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ABSTRACT We consider a Hybrid Access Point (HAP) that charges one or more energy harvesting
devices via Radio Frequency (RF). These devices then transmit their data to the HAP. To date, prior works
assume devices use Time Division Multiple Access (TDMA) for channel access, and these devices are
able to transmit using any amounts of harvested energy. By contrast, we consider Dynamic Framed Slotted
Aloha (DFSA) and devices can only transmit if they have sufficient energy. Moreover, nodes are not aware
of each other’s energy level, meaning the HAP and devices are unaware of the number of devices that is
ready to transmit. In addition, we consider different non-linear energy conversion models. To this end,
we propose a two-layer approach. At the first layer, the HAP adjusts its transmission power using a Sequential
Monte Carlo (SMC) approach, and the frame size according to the Softmax function. At the second layer,
devices use another Softmax function to learn the time slot that yields the highest reward for a given frame
size. Our results show that throughput is affected by the minimum energy required for each transmission,
the temperature of the Softmax function, transmission power used for charging devices, channel gain and
network density. Our results indicate that our two-layer learning approach achieves at least 7%, 19%, 40%
higher throughput than TDMA, ε-greedy and Aloha.

INDEX TERMS Particle filter, wireless power transfer, learning, RF charging.

I. INTRODUCTION
Radio Frequency (RF) energy harvesting techniques have
recently emerged as an effective method for supplying
energy to low-power devices equipped with a RF-energy
harvester [1]. For example, the authors of [2] demonstrated
a prototype that harvests RF signals from a television tower
located 6.5 km away. Another example is a sensor device
with a camera that harvests energy from the transmissions
of nearby access points in a Wireless Local Area Network
(WLAN) [3]. These prototypes pave the way for RF charging
being used to power sensor devices in the upcoming Internet
of Things (IoTs) networks [4]. Critically, in these networks,
it is important that an operator collects as much sensed data
from devices as possible, which can then be analyzed and
processed to yield actions that affect the environment [5].

Figure 1 shows an example RF charging network. The
Hybrid Access Point (HAP) coordinates energy and data
transfers to/from devices. These devices employ a ‘‘harvest-
then-transmit‘‘ protocol [6]; see the frame structure shown
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FIGURE 1. An RF charging network with a HAP and RF energy harvesting
devices and an example frame structure for charging and data
transmissions.

in Figure 1. The HAP first broadcasts wireless energy to all
devices using the charging slot while devices transmit data
packets to the HAP after receiving energy. The number of
packets received by the HAP from devices is affected by the
following factors. First, the amount of energy harvested by
each device is a function of the HAP’s transmission power
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FIGURE 2. An example of channel access in a RF-charging network.

and duration, energy conversion efficiency, and channel gain.
The amount of energy harvested by a device affects its trans-
mission power. In our case, it determines whether a device has
sufficient energy to transmit a packet; i.e., whether they con-
tend for the channel in the current frame. Lastly, the channel
gain between a device and the HAP determines the resulting
data rate. Second, the channel access method plays a critical
role in determining the number of successes and collisions
experienced by devices.

To illustrate the aforementioned factors, consider Figure 2.
Assume devices access the channel using framed slotted
Aloha. Also, they always have data to transmit. Our goal
is to maximize the number of packets that arrives at the
HAP over T frames. Assume in the first frame, the HAP
transmits at 0.5 Watts for a duration of 0.1 second. To sim-
plify the example, assume that the channel gain for both
devices is 0.01 and the energy conversion efficiency is fixed
at 100%. Therefore, the received energy for the two devices
is 0.0005 Joules. Assume the energy required to transmit one
packet is 0.0005 Joules. This means both devices will contend
in the upcoming data slot according to their transmission
probability. Let us assume the transmission probability for
the two devices is 0.5 and 0.8, respectively. Assume both
deviceA andB decide to transmit. In this case, the two devices
will experience a collision, meaning the HAP fails to receive
a packet. After transmission, both A and B have no energy.
For the second frame, assume the HAP transmits at a power
of 0.1 Watts for 0.1 second. In this frame, the channel gain of
device A and B is assumed to be 0.05 and 0.02, respectively.
The amount of energy for device A and B is 0.0005 and
0.0002 Joules, respectively. In this case, only device A has
sufficient energy and transmits with probability 0.8. Assume
it transmits. As it is the only transmitting device, the HAP
receives the packet from device A successfully, assuming no
channel error. From this example, we see that our main aim
is to maximize the number of data slots with a successful
transmission and minimize the number of data slots with
collisions or is idle; doing so ensures the HAP collects the
maximum number of packets.

To achieve our aim, we need to consider the following
issues:

• The HAP must determine an appropriate frame size.
If the frame size is larger than the number of devices
that has sufficient energy, some slots will be idle,
which lowers throughput. On the other hand, a small
frame size may increase the number of collisions.

Therefore, we need to determine a frame size that allows
devices to transmit frequently with minimal collisions.
The challenge here is that the HAP is not aware of the
number of contending devices or those with sufficient
energy to transmit.

• The transmission power used by the HAP determines the
number of devices that has sufficient energy to contend
for a data slot. For example, a high transmission power
increases channel contention because more devices will
have sufficient energy to transmit. By contrast, if the
HAP uses a low transmission power, a frame will have
idle slots as not many devices will have sufficient energy
to transmit. Consequently, the resulting throughput will
be low. The challenge is to determine a transmission
power that balances collisions and the number of idle
slots.

• A device with sufficient energy needs to select a slot
for transmission in each frame. Critically, it must avoid
collisions so that it does not waste its harvested energy.
The main challenge here is that a device is not aware of
the number of contending devices, and a framemay have
a small number of slots, causing devices to experience
collision in all chosen slots.

Henceforth, to address the aforementioned issues, this
paper makes the following contributions:

C1 We propose and study a novel two-layer learning strat-
egy that allows the HAP to determine an appropriate
frame size and also the transmission power used for
charging. In particular, the HAP uses the Softmax func-
tion to adapt the frame size. The HAP selects a frame
size according to the utility or probability of each frame
size. In addition, the HAP employs a Sequential Monte
Carlo (SMC) approach [7] to select the optimal trans-
mission power over a continuous power range. We also
propose a novel, distributed, learning Medium Access
Control (MAC) protocol for use by devices. In particular,
devices employ the Softmax function to identify the
transmission slot that yields the highest reward.

