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ABSTRACT This paper focuses on the stabilization problem for rectangular descriptor fractional order
systems (FOSs) with 0 < α ≤ 1. Firstly, a fractional order dynamic compensator is constructed to make the
closed-loop systems square descriptor FOSs. Secondly, two types of input signals of the compensator are
considered, which are state input signal case and output input signal case. Thirdly, a necessary and sufficient
condition is proposed for the state input signal case, while a new method of controller design is given for the
output input signal case in which the output matrix of the system need not to be full row rank, which reduces
the conservativeness of existing methods. Finally, an efficient iterative algorithm for solving the resultant
matrix inequalities is proposed, and a numerical example is offered to verify the advantage and feasibility
of the results.

INDEX TERMS Rectangular descriptor FOS, stabilization, fractional order dynamic compensator, iterative
algorithm.

I. INTRODUCTION
Fractional calculus, originated in the 17th century, is a classi-
cal mathematical concept and can be regarded as a generaliza-
tion of ordinary calculus [1]. Since Podlubny et al. introduced
fractional calculus theory into control theory in the 1990s,
the research on fractional order control systems has been
greatly developed. Due to fractional order model has been
widely used in control systems, signal processing, biomedical
systems and other fields, more and more researchers have
been engaged in this field [2]. The basic stability and stabi-
lization problems for fractional order control systems have
been studied in [3]–[5].

Descriptor systems originated in 1960’s are more compli-
cated than normal systems. Considering the ability to describe
impulsive behavior and non-dynamic constraints is more
accurately, descriptor systems have been attracted a lot of
attentions. With the efforts of scholars, many research results
about descriptor systems have been achieved. The admissibil-
ity of descriptor FOSs with fractional order 0 < α ≤ 1 and
1 < α < 2 has been studied in [6]–[10]. Necessary and suffi-
cient conditions of observer based stabilization for descriptor
FOSs were studied in [11]. About stabilization problem of
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descriptor FOSs as well as uncertain case, singular value
decomposition method is used in [12] and in [14], which out-
put matrix of the systems need to be full row rank. By normal-
izing the systems before controller designs method is studied
in [13]–[15]. Efficient iterative algorithms are built in [16].

However, all of those achievements considered the square
descriptor FOSs. Rectangular descriptor systems, where the
number of equations and state variables may not be equal,
have broader descriptions and more complex behaviors than
square descriptor systems [17]. So far, the results for rectan-
gular descriptor systems are extremely abundant, like gener-
alized regularity and regularizability, impulse controllability
and observability, estimation and observer design [18]–[23].
What’s more, a new feedback structure to stabilize rectangu-
lar descriptor systems by dynamic output feedback (dynamic
compensator) plus state feedback is proposed in [26]. But
all of those work are reported in case of integer order. Until
2019, Zhao et al. for the first time studied the stabiliza-
tion of rectangular descriptor FOSs by designing fractional
order dynamic compensator [13]. Unfortunately, the con-
troller design requires additional constraints, that increases
the conservatism.

In view of the above achievements, we focus on the sta-
bilization problem for rectangular descriptor FOSs with 0 <
α ≤ 1. The main contributions are highlighted as follows:
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1. We design a fractional order dynamic compensator to
make the closed-loop system a square descriptor FOS, and
study two types of input signals of the compensator, which
are state input signal case and output input signal case.

2. We propose a necessary and sufficient condition to solve
the state input signal case for the first time.

3.We give a newmethod of controller design for the output
input signal case, and provide an LMI based algorithm to
solve the corresponding conditions.

The paper is organized as follows: In Section II, we intro-
duce some definitions, useful lemmas and the problem for-
mulation. Section III, presents the main results. Section IV
gives numerical example to illustrate the effectiveness of our
results. Section V is the conclusion.
Notation: In this paper, X < 0 (respectively, X > 0)

denotes a symmetric negative (respectively, positive) definite
matrix. M−1 and MT denote the inverse and the transpose
of matrix M , respectively. I denotes identity matrix with
compatible dimension. Symbol ‘‘ ∗ " denotes a symmetric
term in a matrix. Rn denotes the n dimensional space and
Rm×n denotes the m × n dimensional matrix space. Define
sym (M) = M +MT .

II. PROBLEM FORMULATION
In this section, we introduce some definitions, useful lemmas
and the problem formulation.
Definition 2.1 [24]: The Caputo calculus operator is

defined as:

Dαf (t) =
dαf (t)
dtα

=
1

0(n− α)

∫ t

0

f (n)(τ )dτ

(t − τ )α+1−n
,

where Dαf (t) denotes the α order (α > 0) derivative of
function f (t), n is a positive integer satisfying n−1 < α ≤ n.
0(·) is the Gamma function which is defined as:

0(α) =
∫
∞

0
tα−1e−tdt.

