
SPECIAL SECTION ON INTELLIGENT DATA SENSING, COLLECTION AND
DISSEMINATION IN MOBILE COMPUTING

Received October 20, 2019, accepted November 24, 2019, date of publication November 28, 2019,
date of current version December 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956632

Parameter Communication Consistency Model for
Large-Scale Security Monitoring Based
on Mobile Computing
RUI YANG 1,2, JILIN ZHANG 1,2,3, JIAN WAN 1,2,4, LI ZHOU 1,2, JING SHEN 1,2,
YUNCHEN ZHANG 1,2, ZHENGUO WEI 5, JUNCONG ZHANG 5, AND JUE WANG 6
1School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
2Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
3State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
4School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
5Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
6Zhejiang Dawning Information Technology Company, Ltd., Hangzhou 310051, China

Corresponding authors: Jilin Zhang (jilin.zhang@hdu.edu.cn) and Li Zhou (juliy26@hdu.edu.cn)

This work was supported in part by the National Key Technology Research and Development Program under Grant 2018YFB0204001,
in part by the National Natural Science Foundation of China under Grant 61672200 and Grant 61572163, in part by the Key Technology
Research and Development Program of the Zhejiang Province under Grant 2019C03135, in part by the Zhejiang Natural Science Funds
under Grant LY17F020029 and Grant LY16F020018, in part by the State Key Laboratory of Computer Architecture under Project
CARCH201712, and in part by the Hangzhou Dianzi University Postgraduate Research Innovation Fund Program under Grant
CXJJ2018052.

ABSTRACT With the application of mobile computing in the security field, security monitoring big data has
also begun to emerge, providing favorable support for smart city construction and city-scale and investment
expansion. Mobile computing takes full advantage of the computing power and communication capabilities
of various sensing devices and uses these devices to form a computing cluster. When using such clusters
for training of distributed machine learning models, the load imbalance and network transmission delay
result in low efficiency of model training. Therefore, this paper proposes a distributed machine learning
parameter communication consistency model based on the parameter server idea, which is called the
limited synchronous parallel model. The model is based on the fault-tolerant characteristics of the machine
learning algorithm, and it dynamically limits the size of the synchronization barrier of the parameter server,
reduces the synchronization communication overhead, and ensures the accuracy of the model training; thus,
the model realizes finite asynchronous calculation between the worker nodes and gives full play to the overall
performance of the cluster. The implementation of cluster dynamic load balancing experiments shows that
the model can fully utilize the cluster performance during the training of distributed machine learningmodels
to ensure the accuracy of the model and improve the training speed.

INDEX TERMS Mobile computing, security monitoring, distributed machine learning, limited synchronous
parallel model, parameter server.

I. INTRODUCTION
The smart city is an inevitable trend of urban modernization
and informatization development. The smart city plays a
positive role in supporting social economic development,
innovating economic development models, improving urban
functional quality, and ensuring and improving people’s

The associate editor coordinating the review of this manuscript and
approving it for publication was Ligang He.

livelihood. As an important basic resource of urban big data,
security monitoring provides a large amount of image infor-
mation. With the application of mobile computing, mobile
computing makes full use of the computing power and com-
munication capabilities of various sensing devices, greatly
increasing data diversity and computing flexibility. The mag-
nitude of data has shifted from terabytes to petabytes and
is now shifting towards ZB, and traditional machine learn-
ing methods are facing severe challenges with this massive

171884 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-6488-6985
https://orcid.org/0000-0002-0423-9356
https://orcid.org/0000-0002-7732-7525
https://orcid.org/0000-0002-8195-5401
https://orcid.org/0000-0002-4287-7789
https://orcid.org/0000-0003-4925-3415
https://orcid.org/0000-0002-1414-2515
https://orcid.org/0000-0002-7425-8712
https://orcid.org/0000-0002-2723-7169

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

amount of data. The distribution of traditional machine learn-
ing methods to adapt to the ever-increasing data scale has
become a research hotspot in both academia and industry.