C2 To the best of our knowledge, as explained in Section II,
our work is novel. Specifically, past works on Wireless
Powered Communication Networks (WPCNs) assume
TimeDivisionMultiple Access (TDMA) and they do not
consider transmission probability or sizing the number
of transmission slots. Moreover, they do not consider
adjusting the transmission power of the HAP in order
to reduce collisions. Also, devices are able to trans-
mit using any amounts of harvested energy. However,
in practice, devices are only able to transmit when they
have sufficient energy to transmit a packet. Hence, in this
paper, our devices can only transmit when they have the
required energy to transmit one packet. Critically, past
works assume the HAP is aware of the channel gain or
current energy level of devices. We do not make such an
assumption, meaning our HAP does not know exactly
how many devices have sufficient energy to transmit in
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a given frame. Lastly, we consider two non-linear energy
conversion models; namely, quadratic and a practical
model based on [8]. This is significant, as most past
works assume a linear energy harvesting model, which
has been shown in [9] to be inaccurate.

C3 From our experiments, we find that our two-layer
learning approach achieves at least 7%, 19%, 40%
higher throughput than TDMA, ε-greedy and Aloha.
Our results show that TDMA achieves 96% and 75%
throughput obtained by our two-layer learning approach
at high and low traffic load respectively. When we
increase the number of devices from ten to 50, the con-
verge time of our proposed approach increased by five
times, while it achieve higher throughput than TDMA
for all network densities. Furthermore, the results also
reveal that a severe channel reduces the harvested energy
for the practical non-linear model as compared to the lin-
ear model, i.e., the gap of the harvested energy between
practical and linear model decreases by 20% when the
channel changes from mild to severe.

The remainder of the paper is structured as follows.
In Section II we compare and contrast our works with respect
to the state-of-the-art. Then we present our network model in
Section III. Next, we formalize our problem in Section IV.
After that, in Section V, we outline our two-layer learning
approach. Our results are presented in Section VI followed
by our conclusion in Section VII.

II. RELATED WORKS
Our work overlaps with those that aim to maximize the sum-
rate of a WPCN; see [10] and references therein. However,
in general, these works assume devices use TDMA, have
no learning capability, and do not aim to vary the HAP’s
transmission power in order to reduce collisions nor aim to
change the frame size or number of data slots in a frame.
Critically, these works assume devices are already allocated a
transmission slot and do not consider random channel access.
For example, in [6] and [11], the work is focused on sizing
the charging slot of the HAP, and data transmission slot of
each device. The same problem is then revisited for a HAP
with a full-duplex radio [12] and Multiple-Input Multiple-
Output (MIMO) capability [13]. In [14], the problem is to
jointly optimize downlink power allocation and uplink energy
utilization at devices. The authors of [15] and [16] con-
sider Simultaneous Wireless Information and Power Transfer
(SWIPT), and jointly optimize transmit beamforming, time
allocation and power splitting strategies of devices. In a recent
work [17], the authors consider slotted Aloha for WPCNs.
However, their devices have no learning capability and their
HAP does not aim to control its transmission power to
improve channel access performance. We note that in Radio
Frequency IDentification (RFID) systems, many works have
considered framed slotted Aloha based tag reading protocols;
see [18] and references therein. However, the RFID reader
transmits at a fixed power and devices/tags have no learning
capability.

Channel access is also an important problem in energy har-
vesting systems [19], where devices rely on ambient energy
sources. Example works include [20] and [21], where the
transmission probability of devices is set according to their
available energy. In [22], Iannello et al. propose an energy
group-based dynamic framed Aloha protocol. Devices in the
same group contend for the channel simultaneously. There-
fore, the problem is to optimize the number of data slots
within a group. In [23], a central node adjusts the transmission
probability of devices by estimating the number of transmit-
ting devices in previous slots. In [24], a device reserves a slot
that it has transmitted successfully. In both of the previous
works, the frame size is fixed and devices rely on ambient
energy.

To date, many works have considered using reinforcement
learning to address problems in communication systems;
see [25] and references therein. These problems include
determining the optimal policy given varying energy harvest-
ing rates or Channel State Information (CSI). Example works
such as [7] and [26] consider a point-to-point channel where
the transmitter harvests ambient energy. The work in [27]
studies a joint access control and battery prediction problem
in a network with a base station and multiple energy har-
vesting devices. It aims to maximize the uplink transmission
rate of devices, and also to minimize energy outage. For
access control, the base station allocates a channel to devices.
Different from these works, our aim is to jointly optimize
the frame size and transmission power used by the HAP for
charging, and also the slot selection policy of charged devices.

In summary, unlike past works in WPCNs, we con-
sider random channel access and adopt a learning approach
at both the HAP and devices, whereas works such as
[6], [11]–[16] assume devices are already pre-assigned a
transmission slot and seek to optimize charging and uplink
transmission slot. These works also assume perfect CSI,
while our work does not make this assumption. In addition,
they assume devices are able to transmit using any amounts
of harvested energy, whereas our devices can only transmit
when they have sufficient energy to transmit a packet. In
contrast to [7], [20]–[24] and [26] that assume devices harvest
energy from ambient sources, the energy on our devices and
channel access are controlled by a HAP. Specifically, our
HAP is able to control the number of transmitting devices
through transmit power control, and also by adjusting the
frame size used by devices to select a transmission slot.
Critically, these tasks are executed without CSI or energy
level information at devices.

III. SYSTEM MODEL
We consider a RF-harvesting network, see Figure 1, with one
HAP and a set N of RF-energy harvesting devices. The HAP
is responsible for transmitting energy to the |N | devices and
collecting data from these devices. The energy and data is
transferred over the same frequency band.

The RF-harvesting network operates over frames; each
indexed by k . Each frame Fk has a fixed charging slot with
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duration τC and M k data slots; note M k
≤ |N |. The HAP is

responsible for determining the transmission power used in
each frame k and also the number of slots M k , aka frame
size. Slot m in frame k is denoted as skm. In the charging
time of each frame, the HAP broadcasts energy to devices.
Specifically, it transmits at power Pk = 1kPmax , where Pmax
is the maximum transmission power, and 1k

∈ [0, 1] is a
proportion of its maximum power that it will use in frame
k . On the other hand, the data slots are used by devices to
transmit to the HAP. Each device has a transmission rate of r
bps. Each data slot is sufficient to transmit one packet of size
L bits; i.e., its duration is τD = L/r seconds. The energy cost
to transmit a bit is ε J/bit. The minimum energy required to
transmit a packet is Emin = Lε (Joules). We assume devices
always have data to transmit.

