounts for part-
to-part variation of the feedback circuit itself, and the look-up
table of A, B is suitably updated.
(iv) The updated value of the parameters inX , the new limit

value of f (A,B) and the updated look-up table are now used
to adjust the values of Aopt and Bopt for improved linearity
of the new PA while guaranteeing its closed-loop stability,
through the steps described in Section VII-E.

Once the adjusted Aopt and Bopt are set, the electronic
switch control in Fig. 20 is used to close the positive envelope
feedback loop for the new PA. The resulting closed-loop PA
with positive envelope feedback is expected to have a gain
profile that results in improved linearity performances, while
ensuring PA stability.

C. OTHER APPLICATIONS
Beside the open-loop and closed-loop applications discussed
above, our proposed 3-port PA representation for embedded
self-calibration may be used to optimize other PA perfor-
mances e.g. gain regulation in PAs that employ the switching
ON or OFF of transistor arrays for efficiency improve-
ment [16]. Such switching architectures may result in unde-
sirable gain variations from one PA part to another. Using
the simple probing circuitry as shown in Fig. 20 to mea-
sure the ratio between the input and output signals, the gain
deviation may be cancelled through adjustment of the DC
bias. Afterwards, PA linearity may be optimized following
the procedure described in Section IV-C.

IX. CONCLUSION
This paper presents a 3-port representation of RFIC PAs
under envelope-dependent dynamic biasing, based on com-
plex polynomials that describe a combiner, a nonlinear
baseband-to-RF converter and a nonlinear RF amplify-
ing function. The proposed representation, extracted using
multi-tone signals, allows predicting the dynamic biasing
necessary to linearize the PA under multi-tone as well as
modulated RF excitation signals. The paper also presents, for
the first time, a novel embedded self-calibration technique for
use within the transmitter front-end of the mobile unit when
implementing envelope-dependent dynamic biasing of RFIC
PAs. This self-calibration technique using the proposed 3-port
representation enables the adjustment of the PA’s dynamic
biasing from one mobile unit to another, to account for
part-to-part variation in PA behavior. The different tests that
are presented, based on both simulation and experimental
implementations, highlight the relative simplicity yet good
accuracy of the proposed 3-port representation’s character-
ization process compared to other PA representations, and
its use for the embedded self-calibration of PA architec-
tures using different open-loop and closed-loop envelope-
dependent dynamic biasing techniques.

APPENDIXES
APPENDIX A
Centering the multi-tone measurements significantly aids in
solving the system of equations in Step 1 and Step 4 of
Section III-B. Mathematically, this translates into a minor
modification of (14) as it is presented earlier into the form
in (A1.1), where the additional term kωc+iωx refers to a con-
stant complex number that accounts for centering the voltage
measurements at the frequency tone ωc + iωx .

v
′

o (t) =
u∑

i=−u

(kωc+iωx + V
′

o (ωc + iωx))·cos((ωc + iωx) t

+βωc+iωx ) (A1.1)

These additional kωc+iωx constants do not affect the extrac-
tion procedure described in Section III-B for the coefficients
a1, a3, a5 of polynomial G. This is because a1, a3, a5 capture
the nonlinear dependence of the PA’s output signal on its input
signal over the power range of interest, while kωc+iωx merely
represents a constant offset value.

An example of the values of kωc+iωx for the test-case
described in Section IV are given by (A1.2).

kωc =−0.03−j · 0.04,

kωc+ωx =−0.03+j · 0.12, kωc+2ωx =+0.03+ j · 0.03

kωc−ωx =+0.06−j · 0.13, kωc−2ωx =−0.02+j · 0.02

(A1.2)

Additionally, frequency domain asymmetry of the PA’s
IMD3 at high power levels is handled through a minor modi-
fication of the input signal Va to the polynomial G as shown
in (A2.1). The coefficient bωc+iωx is zero when there is no
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IMD3 asymmetry, but is a complex constant for power levels
when IMD3 asymmetry becomes significant.

va (t)

= (
1∑

i=−1

bωc+iωx · Vin (ωc + iωx) ·cos
(
(ωc + iωx) t+θωc+iωx

)
+

s∑
i=−s

(
m∑
q=1

n∑
l=1

piql{Ve (q) · cos
(
φq
)
}
l) · ej(ωc+iωx )t

(A2.1)

For example, the values of bωc+iωx for the test-case
described in Section IV are given by (A2.2)

bωc = 7.64− j · 2.45

bωc+ωx = 6.47− j · 5.10

bωc−ωx = 7.87+ j · 0.79 (A2.2)

It is useful to point out that the modifications given in
Appendix A do not affect the order or the complexity of the
proposed formulations presented in Section III.

APPENDIX B
For determining the expression of the PA’s conversion gain
from the bias node Vctrl to the output node Vo in Fig. 18 using
the proposed 3-port representation, the PA is excited with a
single small-signal baseband-tone Ve at the bias node and
a single RF-tone Vi at the input node. For determining this
conversion gain, the value of the amplitudes only of the
baseband bias signal and the PA’s output envelope (both at
frequency ωx) is necessary, and there is no requirement to
measure the absolute phase value of the signals at the nodes
Vi, Vo and Vctrl i.e their phase with respect to a single time
reference. Therefore, these absolute values of the phase of
the signals are ignored without any loss of generality for the
formulations derived in this appendix, and the amplitudes
only of Vi, Vo and Ve are considered. (6) and (8) therefore
reduce to equations (A3) and (A4).

vi (t) = Vi (ωc) · cos(ωct) (A3)

ve (t) = Ve · cos(ωx t) (A4)

Assuming a second-order polynomial for P gives expres-
sion (A5) for 1Va, where the number of tones are restricted
to the three primary tones at frequencies ωc, ωc + ωx and
ωc − ωx .