This paper focuses on the iterative convergence algorithm.
This type of algorithm starts with the initial estimate and then
continuously explores the approximate solution such that the
problem is finally solved. The distributed implementation of
the iterative convergence algorithm usually depends on the
Bulk Synchronous Parallel model (BSP) [1]. In this model,
each compute process performs the same iteration on the
local model local replica generated by the previous itera-
tion. After each iteration, each compute process enters the
synchronization barrier for synchronization, which may sig-
nificantly reduce the performance of these algorithms. This
effect is observed because the time of each iteration is always
determined by the worst-performing compute process. This
problem is proportional to the degree of parallelism: with the
increase in the number of compute processes, the probability
that at least one’s performance will lag in any given iteration
also increases. In addition, potential causes of performance
lag (such as hardware and network changes) are often unpre-
dictable [2], [3].

Facing the performance lag problem of the bulk syn-
chronous parallel model, Dean et al. proposed a distributed
machine learning asynchronous iterative scheme [4] in which
each compute process performs a full asynchronous calcula-
tion and each compute process synchronizes with the param-
eter server immediately after completing the iteration, greatly
utilizing the performance of each computing node; however,
because the model and the updated parameters exhibit uncon-
trollable delays, there is no guarantee regarding the model
convergence speed. Ho et al. proposed a correspondingmodel
for this problem, Stale Synchronous Parallel (SSP) [5], which
takes into account the bulk synchronous and asynchronous
characteristics: allowing some compute processes to perform
a certain number of iterations that differs from other compute
processes and iterating using local model parameters before
global synchronization.

The two models described above have problems; thus,
in this paper, a parameter communication consistency model
based on a dynamic adaptive limited synchronization barrier
is studied, which is called the limited synchronous parallel
model (LSP). The model dynamically adjusts the size of the
synchronization barrier according to the performance differ-
ence of each compute process, which effectively reduces the
lag effect of slow compute processes on machine learning
model training and considerably improves the training speed.
The experiments of this paper show that, compared with
the SSP, model training under LSP shows higher training
accuracy; compared with BSP, the model training under LSP
shows faster training speed.

This article describes some of the components of parameter
communication in distributed machine learning in Section 2;
Section 3 describes in detail the distributed machine
learning parameter communication consistency model and
provides the corresponding theoretical proof and the

distributed machine learning framework for security moni-
toring based on the mainstream parameter communication
consistency model; Section 4 describes experimental analysis
on distributed machine learning using a limited synchronous
model to verify the corresponding theory and functions; and
Section 5 presents this study’s conclusions.

II. RELATED WORK
The distributed machine learning parameter communication
consistency model proposed in this paper is mainly related to
distributed machine learning systems, parameter servers and
parameter communication consistency models. Therefore,
this section is divided into the above three parts to introduce
related research work.

A. DISTRIBUTED MACHINE LEARNING SYSTEMS
Today, distributed systems arewidely used, greatly improving
the degree of machine learning distribution, and these sys-
tems have become a heavily researched topic in academic and
industrial research.

Jia et al. of Berkeley University implemented a deep learn-
ing framework, Caffe [6], which has two training modes
(CPU and GPU), for training specific neural networks. Chen
et al. of the University of Washington developed a multilin-
gual machine learning library, MXNet [7], which combines
symbolic expressions with tensor calculations to maximize
efficiency and flexibility. MXNet is lightweight and highly
scalable for fast model training. Xing et al. of Carnegie
Mellon University proposed the universal distributed system
Petuum [8], providing users with a unified platform that
can be used to build any large-scale machine learning or
deep learning applications. Petuum can be deployed on any
hardware, including workstations, data centers, and personal
hosts, and offers a variety of standardized machine learning
solutions for researchers and businesses. Coates et al. at Stan-
ford University designed and implemented a GPU-based
data-parallel and model-parallel framework COTS HPC [9],
which uses Infiniband connections between GPU clusters and
controls communication by MPI. Smith et al. proposed a
general framework CoCoA [10] for machine learning and sig-
nal processing that covers general Non-Strongly convex reg-
ularizers, including some L1 regularization problems, such
as sparse logistic regression, lasso regression, and elastic
network regularization. The application programming inter-
face MLI [11] proposed by Sparks et al. at the University
of California, Berkeley, can be used to build a variety of
common machine learning algorithms and then implement
them in a distributed fashion. Collobert et al. of the Idiap Insti-
tute developed a multifunction digital computing framework
and machine learning library Torch7 [12], which achieves
high performance through CUDA with efficient OpenMP /
SSE and low-level numerical routines. Huang et al. of the
Chinese University of Hong Kong developed FlexPS [13],
which supports changing parallelism at runtime, that is, map-
ping machine learning tasks to a series of stages through

VOLUME 7, 2019 171885

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

multi-stage abstraction and then setting the parallelism of
stages according to their workloads.