We consider a block fading channel where the channel
gain is fixed in each frame but varies from frame to frame.
Moreover, the HAP is not aware of the channel gain to each
device. This is reasonable as devices need to first harvest
energy in order to participate in channel estimation. Also,
it is impractical to collect CSI from a high number of devices.
We write the channel gain to device i as gkoi, and from device
to the AP as gkio, where ‘o’ denotes the HAP. We consider a
log distance path loss model, thus, the channel gain is given
by

PLd0→di (dB) = PL(d0)+ 10nlog10(
di
d0

)+ X

gk =
1

10
PLd0→di

10

(1)

where di is the distance between device i and theHAP;PL(d0)
is the path loss in dB at a reference distance d0 ≤ di; n is
the path loss exponent; and X denotes the shadowing effect,
which is defined as a zero-mean Gaussian distributed random
variable (in dB) with standard deviation µ.

The exact amount of energy harvested by device i in frame
k is denoted byEki . It is bounded by the battery capacityBmax .
The battery of each device i evolves as per Bk+1i = Bki +
Eki − δ

k
i Emin ≤ Bmax , where δki ∈ {0, 1} takes on a value

of one whenever device i transmits in frame k . Specifically,
a device only transmits if (Bki +E

k
i ) ≥ Emin; recall that Emin is

the energy required to transmit one packet of size L at a rate
of r bps. In addition, we consider the following three energy
conversion efficiency models:

• Linear [28]. Formally, Eki = η1 PkgkoiτC , where 0 ≤
η1 ≤ 1 is the energy conversion efficiency.

• Quadratic [29]. Formally, Eki = (α1(Pkgkoi)
2
+

α2 Pkgkoi + α3)τC , where α1, α2, α3 ∈ R are the
parameters of the model.

• Practical [8]. Formally, Eki = η2 PkgkoiτC , where the
value of η2 is obtained from the datasheet of the P2110B
RF power harvester from Powercast [8].

These models are illustrated in Figure 3, where Figure 3a
and Figure 3b show the harvested power and conversion

TABLE 1. A summary of notations.

efficiency respectively when the input power increases from
0 to 10 mW.

We assume channel access is carried out using Dynamic
Framed Slotted Aloha (DFSA). Recall that each frame k
is composed of a variable M k number of data slots. If a
device has sufficient energy, it selects a slot to transmit in
frame k according to the method in Section V. If multiple
devices select the same slot, then there is a collision and
no data arrives at the HAP. Accordingly, a data slot has
the following three states: I) Success, if only one device
transmits, II) Idle, if no devices transmit, III) Collision,
if more than one device transmits. Table 1 summarizes all key
notations.

IV. THE PROBLEM
Our problem can be divided into two parts: (i) the HAP aims
to determine the best transmission powerPk for use in frame k
and also the number of data slotsM k , and (ii) at devices with
energy, they need to determine a transmission slot in frame
k . Next, we will first formalize the problem at the HAP and
devices.

Let S(skm) ∈ {Success,Collision, Idle} return the state of
slot skm. Define R(s

k
m) as the ‘reward’ of slot s

k
m. Formally,

R(skm) =

{
0 S(skm) = Collision ∨ Idle
1 S(skm) = Success

(2)

The throughput of frame k is thus defined as

T k =
1

τC +M kτD

Mk∑
m=1

R+(skm)× L (3)
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FIGURE 3. Comparison of the three conversion models.

The throughput at the HAP is defined as

T̄ , lim
k→∞

=
1
k
E[T k ] (4)

The expectation is with respect to the channel gains to
devices.

The objective of the HAP is defined formally as

max
1k ,Mk

T̄

s.t. 1k
∈ [0, 1]

M k
∈ {0, 1, 2, . . . , |N |} (5)

In the foregone problem, the chief challenge is that the
HAP has imperfect channel information. A high transmission
power may result in more devices with Emin worth of energy.
Consequently, multiple devices are likely to transmit and they
may experience collisions if the frame size is set incorrectly.
On the other hand, a lower transmission power or longer than
necessary frame size may cause idle slots. Both scenarios
reduce throughput.

Devices aim to select a slot that yields the most successes.
Specifically, for a device i, given a frame with M k slots,
it wishes to select a slot in A = {1, . . . ,M k

} that yields
the highest average number of successes. Let pi(skm) denote
the probability of using slot skm. Define πi = [pi(skm)]m∈A
as the policy used by device i for a given frame size. Here,
a policy defines the strategy used by device i when selecting
a slot for a given frame size. For example, if a frame has two
slots and πi = [0.5, 0.5], then device i selects to transmit in
both slots uniformly. We emphasize that devices maintain a
different policy for each frame size. Let� be the collection of
policies that satisfy

∑
m∈A pi(skm) = 1; as examples, if there

are two slots then both πi = [0.9, 0.1] and πi = [0.5, 0.5]
belong to�. The average utility obtained by device i for each
frame k when using policy πi is thus,

Ū k (πi) =
∑
m∈A

pi(skm)Ri(s
k
m) (6)

where Ri(skm) is the reward obtained by device i.
Each device i aims to solve the following problem,

max
πi∈�

lim
k→∞

=
1
k
E[U k (πi)]

s.t. (Bki + E
k
i ) ≥ Emin (7)

The challenges for devices are that they do not know how
many devices have sufficient energy to transmit, i.e., the
number of contending devices in each frame, as well as the
strategy πj, where i 6= j, used by other devices.