1Va (ωc) = p011 · Ve + p012·Ve2

1Va (ωc + ωx) = p111 · Ve + p112 · V 2
e

1Va (ωc − ωx) = p−111 · Ve + p−112 · V 2
e (A5)

Here, p011, p012, p111 etc. refer to the coefficients of poly-
nomial P. For example, consider the coefficient p−112. Here
the third index 2 represents that it captures the contribution
of the 2nd-order term V 2

e to the 1st side-tone 1Va (ωc − ωx)
(given by index -1), Ve being the value of the 1 ·ωx frequency
tone in the bias signal (given by index 1).

Using (A3), (A4) and (A5) gives the following unilateral
expression for va (t).

va (t)=Vi (ωc) · cos (ωct)+
(
p011 · Ve+p012·Ve2

)
· cos (ωct)

+

(
p111 · Ve + p112 · V 2

e

)
· cos

(
(ωc+ωx)t

)
+

(
p−111 · Ve+p−112 · V 2

e

)
· cos

(
(ωc−ωx)t

)
i.e.

va (t) = p0 · cos (ωct)+ p1 · cos
(
(ωc + ωx)t

)
+ p−1 · cos

(
(ωc − ωx)t

)
(A6.1)

where

p0 = Vi (ωc)+ Ve · (p011 + p012 · Ve)

p1 = Ve · (p111 + p112 · Ve)

p−1 = Ve · (p−111 + p−112 · Ve) (A6.2)

Applying (A6.1) as input to the 5th-order polynomialG and
considering only the resulting amplitudes at the three primary
frequency tones shown in Fig. 18 gives the following value of
the output signal Vo.

vo (t) = r0 · cos (ωct)+ r1 · cos
(
(ωc + ωx)t

)
+ r−1

· cos
(
(ωc − ωx)t

)
(A7.1)

where

r0 = a1 · p0+a3 ·
{
3
4
p30+

3
2
p0p21+

3
2
p0p2−1+

3
2
p0p1p−1

}
+ a5 ·

{
5
8
p50 +

15
8
p0p41 +

15
8
p0p4−1 +

15
4
p30p

2
1

+
15
4
p30p

2
−1+

15
4
p0p31p−1 +

15
4
p0p1p3−1

+
15
2
p0p21p

2
−1 + 5p30p1p−1

}
(A7.2)

r1 = a1 · p1 + a3 ·
{
3
4
p31 +

3
2
p1p20 +

3
4
p−1p20 +

3
2
p1p2−1

}
+ a5 ·

{
5
8
p51 +

15
4
p20p

3
1 +

15
8
p20p

3
−1 +

15
4
p31p

2
−1

+
15
8
p1p40 +

15
8
p1p4−1 +

15
2
p20p1p

2
−1 +

5
4
p40p−1

+
45
8
p20p

2
1p−1

}
(A7.3)

r−1 = a1 · p−1+a3 ·
{
3
4
p3
−1+

3
2
p−1p20+

3
4
p1p20+

3
2
p−1p21

}
+ a5 ·

{
5
8
p5
−1 +

15
4
p20p

3
−1 +

15
8
p20p

3
1 +

15
4
p3
−1p

2
1

+
15
8
p−1p40 +

15
8
p−1p41 +

15
2
p20p−1p

2
1 +

5
4
p40p1

+
45
8
p20p

2
−1p1

}
(A7.4)
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The small asymmetry in the two output side-tones of ampli-
tude r1 and r−1, due to the higher-order terms as shown in
their expansions given by (A7.3) and (A7.4), has a negligible
effect on the output envelope amplitude, whose value is then
given by (A8).

Env(V o) ≈ 2r1 ≈ 2r−1 (A8)

The PA’s conversion gain (C) from the bias node to the
output node is now given by (A9).

C (Vi,Ve) =
Env(V o)
Ve

≈
2r1
Ve

(A9)

A better understanding of the contribution of Vi and Ve to
the conversion gain given by (A9) can be obtained by simpli-
fying (A9) after its expansion. For this purpose, coefficient
a5 is set to zero and only the first few significant terms are
considered. The resulting simplified expression is given by
(A10), and its compact representation by (A11).

C (Vi,Ve)= a1 · (p111+p112 · Ve)+
3
2
· a3 · V 2

i

·

(
p111+

1
2
p−111

)
+3 · a3 · Vi · Ve · p011

·

(
p111+

1
2
p−111

)
+
3
2
· a3 · V 2

i · Ve

·

(
p112+

1
2
p−112

)
+ 3 · a3 · Vi · V 2

e

·

(
p011 · p112+

1
2
p011 ·p−112

+ p012 ·p111+
1
2
p012 · p−111

)
+

3
2
· a3 ·V 2

e ·

(
p2011 · p111 +

1
2
p2011 · p−111

+ p2
−111 ·p111+

1
2
p3111

)
+. . . (A10)

i.e.

C (Vi,Ve) = a1 · p111 + a1 · p112 · Ve + a3 · f1 (Vi)

+ a3 · f2(Ve)+ a3 · f3 (Vi,Ve) (A11)

where f1(Vi), f2(Ve), f3 (Vi,Ve) are nonlinear functions.
C (Vi,Ve) therefore consists of a constant term composed of
the product of the 1st-order G coefficient a1 and the 1st-order
P coefficient p111, along with other higher-order functions of
Vi and Ve.
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