Lemma 2.1 [7]: Descriptor FOS EDαx(t) = Ax(t)
(E ∈ Rn×n, rank(E) = r0 ≤ n) with 0 < α ≤ 1 is admissi-
ble, if and only if there exist matrices X1, X2 ∈ Rr0×r0 ,
X3 ∈ R(n−r0)×r0 and X4 ∈ R(n−r0)×(n−r0) such that[

X1 X2
−X2 X1

]
> 0,

sym{MAN (aX − bY )} < 0, (1)

where a = sin(π2 α), b = cos(π2 α), X =
[
X1 0
X3 X4

]
,

Y =
[
X2 0
0 0

]
and M , N ∈ Rn×n are non-singular matrices

satisfying

MEN =
[
Im 0
0 0

]
, MAN =

[
A1 A2
A3 A4

]
. (2)

Remark 2.1: Note that the eigenvalues of matrixMAN and
(MAN )T are identical. Consequently, the following conclu-
sion can be derived easily:

The descriptor FOS which described in Lemma 2.1 is
admissible, if and only if there exists a matrix P0 ∈ Pn×nα

such that

sym{PT0MAN } < 0, (3)

where Pn×nα = {aX − bY }, a, b,X ,Y ,M and N are defined
in lemma 2.1.
Lemma 2.2 [25]: Let 9, W , R be given matrices with

appropriate dimensions. Then{
9 < 0
9 + sym

{
WRT

}
< 0

(4)

hold, if and only if there exists an appropriately dimensional
matrix G such that[

9 W + RGT

∗ −sym {G}

]
< 0. (5)

Consider the following rectangular descriptor FOS:{
EDαx(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)

, 0 < α ≤ 1, (6)

where x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny denote,
respectively, the state vector, input and output vector of the
system. E ∈ Rm×n is the system descriptor matrix satisfying
rank(E) = r ≤ min {m, n}. A ∈ Rm×n, B ∈ Rm×nu and
C ∈ Rny×n are known real constant matrices.

In order to realize our purpose, we design the following
fractional order compensator:{

EkDαxk (t) = Akxk (t)+ Bkv(t)
u(t) = Ckxk (t)+ Dkv(t)

, 0 < α ≤ 1, (7)

where xk (t) ∈ Rnk is state vector of the compensator,
Ak , Bk , Ck and Dk are the compensator gain matrices to be
determined, Ek ∈ Rmk×nk is known and rank(Ek ) = rk ≤
min {mk , nk}, v(t) ∈ Rq is the input signal in compensator.
Combing (2) with (1), the closed-loop descriptor FOS is

obtained as:[
E 0
0 Ek

]
Dα

(
x(t)
xk (t)

)
=

[
A BCk
0 Ak

](
x(t)
xk (t)

)
+

[
BDk
Bk

]
v(t). (8)

To ensure that system (8) is a square descriptor FOS, which

means matrix
[
E 0
0 Ek

]
is square, the dimension of matrices

E and Ek must meet

n̂ = n+ nk = m+ mk . (9)

With the help of the compensator (7), rectangular descrip-
tor FOS (6) is converted into a square descriptor FOS (8).
Next, we will consider the stabilization of square descriptor
FOS (8) according to the input signal in compensator.
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III. MAIN RESULTS
In this section, two types of input signals in compensator (7)
are proposed.
Case 1: Input signal v(t) = x(t).
In this case, it means that the system state x(t) is available

for use in the compensator [26]. Then descriptor FOS (8) is
equivalent to:

ÊDαX (t) =
(
Â+ B̂K

)
X (t), (10)

where

Ê =
[
E 0
0 Ek

]
, Â =

[
A 0
0 0

]
, B̂ =

[
B 0
0 I

]
,

K =
[
Dk Ck
Bk Ak

]
, X (t) =

(
x(t)
xk (t)

)
. (11)

Theorem 3.1: The closed-loop descriptor FOS (10) is
admissible, if and only if there exist matrices Z0 ∈ Pn̂×n̂α and
Q with appropriate dimension such that

sym{MÂNZ0 +MB̂Q} < 0, (12)

where matrices Â, B̂ are defined in (11), M and N satisfy

MÊN =
[
Ir+rk 0
0 0

]
, MÂN =

[
Â1 Â2
Â3 Â4

]
. (13)

In this case, the compensator parameter matrices are given by

K = QZ−10 N−1. (14)