V. A TWO-LAYER LEARNING APPROACH
We now present an online learning approach where both the
HAP and devices use the outcome of their transmissions as
feedback. Our two-layer approach is depicted in Figure 4.
At the first layer, the HAP is responsible for adjusting the
frame size and its transmission/charging power. The second
layer is located at devices, where they select a transmis-
sion slot independently. Briefly, the system operates as fol-
lows. The HAP first charges all devices at the beginning of
each frame. Devices then harvest energy according to their
respective received power. The HAP also informs devices
the current frame size M k . Each device i then selects a slot
according to its policy and attempts transmission. If it is
successful, it obtains a reward Ri(skm), which it then uses to
adjust its slot selection policy for the given frame size. At the
end of each frame, the HAP calculates a reward R(skm) as
per the state of slots in the frame, and uses the reward to
adjust its next transmission power Pk+1 and frame sizeM k+1.
As it will become clear later, our approach is adaptive to
network dynamics and it does not require devices to transmit
extra messages or process large amounts of data. Both the
HAP and devices only need to observe the status of their
respective transmissions. The HAP then uses this information
to maintain a ProbabilityMass Function (PMF) of its transmit
power and frame sizes, whilst devices maintain a PMF over
the slots of each frame size.
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FIGURE 4. Framework of our two-layer learning approach.

A. DEVICE LAYER
The main idea is for each device to evaluate the utility or
reward of each time slot in a given frame. To do this, devices
calculate the probability of each slot after a transmission, and
this probability corresponds to the reward obtained when it
transmits in that slot. The probability of each slot forms a
PMF of the time slots in each frame. Devices can then take
an action or transmit in a given slot according to the computed
PMF. We first introduce some notations. Recall that device i
selects a slot skm in Ai = {1, . . . ,M k

}. Therefore, we have
the following so called joint action set for all |N | devices
A = A1 ×A2 × . . . ×AN . The corresponding joint reward
set is R = R1 × R2 × . . . × RN . In particular, the set Ri
contains all reward Ri(skm) over the action space s

k
m ∈ Ai. The

reward Ri(skm) is defined as Ci(s
k
m) = log2(1+

Emingkio
τDσ 2

), where
σ 2 is the noise power. This positive reward is only obtained
by device i if S(skm) = ‘Success′ for the selected slot skm.
Devices get a negative reward−Ci(skm) when they experience
a collision. Let I(skm) return the set of transmitting devices
in slot skm. Device i experiences no collision if the condition
I(skm)− {i} = ∅ is true. Formally, we have,

Ri(skm) =

{
−Ci(skm) I(skm)− {i} 6= ∅
Ci(skm) Otherwise

(8)

For a given device i, define its PMF over the slots in
frame M k as 0i(M k ) : Ai → [0, 1]. Let 0i be the space
of probability distributions over the action space Ai of all
frame sizes. The aim of device i is to find the PMF 0i(M k )∗

that achieves the maximum reward. To this end, we employ
the Softmax function to construct the PMF for a frame of
size M k . We note that the Softmax function is widely used
in neural networks and reinforcement learning to represent
action probabilities; interested readers are referred to [30]
and [31] for more information. In our case, a device uses
the Softmax function to select the slot that yields the highest
reward thus far, meaning for such a slot or action skm, its

density or probability Pi(skm) will be high. Formally, we have,

Pi(skm) =
eRi(s

k
m)/τ∑

s′km∈Ai
eRi(s′km )/τ

(9)

where τ is the so called temperature that is used to control
the trade-off between exploration and exploitation. Note that
the probability of the action with the highest reward is much
larger than other actions when we use a low τ value.

We now describe the process by which devices learn the
best action. Define a learning phase ζ as consisting of F
frames. In each phase ζ , each device accumulates the reward
of its selected slots. At the end of a phase, devices then update
their PMF 0i(M k ). Algorithm 1 shows the steps for device i
over one learning phase given the frame size M k .

Initially, device i initializes its PMF 0i(M k ) to the uniform
distribution U . Hence, there is equal chance of selecting any
slot skm in frame k . At the beginning of each frame, device i
checks whether it has sufficient energy, i.e., Bki ≥ Emin. If it
does, it then selects an action or slot m ∈ M k according to
its PMF 0i(M k ). If a device has insufficient energy, then it
remains idle in the current frame. At the time of their selected
slot m, a device transmits; see line 4-6. If its transmission
is successful, device i will receive an Acknowledgement
(ACK). It then calculates its reward as per Equ. (8). Devices
receive a negative reward when it experiences a collision;
i.e., there is no ACK. At the end of learning phase ζ , device
i calculates the average reward R̄i(skm) for each slot, which is
then used to calculate the PMF 0i(M k+1) as per Equ. (9), see
line 13. Devices then select transmission slots according to
the updated PMF in the next learning phase.

Algorithm 1 Pseudocode for Device i

Input: M k

Output: 0i(M k+1)
1 0i(M k )← U(.)
2 for each frame k in ζ do
3 if Bki ≥ Emin then
4 Select a slot m ∈ M k according to 0i
5 WaitSlot(m)
6 Transmit()
7 Calculate Ri(skm) as per Equ.(8)
8 else
9 Remain idle

10 end
11 end
12 Calculate R̄i(skm)
13 Use R̄i(skm) to update PMF 0i(M k+1) as per Equ.(9)
14 return 0i(M k+1)

B. HAP LAYER
The HAP needs to learn the best transmission power for a
given frame size. In addition, it also needs to determine the
frame size that yields the highest throughput. We first show
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how the HAP uses the SMC approach in [32] to determine
the best transmission power for a given frame size. We note
that SMC is a reinforcement learning approach that allows an
agent or HAP to operate over a continuous action space; in our
case, the transmit power range of the HAP. After discussing
SMC, we present our method to adjust the frame size.

1) TRANSMISSION POWER CONTROL
For a given frame size M k , we employ the SMC approach
to learn the best transmission power that yields the highest
sum rate. This is an actor-critic approach where an actor has
a policy for selecting an action. This policy is then shaped
by the critic, which provides the value of each action. In our
case, the actor is the HAP where it needs to learn a policy that
allows it to select the best action or transmission power. Let
the policy of the actor or HAP be represented as a density
distribution π (M k ), which returns the probability of each
action a for a given frame size M k . Initially, π (M k ) is set to
the uniform distribution. This means the actor is equal likely
to choose any actions. In particular, it will draw S samples
from the distribution π (M k ). Mathematically, we have

Â = {a1, a2, . . . , aS}, ai ∼ π (M k ) (10)

Each sampled action ai ∈ Â has an importance weight
wi ∈ W . Mathematically, these S samples approximate the
distribution π (M k ) as follows,

π (M k ) '
S∑
i=1

wi · δ(a− ai) (11)

where δ is the Dirac delta measure. Initially, all samples have
equal weight; i.e., wi = 1