Google has developed the large-scale distributed system
DistBelief [4], which can scale to clusters with more than
10,000 CPU cores and can train neural networks with billions
of parameters. This result greatly accelerates the training of
neural networks for commercial voice recognition services.
Based on DistBelief, TensorFlow [14], a large-scale open-
source machine learning framework for second-generation
heterogeneous distributed systems, was implemented by
Google Research Institute. It transparently supports GPU
acceleration, off-core operation, and multi-threading and can
be extended across multiple nodes. It is one of the most
popular machine learning frameworks at present. Microsoft
has open-sourced the computational graph-based deep learn-
ing framework CNTK [15], and Microsoft created the Cor-
tana speech model based on it; CNTK also has many other
functions, especially serial-to-sequence modeling, which has
been widely used. Keras has broad adoption in the indus-
try and the research community, and Keras is a high-level
neural networks API, written in Python and capable of run-
ning on top of TensorFlow, CNTK, or Theano. Based on
Spark, Databricks developed a distributed machine learning
library, Mllib [16], which can simplify the development of
machine learning pipelines through Spark. Liu et al. proposed
the AFNDCAR scheme [17], which reduce the amount of
redundant data and transmission delay in the body sensor
networks (BSNs) by adjusting forwarder nodes and duty
cycle. Gao et al. [18]–[20] studied the quality of service
and quantitative verification in mobile device environments.
Yin et al. [21]–[23] specifically target QoS prediction meth-
ods for mobile terminals. Alibaba has proposed a general dis-
tributed machine learning system KunPeng [26]. At present,
KunPeng has been applied in many practical scenarios, such
as Taobao ‘‘Double 11 shopping carnival’’ and Ant Financial
Risk Assessment, and achieved good results. In addition,
Baidu has built a multi-machine GPU training platform, Pad-
dle [27], and Tencent has built a deep learning platform,
Angel [28].

However, most of the known distributed machine learn-
ing systems use compulsory global synchronization for each
iteration as a training method, which loses the advantage
of large-scale cluster performance. Several of them use a
fully asynchronous model to update parameters, which can-
not guarantee the convergence of the model. Aiming for
the algorithm characteristics of dense iterative convergence
distributed machine learning, the distributed machine learn-
ing system with loose consistency from the perspective
of machine learning fault tolerance has not made a big
breakthrough.

B. PARAMETER SERVER
Faced with the scalability issues of LDA and related topic
models, Smola et al. of Carnegie Mellon University pro-
posed a parallel LDA architecture [29], which is called the
first-generation parameter server. Fig. 1 shows its structure.

FIGURE 1. First-generation parameter server.

FIGURE 2. Second-generation parameter server.

The parallel LDA architecture adopts distributed Mem-
cached, and the storage parameters adopt key-value pairs.
It has excellent performance in the synchronization of worker
nodes and reduces the storage of parameters to a certain
extent. However, the communication overhead problem in
today’s large-scale distributed clusters is becoming increas-
ingly prominent. Frequent parameter data exchange with
key-value pairs as units will inevitably lead to excessive com-
munication costs, which seriously affects the computational
efficiency of the cluster.

The second generation of parameter servers emerged.
YahooLDA [30] used a more standardized load balancing
algorithm and a proprietary server with custom base units:
get/set/update. DistBelief [4], a software framework for the
first generation of Google Brain, was proposed by Dean
of Google Research Institute. DistBelief stores the neural
network model in the global parameter server. The parameter
server communicates data with each worker node and sup-
ports data parallelism and model parallelism. It effectively
solves the distributed problem of the SGD and L-BFGS algo-
rithms. Fig. 2 shows the framework of the second generation
of parameter servers.