Proof: The proof is similar to that of Theorem 3.2 in [7],
and thus it is omitted here.
Remark 3.1: Since rectangular descriptor FOS (6) does not

allow to consider the state feedback control directly, we con-
vert rectangular descriptor FOS (6) into square descriptor
FOS (8) under compensator (7) firstly, and then adopt state
vector of rectangular descriptor FOS (6) as the input signal of
compensator (7), so as to effectively solve the state feedback
control problem of rectangular descriptor FOS.
Case 2: Input signal v(t) = y(t).
In this case, the system output vector y(t) is used in the

compensator. Then descriptor FOS (8) is equivalent to:

ÊDαX (t) =
(
Â+ B̂KĈ

)
X (t), (15)

where Ĉ =
[
C 0
0 I

]
, and Ê , Â, B̂, K , X (t) are defined in (11).

Theorem 3.2: Suppose the system (10) is admissible. If there
exist matrices G, H with appropriate dimensions and P ∈
Pn̂×n̂α , such that [

�1 �2
∗ −sym{G}

]
< 0, (16)

then the closed-loop descriptor FOS (15) is admissible.
where

�1 = sym{PTMÂN + PTMB̂K1N },

�2 = PTMB̂+ NT ĈTHT
− NTKT

1 G
T ,

and K1 = QZ−10 N−1 is an intermediate matrix which is
derived from (14), matrices Q, Z0 satisfy (12), and M , N
satisfy (13).
In this case, the compensator parameter matrices are given by

K = G−1H . (17)

Proof: Suppose (16) and (17) hold. Substituting K1 into (16),
by Lemma 2.2 we have

�1 + sym
{
PTMB̂(NT ĈTHTG−T − NTK1

T )T
}
,

= sym
{
PTMÂN + PTMB̂K1N

}
+sym

{
PTMB̂(G−1HĈN − K1N )

}
,

= sym
{
PTMÂN + PTMB̂K1N − PTMB̂K1N

+ PTMB̂G−1HĈN
}
,

= sym
{
PTMÂN + PTMB̂KĈN

}
,

= sym
{
PTM (Â+ B̂KĈ)N

}
,

< 0. (18)

By Remark 2.1 and (18), it follows that the closed-loop
descriptor FOS (15) is admissible. This completes the proof
of the theorem.
It is worth noting that in Theorem 3.2, we need to get

the intermediate matrix K1 from Theorem 3.1 firstly, then
substitute it into (16). However, Theorem 3.1 can only give
one fixed K1 from many solutions, which may lead to (16)
being infeasible. Next we will propose a method to solve this
problem.
Theorem 3.3: Suppose there exist matrices K (i), 1K with

appropriate dimensions and Z ∈ Pn̂×n̂α , such that

3(i) 1= sym
{
MÂNZ +MB̂K (i)NZ

+ MB̂1K
}
< 0. (19)

If there exist matricesG, H with appropriate dimensions and
P ∈ Pn̂×n̂α , such that[

�1 �2
∗ −sym{G}

]
< 0, (20)

then the closed-loop descriptor FOS (15) is admissible.
where

�1 = sym{PTMÂN + PTMB̂K1N },

�2 = PTMB̂+ NT ĈTHT
− NTKT

1 G
T ,

K1 = K (i)+1KZ−1N−1,

matrices M and N satisfy (13).
In this case, the compensator parameter matrices are given

by

K = G−1H . (21)
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Proof: Suppose (19)-(21) hold, we can get matrices K (i),1K
and Z from (19). Defining K1 = K (i) + 1KZ−1N−1 and
substituting K1 into (20), by Lemma 2.2 we have

�1 + sym
{
PTMB̂(NT ĈTHTG−T − NTK1

T )T
}
,

= sym
{
PTMÂN + PTMB̂K1N

}
+ sym

{
PTMB̂(G−1HĈN − K1N )

}
,

= sym
{
PTMÂN + PTMB̂K1N − PTMB̂K1N

+ PTMB̂G−1HĈN
}
,

= sym
{
PTMÂN + PTMB̂KĈN

}
,

= sym
{
PTM (Â+ B̂KĈ)N

}
,

< 0. (22)

By Remark 2.1 and (22), it follows that the closed-loop
descriptor FOS (15) is admissible. This completes the proof
of the theorem.