S , where i = 1, 2, . . . , S.
The next task is to determine the weight wi of samples so

that π (M k ) better approximates the actual density function
containing the most likely transmission power that yields the
highest reward. To do this, the actor collects a rewardR(ai) for
each action and relates that to the weight of each action. This
is achieved by applying the Boltzmann function as follows,

wi =
e
R(ai)
τ∑S

j=1 e
R(aj)
τ

(12)

where τ is the temperature that influences the HAP’s explo-
ration degree. The actor then draws S new samples from
the updated density function π (M k ). Over time, the density
π (M k ) converges onto actions that yield the highest reward.
As noted in [32], some actions may have a very low

weight/reward/throughput. Consequently, it is a waste of time
to use such actions. This problem is called weight degener-
acy. To determine whether weight degeneracy has occurred,
the HAP calculates the effective action size N̂eff ,

N̂eff =
1∑

wi∈W w2
i

(13)

A low N̂eff value indicates high degeneracy. When this
happens, the actor or HAP resamples actions as per Equ. (11)

Algorithm 2 Pseudocode for Determining the
Transmission Power Policy of the HAP

Input: M k

Output: π (M k )
1 Initialize π (M k )← U(.)
2 Â = {a1, a2, . . . , aS}, ai ∼ π (M k )
3 for each learning phase κ ∈ K do
4 for each transmission power Pki ∈ Â do
5 while devices have not converged do
6 InformDevices(.)
7 R(Pki ) = GetReward(Pki )
8 if devices converge then
9 Use the next transmission power Pki+1

10 end
11 end
12 end
13 Use R(Pki ) to calculate the density function π (M k )

as per Equ. (12)

14 if N̂effS ≤ λ then
15 Â = Resample(π (M k ))
16 Reset probability of samples in Â to 1

S
17 end
18 for all actions a ∈ Â do
19 Construct the Uniform kernel Ki(a) as per

Equ. (14)
20 Uniformly sample an action ai from Ki(a)
21 Â ∪ ai
22 end
23 end
24 return π (M k )

whenever the ratio between N̂eff and the number of actions
S falls below a given threshold λ. This means actions with
a high weight will be replicated many times, meaning the S
samples will concentrate around high reward actions.

Another problem to address is sample impoverishment.
This problem occurs when many of the S actions are the
same, meaning there is insufficient diversity in the samples
or actions. In the worst case, all S samples are for the same
action. Apart from that, the action space is continuous, mean-
ing the S discrete samples may not contain the optimal action.
To resolve these problems, we employ a Uniform kernel
around each resampled action. Formally, we have

Ki(Â) = U [
(ai − ai−1)

2
;
(ai+1 − ai)

2
]. (14)

For samples at the boundary, i.e., a1 and aS , the corre-
sponding kernel is set to K1(a) = U [(a2 − a1);

(a2−a1)
2 ] and

KS (a) = U [ (aS−aS−1)2 ; (aS − aS−1)], respectively.
We are now ready to present how the HAP learns the best

transmission power or policy π (M k ). Algorithm 2 illustrates
the steps carried out by the HAP.
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Define κ and K as a learning phase of the HAP and the
total number of episodes, respectively. For each learning
phase κ , the HAP collects a reward of all S samples, which
is used to update the density function π (M k ). The HAP
then samples a new set of actions used in the next learning
phase κ + 1.

The density function is initialized to the uniform distri-
bution, see line 1. The HAP first draws S samples from
[0,Pmax] according to the density π (M k ). We denote each
transmission power as Pki , where i ∈ 1, 2, . . . , S. For each
learning phase κ , the HAP uses each of the S transmission
power in turns. The HAP first informs devices to calculate
their PMF. It then obtains a reward R(Pki ) for transmission
power Pki by calling the function GetReward(). The reward

R(Pki ) is defined as
∑Mk

m=1 R
+(skm), where R(s

k
m) is calculated

as per Equ. (2). Specifically, a transmission power Pki is used
for multiple frames until the PMF of devices have converged.
The HAP then switches to the next transmission power Pki+1,
see line 4 - 12. After obtaining the reward of all S transmission
powers, the HAP updates the density function π (M k ) as
per Equ. (12), see line 13. After that, the HAP measures
the effective action size N̂eff as per Equ. (13), see line 14.

If N̂eff
S ≤ λ, the HAP resamples actions as per Equ. (11)

based on the updated density function π (M k ). Then it sets
the weight wi of each resampled action to 1

S , see line 15 - 16.
Next, the HAP constructs an Uniform kernel Ki(a) for each
sample of ai as per Equ. (14), and uniformly selects an action
from each kernel and returns the action in the action set Â,
see line 19 - 21. The HAP then uses a new set of actions for
the next learning phase.

2) FRAME SIZE ADJUSTMENT
As mentioned, the HAP also needs to determine the best
frame size that yields the highest throughput. Specifically,
the HAP wishes to select a frame size M k or action F ∈
{1, . . . , |N |} that yields the maximum throughput. Let R(M k )
denote the weighted reward obtained for frame size M k ,
which is calculated as follows,

R(M k ) =
Mk∑
i=1

wiR(Pki ) (15)

Let the PMF over frame size M k be defined as φ(M k ) :
N+ → [0, 1]. We also use the Softmax function to calculate
the probability P(M k ) of frame size M k . Formally, we have

P(M k ) =
eR(M

k )/τ∑
j∈F eR(j)/τ

(16)

where τ is the temperature that characterizes the frame size,
which degrades over time.

We now describe how the HAP selects the optimal frame
size, see Algorithm 3. Define a learning phase ξ as consisting
ofF frames. In each phase ξ , theHAP accumulates the reward
of the selected frame size. At the end of each phase, the HAP
updates the PMF φ(M k ). Initially, the PMF φ(M k ) is set

to the uniform distribution, see line 1. For each frame k in
the learning phase ξ , the HAP first selects a frame size M k

according to the PMF φ(M k ). It then calculates the reward
R(M k ) using R(Pki ) as per Equ. (15), see line 4. At the end
of learning phase ξ , the HAP calculates the average reward
R̄(M k ) of each frame size M k . It then updates the PMF
φ(M k ), see line 6 - 8. The HAP then selects a new frame
sizeM k+1 based on the updated PMF φ(M k+1), which is then
used by devices to select slots.