Compared with the first-generation parameter servers,
the data magnitude and training efficiency have been greatly
improved, but the utilization of distributed cluster nodes is
still low because the second-generation parameter servers do
not fully consider the performance differences and stability
of worker nodes.

171886 VOLUME 7, 2019

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

FIGURE 3. Third-generation parameter server.

Li et al. of Carnegie Mellon University proposed the
third-generation parameter server system [31]. The worker
node cluster and the parameter server cluster are the core
components of the third-generation parametric server sys-
tem, as shown in Figure 3. Global model parameters are
distributed on each parameter server, which are managed
by the management node. Many parallel algorithms can be
executed in parallel on a group of worker nodes composed
of multiple worker nodes. As with the second-generation
parameter server, the primary role of the third-generation
parameter server is to pass parameters. There is a scheduler
in each worker node group, which is used to assign tasks
and monitor the status. If the worker node is unresponsive or
joins a new worker node, the scheduler can continue to assign
tasks without interrupting training. Overall, the scheduler can
solve the problem of worker node performance differences
resulting in low computational efficiency, but it can only be
handled by adding or removing worker nodes. This solution
is singular and does not take into account factors such as
external disturbances.

Considerable improvements in the parameter server have
been found by both academia and industry. Harlap et al.
focused on transient resource changes and implemented
machine learning data processing and workload scheduling
strategies based on parameter servers [32]. Li et al. [33] and
Zhong et al. [34] use a parameter server to form a large-scale
distributed factorization machine system. Zhou et al. imple-
mented a multi-additive regression tree system based on a
parameter server [35]. Yut et al. developed LDA∗ [36] based
on an asymmetric parameter server architecture, which found
a new balance between communication and computation and
pushed some calculations to the parameter server. Cui et al.
implemented GeePS [37], which optimizes the parameter
server system for GPUs, enabling them to perform well on
large-scale machine learning with GPUs.

FIGURE 4. Bulk synchronous parallel model.

C. CONSISTENCY MODEL
If the scale of distributed machine learning is very large, then
we must consider the consistency of the model parameters
to increase the parameter read throughput, thereby speed-
ing up the algorithm execution to ensure that the machine
learning algorithm finally reaches the global optimal solu-
tion. Machine learning algorithms are usually implemented
based on iterative convergence algorithms and are fault toler-
ant [38]. This makes it possible to design a loose consistency
model.

We first introduce the classic bulk synchronous parallel
model [1], as shown in Fig. 4, which is a strong consis-
tency model that clearly separates the computational phase
and the communication phase. Parallel machine learning
programs running under the BSP are serializable. That is,
their effects are equivalent to serial machine learning pro-
grams. Serialized machine learning programs ensure the cor-
rectness of all sequential queues, making BSP the most
commonly used consistency model for distributed machine
training.

Above all, there are two obvious defects in the bulk
synchronous parallelism. The first drawback is that a large
amount of communication overhead is required for each
iteration. Ho et al. [5] conducted an experiment in which
he ran the LDA topic model on a cluster and found
that the parameter communication time was six times the
computation time. The second drawback is that the next
iteration will continue until all nodes have completed an
iterative calculation. In this manner, we need to ensure
that the performance of each worker node is similar.
Chilimbi et al. [39] performed similar experiments and found
another problem: even if the worker nodes have the same
CPU, their calculation speed will change, and this change is
unpredictable.

For the synchronous waiting problem, Dean et al. [4]
proposed a distributed machine learning asynchronous iter-
ative scheme (ASP). As shown in Fig. 5, after each compute
process performs an iteration asynchronously, the parameter
server reads the local parameters and updates the global
model.

Ideally, the acceleration of ASP is linearly related to
the number of compute processes [40]. Although ASP can
greatly improve the utilization of a cluster, asynchronous

VOLUME 7, 2019 171887

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

FIGURE 5. Asynchronous parallel model.

FIGURE 6. Stale synchronous parallel model.

communication will make the model information stale, which
results in the updating of model errors, and the size of errors
increases with the staleness of model information (the perfor-
mance difference of compute processes increases). If you do
not strictly constrain this stale information, it will cause the
model to converge extremely slowly.