Next, we will give an algorithm to solve the (19) and (20)
in Theorem 3.3.
Algorithm 3.1:
Step 1: Set i = 0. Let K (i) = 0.
Step 2: Solve the following optimization problem with

respect to matrices Z , 1K and λ.

minλ,

s.t. 3(i) < λ, (23)

where 3(i) is defined as in (19).
Step 3: Let K (i+ 1) = K (i)+1KZ−1N−1. If λ < 0, stop,

and K (i+ 1) is the gain matrix K1. Else, set i = i+ 1 and go
to Step2.
Step 4: Substituting K1 into (20). If inequality (20) is

feasible, then we can get the gain matrixK . Else, set i = i+ 1
and go to Step2.
Remark 3.2: When solving output feedback control prob-

lems, the controller design methods in [12], [13] requires
BTP = P̂BT or PC = CP̂ for some matrix P̂. Obviously,
such requirements are conservative. In contrast, the method
proposed in this paper does not require these constraints.
Remark 3.3: The methods in [13]–[15] normalize the

descriptor matrix firstly, then design controllers for the nor-
mal FOSs. Our method in Theorem 3.2 needs not normalize
the descriptor matrix. Moreover, Theorem 3.3 together with
Algorithm 3.1 effectively reduces the conservativeness of
Theorem 3.2.

IV. SIMULATION EXAMPLE
In this section, we use a numerical example to verify the
present methods.
Example 4.1. Consider rectangular descriptor FOS (6)

with parameters:

E =

 2 0 0 0
0 2 0 0
2 0 0 0

 , A =

 0 1 0 0
−1 0 1 0
0 0 −2 −2

 ,

FIGURE 1. State curves for system in Example 4.1.

B =

 0
0
1

 , C =
[
1 0 1 0
1 0 1 0

]
.

Let α = 0.75, Ek =
[
1
1

]
. This example is borrowed

from [13]. Since the output matrix C has not full row rank,
the method in [13] is not feasible. By using the function reff
in MATLAB, it is easy to get nonsingular matrices M and N
satisfying (13):

M =


0 0 0.5 0 0
0 0.5 0 0 0
0 0 0 0 1
1 0 −1 0 0
0 0 0 1 −1

 ,

N =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 .
We first consider Case 1. Set the initial values X0 =[
−1 3 0 0 0.5

]T
. By using LMI Toolbox in MATLAB to

solve Theorem 3.1, the feasible solutions can be found as

Z0 =


16.34 −13.52 −0.05 0 0
−13.52 16.28 0.01 0 0
−0.05 0.01 11.68 0 0
0.62 −24.61 0.20 −1.06 −1.51
3.94 12.87 0 −1.51 0.84

 ,

Q =

−2.31 −7.53 0.01 1.52 −0.49
−0.20 0.61 −6.08 0.39 −6.39
0.19 −0.13 −6.39 −0.39 0.31

 .
Then the compensator parameter matrices can be obtained as

K =

 0.02 0.04 −0.12 −0.90 0.04
0.07 1.56 1.06 0.04 0.22
−0.15 −0.73 −0.53 −0.34 −0.47

 .
With the matrix K , we can see from Fig.1 and Fig.2, state

curves for system and compensator tend to zero, respectively.
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FIGURE 2. State curve for compensator in Example 4.1.

FIGURE 3. State curves for system in Example 4.1.

We next consider Case 2. Set the initial values X0 =[
−1 3 0 0 0.5

]T
. By using LMI Toolbox in MATLAB to

solve Theorem 3.2, the feasible solutions can be found as

P =


0.15 0 −0.79 0 0
0 0.07 0.57 0 0
−0.79 0.59 21.28 0 0
0.14 −0.14 −1.33 −0.21 −0.27
−2.13 −2.37 1.28 −0.27 0.35

 ,

H =

 0.01 0.01 −0.46
−0.01 −0.01 −0.61
−0.03 −0.03 −10.85

 ,
G =

 0.09 0.06 1.04
0.06 0.19 1.41
1.04 1.41 28.03

 .
Then the compensator parameter matrices can be obtained as

K =

−1.81 −1.81 −13.65−0.35 −0.36 −2.85
−1.02 −1.02 −7.35

 .
With the matrix K , we can see from Fig.3 and Fig.4, state

curves for system and compensator tend to zero, respectively.

FIGURE 4. State curve for compensator in Example 4.1.

V. CONCLUSION
In this paper, the stabilization problem for rectangular
descriptor FOSs with 0 < α ≤ 1 is studied. A fractional order
dynamic compensator is constructed to make the closed-loop
system square descriptor FOSs. Two types of input signals of
the compensator are considered, i.e., case 1 is that the input
signal of compensator is the state vector of the rectangular
descriptor FOS, and case 2 is that the input signal of compen-
sator is the output vector of the rectangular descriptor FOS.
A necessary and sufficient condition is proposed to solve the
stabilization problem for Case 1. Consequently, a newmethod
of controller design for Case 2 is given. A numerical example
is provided to illustrate the effectiveness and advantage of
the proposed design schemes. The stabilization problem for
rectangular descriptor FOSs with 1 < α < 2 is the future
work.
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