Algorithm 3 Pseudocode Used by the HAP to Adjust the
Frame Size
Input: R(Pki )
Output: M k+1

1 Initialize φ(M k )← U()
2 for each frame k ∈ ξ do
3 Select a frame size M k as per φ(M k )
4 Use R(Pki ) to calculate the reward R(M k ) as per

Equ. (15)
5 end
6 Use R(M k ) to calculate the average reward R̄(M k )
7 Use R̄(M k ) to calculate PMF φ(M k+1)
8 Select a new frame size M k+1

∈ F according to
φ(M k+1)

9 return M k+1

VI. EVALUATION
To evaluate our two layer approach, we conduct all
experiments in Matlab running on a computer with an Intel
Core i7 CPU@3.4GHz with 8 GB RAM. Devices are ran-
domly deployed at a distance between 1 and 5 meter from
the HAP, which ensures they meet the required receiver
sensitivity to harvest RF energy. Specifically, devices are
equipped with a P2110B power harvester [8] receiver that
has a sensitivity of Prmin = −12 dBm. The HAP parame-
ters correspond to the Powercaster Transmitter TX91501 [8],
which transmits with maximum power output Pmax = 3W
EIRP in the f = 915 MHz band. The HAP and devices are
equipped with an antenna that has a gain of Gt = 1 and
Gr = 6.1 dBi, respectively. Except for Section VI-E, all our
experiments involve ten devices; this ensuresmultiple devices
are contending for the channel. Further, devices are equipped
with a battery, which is initially empty and has a capacity of 5
mJ. The linear energy conversion efficiency is set to 50%.
The quadratic model uses α1 = −0.0189, α2 = 0.6942,
α3 = −0.0472. The practical model uses the parameters
from the datasheet of the P2110B RF receiver [8]. We set
the path loss exponent to 2.5. The channel noise power is
set to 1 × 10−12 W. Devices transmit 1500 Bytes packets.
The duration of the charging slot τC and data slot τD is set to
0.5s and 0.1s, respectively. The minimum energy consumed
for a packet Emin is 0.3 mJ. The three temperature τ values
are decrease from 2 to 0.8 as the learning progresses. Table 2
summarizes all parameter settings.
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TABLE 2. A summary of parameter settings.

We compare our solution against four other possible
approaches. They include,
• Offline. All nodes have non-causal information of the
energy harvesting processes. This means the HAP
knows the battery level of devices. Using this informa-
tion, the HAP sets the frame size to be equal to the
number of devices with sufficient energy in order to
eliminate idle slots. A device also knows the slot chosen
by other transmitting devices to avoid collision.

• TDMA. Each device is assigned with a unique slot.
The frame size is always set to the number of devices.
In TDMA, a data slot has a successful transmission if
the assigned device has sufficient energy; otherwise,
the data slot is idle.

• Aloha. Devices attempt transmission in each slot with
equal probability.

• ε-greedy [7]: Each agent selects the action with the
highest rewardwith probability 1−ε; otherwise it selects
other actions uniformly.

We record two metrics: (i) Throughput, which is calculated
as per Equ. (3), and (ii) Slot State, where we record the aver-
age number of slots that have collisions, are idle, and contain
one transmitting device; i.e., a success. We also compare the
performance of three energy conversion efficiency models;
see Section III. We additionally collect the average harvested
energy Eave in order to compare the performance of the three
energy conversion models. For all the aforementioned sce-
narios, we study the following parameters: minimum energy
consumed to transmit a packet Emin, temperature of the Soft-
max function τ , network density |N | and deviation µ of the
Gaussian distribution, which represents the severity of the
channel. We also study the case where the HAP transmits
energy at a fixed power.

A. MINIMUM ENERGY
In this experiment, we study the minimum energy Emin
required for packet transmissions. We increase the value of
Emin from 0.2 to 0.65 mJ. In Figure 5a, our two-layer learn-
ing approach uses the linear energy harvesting model. The
quadratic and P2110B model are also illustrated in Figure 5b.
We see that our two-layer learning approach achieves higher
throughput than ε-greedy, TDMA and Aloha. Specifically,
TDMA only achieve 75% of the throughput attained by our
approach whenEmin = 0.65mJ. This is because our approach

selects smaller frame sizes than TDMA, which results in
fewer idle slots. For example, Figure 5c shows the fraction
of slots that have collisions, are idle and one transmission or
success. We see that our proposed approach uses an aver-
age of 4.3 slots when Emin is set to 0.65 mJ, while the
frame size of TDMA is fixed to ten. As a result, TDMA
has an average of 6.8 idle slots, which is more than three
times higher than our proposed approach. This explains why
TDMA has a lower throughput as compared to our two-layer
approach. In addition, the throughput of our approach is two
times higher than that of Aloha when Emin = 0.2 mJ. This
is because when devices use our approach, they experience
low collisions and high number of successes; see Figure 5c.
Also, as compared to the ε-greedy approach, our approach
achieves higher throughput because of lower frame lengths
and idle slots. Lastly, the Offline policy shows the maxi-
mum throughput achieved by our system setup. Referring to
Figure 5a, the Offline achieves a throughput of 65 Kbps at
Emin = 0.2 mJ, which is 30% higher than the proposed
approach. This is because all transmission attempts are suc-
cessful. For example, see Figure 5c, Offline obtains 7.1 suc-
cesses per frame without collisions or idle slots when Emin
is 0.2 mJ. However, our proposed approach only achieves
5.3 successes, which results in a lower throughput; this is
expected as the Offline approach is aware of the exact number
of contending devices.

We can see that the throughput reduces as the minimum
required energy Emin increases. For example, in Figure 5a,
the throughput of our two-layer learning approach decreases
by 32% from 50 to 34 Kbps. TDMA decreases from 49 to
26 Kbps. This is because there are fewer devices with suf-
ficient energy that can attempt a transmission. For example,
in Figure 5c, we see that for TDMA, its average number of
successes decreases from 5.4 to 1.6 per frame when Emin
increases from 0.2 to 0.65mJ.