Ho et al. [5] proposed a stale synchronous parallel model
based on ASP. As shown in Fig. 6, the SSP gives a stale
threshold s and guarantees that the iterative progress of the
compute process is maintained within the stale threshold s.
That is, only when tmax − tmin ≥ s will all processes per-
form one synchronization, so that the error will not increase
without limit.

The SSP does not fully consider its limited fault tolerance.
If the worker node does not reach the stale threshold dur-
ing the training process, the accuracy cannot be guaranteed.
Our previous work improved it and proposed a dynamic
synchronous parallel model based on dynamic finite fault
tolerance [41], [42]. The DSP adds an optional condition
for entering the synchronization barrier. When the minimum
number of iterations in the compute process reaches the weak
threshold w, the synchronization barrier can also be entered,
thereby preventing the stale threshold from being set too
large and preventing the parameter server from being unable
to reach the synchronous condition. As shown in Fig. 7,
the DSP dynamically adjusts s according to the state of
multiple rounds of synchronization. If multiple rounds of iter-
ations use the weak threshold w to enter the synchronization
barrier, it indicates that the performance of each compute

FIGURE 7. Dynamic synchronous parallel model.

process is similar, and the DSP will slightly lower the value
of the stale threshold s. If multiple rounds of iterations use
the stale threshold s to enter the synchronization barrier,
it indicates that the performance difference of each worker
node is large, and the DSP will slightly increase the value
of s.

In addition, Khunayn et al. [43] and Harlap et al. [44]
proposed their respective dataset dynamic allocation strate-
gies based on the BSP mode. However, as the amount of
data continues to increase, computing clusters are isomerized
and distributed on a large scale, and dynamically allocating
data sets will inevitably lead to communication congestion
problems.

III. LIMITED SYNCHRONOUS PARALLEL MODEL
In this section, the detailed model design of the limited
synchronous parallel model is first carried out, and then the
stochastic gradient descent algorithm (SGD) widely used
in neural network model training is taken as an example
to theoretically analyze the feasibility of the limited syn-
chronous parallel model. Finally, the distributed machine
learning framework for Caffe implemented by this model and
the parameter server idea is introduced.

A. MODEL DESIGN
Unlike the bulk synchronous parallel model, during each
iteration of the LSP, the parameter server reads the local
parameters of multiple, but not all, compute processes and
updates the global model. Similar to the stale synchronous
parallel model, the use of the LSP model must be aware
of some of the key differences in the consistency model
that may affect the design and performance of the algo-
rithm. These differences can be described by the following
characteristics.

1) LIMITED SYNCHRONIZATION BARRIER
To minimize the lag effect of the backward compute process,
the LSP implements a limited barrier with a limited threshold
l ∈ [1,P]. LSP makes the fastest l process of each iteration
complete the calculation task and then synchronizes without
waiting for the slow process.

171888 VOLUME 7, 2019

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

Algorithm 1 Optimal Clustering Algorithm Based on
K-Means
Input: performance data set Z = {z1, z2, . . . , zP}; cluster
cluster number n.
Output: optimal performance cluster C∗.
1. Randomly select n samples from Z as the initial mean

vector
{
µ1,µ2, . . . ,µk

}
2. REPEAT
3. Let Ci = ∅ (1 ≤ i ≤ n)
4. FOR j = 1, 2, . . . ,P DO
5. dji =

∥∥zj − µi∥∥2
6. λj = argmini∈{1,2,...,n}dji
7. Cλj = Cλj ∪

{
zj
}

8. END FOR
9. FOR i = 1, 2, . . . , n DO
10. µ′i =

1
|Ci|

∑
z∈Ci z

11. IF µ′i 6= µi THEN
12. Update(µi, µ

′
i)

13. END IF
14. END FOR
15. UNTIL Current mean vector is not updated
16. C∗ = argmini∈{1,2,...,n} ‖µi‖2

2) LIMITED ASYNCHRONY
LSP are not only synchronized with good-performing com-
pute processes. For each iteration, fast processes are relative,
and even the worst-performing processes can still be fast
processes. The finiteness of the asynchronousness depends
on the monitoring frequency of the performance monitoring
module, and the LSP performs global synchronization each
time the performance detection data are obtained.

3) LOCAL UPDATE
After the compute process completes a single iteration, if it
is identified as a slow process by the parameter server at this
time, it is updated with a local model copy.