Figure 5a also illustrates the throughput attained for
the three energy conversion models. We observe that the
quadratic model achieves the highest performance followed
by the P2110B receiver and linear model. This is because
the quadratic model allows devices to harvest the highest
amount of energy, see Figure 5b. For example, when devices
use 0.2 mJ to send a packet, the harvested energy is 0.398,
0.392 and 0.344 mJ per device when they use the quadratic,
P2110B receiver and linear model, respectively. On the other
hand, the quadratic model achieves the highest number of
successes. For example, from Figure 5c, we see that the
quadratic model achieves three successes per frame at Emin =
0.65 mJ. However, for the P2110B receiver and linear model,
there are only 2.6 and 2.5 successes, respectively. Lastly,
from Figure 5a, we observe that the throughput reduces with
increasing Emin value for all three models. We notice that
the average frame size also reduces when increasing the
value of Emin for all three models, see Figure 5c. This is
because our approach reduces the frame size when the trans-
mission attempts decrease in order to maximize throughput
by reducing the number of idle slots.
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FIGURE 5. Comparison of linear, quadratic model and P2110B receiver.

B. TEMPERATURE
In this experiment, we fix the minimum energy Emin to
0.3 mJ. We vary the temperature τ of Equ. (9), Equ. (12) and
Equ. (16) from 0.5 to 5. Figure 6a and Figure 6c show the
effect of various τ values on the throughput and the average
number of slots for each each state. Referring to Figure 6a,
the throughput of the two-layer learning decreases from 44 to
25 Kbps with increasing τ values. This is because lower τ
values result in lower exploration. That is, the probability
of the action with the highest reward is much higher than
other actions when we set τ to a low value. In this case,
devices/HAP will select this action frequently over other
actions, which results in a high throughput. For example,
Figure 7a shows the PMF of frame sizes for τ = 0.5 and 5.
We see that a frame size of seven and eight are likely to be
used with a frequency of 95% and 5%, respectively. Other
frame sizes are not selected because they have a low reward.

By contrast, when we use a high τ value, i.e., five, frame
sizes or actions with a low reward obtain a higher probability
as compared to when τ = 0.5. For example, referring to
Figure 7a, a frame size of nine slots has probability 0.19 and
zero when we use τ = 0.5 and 5, respectively. Referring to
Figure 6a, we also notice that the throughput of our proposed
approach is equal to Aloha when the temperature τ is higher
than 3.5. This means devices could not find a specific slot
to transmit. Referring to Figure 7b and 7c, device 1 selects
slot 2 with probability one when τ = 0.5, while it selects
slot 5 and 7 with a probability 0.1 and 0.3, respectively when
τ = 5. All other slots are chosen with a probability of 0.6.
This results in higher collisions. From Figure 6c, we see that
the average number of collision slot per frame of our proposed
approach is 0.2 and 0.9when τ is set to 0.5 and 5, respectively.
Additionally, our proposed approach and Aloha in Figure 6c
have the same performance when the temperature τ is higher
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FIGURE 6. Comparison of our two-layer approach versus offline, TDMA, Aloha and ε-greedy, quadratic model and P2110B receiver.

FIGURE 7. Comparison of PMF with high and low temperature τ .

than 3.5, where they have one collision slot and 3.2 idle slot
on average when τ is set to 3.5. Thus, the device layer cannot
converge if τ is higher or equal to 3.5. On the other hand,
the parameter τ has no impact on the Offline and ε-greedy.

Figure 6a compares the throughput of three energy conver-
sion models. We observe that the quadratic model obtains the
highest throughput when τ is less than 3.5. This is because
when devices use the quadratic model, they harvest more
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FIGURE 8. Comparison of our two-layer approach with offline, TDMA, Aloha and ε-greedy, quadratic model and P2110B receiver.

energy as compared to when they use the linear model and
P2110B, see Figure 6b. However, when the temperature τ is
higher than 3.5, all three models achieve the same throughput
at 24 Kbps. This is because devices experience more colli-
sions and fewer successes. For example, when devices use
P2110B, they experience on average 0.2 and 0.8 collisions per
frame, 4.6 and 2.2 number of successes per frame when τ is
set to 3 and 3.5 in Figure 6c. Referring to Figure 6b, the aver-
age harvested energy decreases when τ increases from 2.5 to
3.5. This means the HAP fails to learn the best transmission
power under these τ values. The decrease in harvested energy
means devices have a lower battery level, which reduce their
transmission attempts. Therefore, throughput decreases from
44 to 24Kbpswhen devices use P2110B; see Figure 6a. Addi-
tionally, referring to Figure 6a, we see that the throughput of
both TDMA and Aloha also decreases when τ increases from

2.5 to 3.5. Recall that devices in TDMAandAloha harvest the
same amount energy with our proposed approach. Thus, this
also proves that the transmission power of the HAP does not
converge when τ is higher than 2.5. To conclude, increasing
the value of τ result in a longer frame and low throughput. The
transmission power fails to converge when τ value is higher
than 2.5. The device layer fails to converge when the value of
τ is higher than 3.5.

C. FIXED TRANSMISSION POWER
In this experiment, the HAP has a fixed transmission power
that ranges from 0.3 to 3 W. The HAP only learns the best
frame size. Figure 8a shows that the throughput increases
with higher transmission power. For example, the throughput
of our proposed approach increases from 12 to 43 Kbps when
devices use the linear conversion model. The reason is that
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FIGURE 9. Comparison of our two-layer approach with offline, TDMA, Aloha and ε-greedy, quadratic model and P2110B receiver.

devices receive more energy when the HAP uses a high trans-
mission power, which results in more transmission attempts
and a higher throughput. For example, Figure 8b shows that
devices receive 0.04 and 0.35 mJ when the transmission
power is set to 0.3 and 3 W, respectively. Additionally, refer-
ring to Figure 8c, the HAP receives one and 4.3 packets on
average when its transmission power is 0.3 and 3 W, respec-
tively. We also notice that the two-layer learning approach
outperforms TDMA for all transmission powers. For exam-
ple, the throughput of the two-layer learning approach is
9 Kbps higher than TDMA when transmission power is set
to 3 W, see Figure 8a. The reason is that the HAP employs a
shorter frame size than TDMA in order to reduce the number
of idle slots. Therefore, the slots in TDMA tend to be idle,
i.e., more than four times than our proposed approach when
the transmission power is 0.3 W, see Figure 8c. On the other
hand, our proposed approach only achieves 4 Kbps higher

throughput than TDMAwhen the HAP uses 0.3W to transmit
as there are fewer transmission attempts. Aloha achieved 85%
and 62% of the throughput attained by our approach when the
HAP uses a transmission power of 0.3 and 3 W respectively,
see Figure 8a. This is because when devices use the Aloha
protocol, they experience more collisions with the increase of
transmission power. The ε-greedy learning approach achieves
the same throughput with our proposed approach when the
HAP uses 0.3 W to send energy, i.e., 13 Kbps. However,
the performance of Aloha degrades to 93% of our pro-
posed approach when the HAP increases its power to 3 W.
This is because there are more devices attempting transmis-
sions when the transmission power is high. The high traffic
load means more collisions and low reward when the HAP
employs a short frame size. Therefore, the HAP selects a
larger frame size than our proposed approach. Additionally,
a large number of slots are idle if the frame size is large.
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FIGURE 10. Comparison of channel gain values.

For example, referring to Figure 8c, the average frame
size of ε-greedy is 0.9 larger than our proposed approach,
which results in more than 0.5 idle slots than our proposed
approach. This means the ε-greedy obtains better perfor-
mance only at low traffic load. Referring to Figure 8b,
the average harvested energy of each device grows with
increasing transmission power for all three conversion mod-
els. We see that the devices that use the linear model har-
vest more energy if the HAP uses a low power to send
energy, i.e., 0.01 mJ higher than quadratic model and P2110B
receiver when transmission power is 0.3 W. The reason is
that the conversion efficiency of both quadratic model and
P2110B receiver is lower than the linear model if the input
power is low. However, when the HAP increases its power
higher than 0.6 W, the harvested energy of quadratic model
and P2110B is higher than linear model. The reason is that
the conversion efficiency of the former two models exceeds
the linear model.

D. CHANNEL CONDITION
In this experiment, we vary the deviation µ of the Gaussian
distribution from 0.4 to 4, with mean of zero. The goal is
to study the performance of our system with mild to severe
channel conditions. Figure 9a shows that the throughput
grows with increasing µ values. This is because there are
more success slots. For example, see the performance of
our proposed approach in Figure 9c, the average number of
success slots increases from 4.3 to 5.3 per frame when µ
changes from 0.4 to 4. We plot the frequency distribution
of channel gains when µ is set to 0.4 and 4 in Figure 10.
We see that when usingµ = 4, the frequency of large channel
gains, i.e., greater than 0.002, is much higher than when µ is
equal to 0.4. A large channel gain equates to a high amount
of harvested energy. This explains why the throughput grows
with increasing energy conversion efficiency. In all experi-
ments, our proposed approach achieves a higher throughput
than TDMA and Aloha regardless the deviation.

From Figure 9b, we see that the harvested energy increases
for all three energy conversion models. For example, when
deviation is four, devices using the quadratic model harvest
31% higher energy when the µ is 0.4. We also notice that
the harvested energy of the quadratic model is lower than
P2110B and the linear model when µ is higher than 3.2.

Recall that the conversion efficiency decreases when the input
power is higher than 1.5 mW, see Figure 3b in Section III.
This means a low energy conversion rate when the channel
gain is high. Referring to Figure 10, when µ is set to four,
the maximum channel gain is 0.018, which is 6.8 times higher
than the largest channel gain generated by the Gaussian distri-
bution with a deviation of 0.4. In this case, devices using the
quadratic model harvest less energy. However, although the
quadratic model achieves lower harvested energy under large
µ values, it obtains a higher throughput than the other two
models. We plot the average battery level in order to explain
this phenomenon. From Figure 9b, we see that the quadratic
model achieves the highest average battery level. Recall that
the battery has a capacity of 5 mJ. Therefore, the harvested
energy within a frame is limited by the battery capacity. This
explains why devices using the quadratic model achieves the
highest throughput even when they harvested lower energy
on average than the linear and P2110B models.

E. NETWORK DENSITY
In this experiment, we increase the number of devices,
i.e., |N |, from ten to 50 with a step size of ten. Referring to
Figure 11a, as we have more devices, throughput increases.
In particular, when |N | is ten, the throughput of our two-layer
learning approach and TDMA is 42 and 39 Kbps, respec-
tively. As |N | increases to 50, our two-layer learning approach
and TDMA improved by as much as 24 and 14 Kbps, respec-
tively. This is because there are more transmission attempts.
Referring to Figure 11d, the average number of success slots
of our proposed approach increases by 15 per frame when |N |
rises from ten to 50. However, the average number of collision
slots only increased by 2.4 per frame. This means there are
more slots with a successful transmission as compared to
those with collision. The results thus confirm devices are able
to find the best slot for each frame size. This also explains
why the throughput increases with more devices.

Figure 11b and 11c show the evolution of frame size and
transmission power with iteration ξ , respectively. The con-
verged frame size is correspondingly higher with increasing
|N | because more slots are required to ensure these devices
experience minimal collision or transmit successfully. Refer-
ring to Figure 11c, the HAP uses a low power before 150 iter-
ations when |N | is 50. After that, the HAP uses the maxi-
mum transmit power. This is because collisions occur before
devices are able to find the best slot. The HAP thus uses a
lower power to reduce collisions or number of contending
devices. After devices converge to their respective best slot,
meaning devices will experience minimal collision, the HAP
supplies more energy in order to maximize throughput. We
also notice that with increasing |N |, the HAP requires a higher
number of iterations before converging on the best frame
size and transmission power. For example, a network with
ten devices requires 125 iterations to converge. When |N |
increases to 50, the convergence time increased by five times.
This is because the number of actions, i.e., devices and frame
size, grows with increasing network density.
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FIGURE 11. Comparison of our two-layer approach with offline, TDMA, Aloha and ε-greedy, quadratic model and P2110B receiver.

VII. CONCLUSION
We have considered the channel access problem in
RF-charging networks where a HAP charges a number of
devices. This problem is significant as a HAP needs to deter-
mine the transmission power and frame size that yields the
maximum throughput. In addition, devices need to determine
the opportune time slot to transmit. Our novel two-layer
learning approach allows the HAP to learn the best trans-
mission power and frame size without any channel or energy
level information. Devices are also able to independently
select a transmission slot that yields the highest throughput.
Simulation results show that our proposed approach is able
to achieve 7% higher throughput than TDMA. Our two-
layer learning approach also outperforms TDMA under high
traffic load, severe channel state and high network density.
An immediate future work is to consider age of informa-
tion. Another interesting research direction is to incorporate
full-duplex capability at the HAP.
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