Fig. 8 illustrates the above characteristics of the LSP,
assuming that the three compute processes enter the limited
synchronization barrier after completing the computational
task. In the first iteration, the best-performing compute pro-
cess 3 first blocked the limited synchronization barrier, then
entered the limited synchronization barrier with compute
processes 2 and 4, and started the next iteration after obtaining
the new globalmodel, while compute process 5was identified
as a slow process and updated locally. In the second iteration,
the compute processes 1, 2, and 3 enter the synchronization
barrier, and there are no relatively slow nodes. It can be
seen that the number of iterations of each compute process
is not necessarily the same as the number of iterations of the
parameter server, which reflects the asynchronous nature of
the LSP.

How to set a limited threshold for a limited synchronization
barrier is an important issue, and it is necessary to consider the
inherent performance gap between nodes and network delays

FIGURE 8. Limited synchronous parallel model.

FIGURE 9. Flow chart of limited synchronous parallel model execution.

and their dynamic changes. In this paper, the performance
monitoring module pulls the single iteration time (including
computing time and communication time) of each compute
process, then divides it based on the K-Means clustering
algorithm (Algorithm 1), and takes the size of the best per-
formance cluster as the limited threshold in the next iteration
to cope with the dynamic changes of cluster performance.

The following describes the implementation of the LSP
policy process, as shown in Fig. 9.

The improvement of the limited synchronous parallel
model is embodied in the parameter server. The barrier imple-
mented by LSP waits for the fastest l local parameter up,c
based on the principle of first come first served. The com-
pute process that preempts the synchronization resources will
enter the synchronization barrier, and other nodes will update
locally.

The flow of each compute process is similar, so the flow
of a compute process and a parameter server is taken as an
example in the flowchart.

For a compute process, its single iteration is as follows:

1) At the beginning of this iteration, the performancemoni-
toring process monitors the iteration time of the compute
process and pushes it to the parameter server.

VOLUME 7, 2019 171889

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

2) A synchronization barrier preemption signal is sent to
the parameter server to determine whether the condition
for entering the synchronization barrier is satisfied.

3) The compute process receives the synchronization sig-
nal synFlag. If synFlag is 0, each compute process will
update the local model parameters using local gradients;
if synFlag is 1, each compute process enters the synchro-
nization barrier, sends a local gradient to the parameter
server, and receives new global model parameters.

For the parameter server, to clearly show its role, the oper-
ation part of the parameter server multi-thread is simplified
in the figure. The execution process of the parameter server
is as follows:

1) The performance monitoring system pulls performance
data of each compute process.

2) The limited threshold l is adaptively adjusted using the
performance data calculation.

3) A synchronization barrier preemption signal is sent after
the completion of the iteration of the compute process.

4) The parameter server determines whether the compute
process is successful in preemption according to the
state of the synchronization barrier. If the preemption
fails and does not enter the synchronization barrier,
the parameter server sets the signal synFlag to 0 and
sends it to the compute process; if the condition of the
synchronization barrier is reached, the parameter server
sets the signal synFlag to 1 and sends it to each compute
process.

5) The parameter server receives the local gradients sent by
the compute processes after the synchronization barrier
and, after aggregating the local gradients, calculates a
new global model parameter and sends the global model
parameters to the compute process entering the synchro-
nization barrier.

B. THEORETICAL ANALYSIS
In machine learning program execution, the data set D is pre-
stored on the computing cluster and is composed of p =
1...P index. Let Dp be the p-th data partition and A(t) be
the model of clock t (a clock represents some units of work
in a machine learning algorithm and iteration in a common
iteration-convergence algorithm). Data parallel computation
executes the following update equation until some conver-
gence conditions are satisfied:

A(t) = F

A(t−1), P∑
p=1

1
(
A(t−1),Dp

) (1)

where1() performs the calculation using the complete model
A(t−1) on the data partition Dp. The next model A(t) is gen-
erated by the sum of the intermediate results produced by
the F1() polymerization 1() calculation and the current
model A(t−1). For the stochastic gradient descent algorithm,

1() calculates the gradient, updated to

A(t) = A(t−1) + η
P∑
p=1

1
(
A(t−1),Dp

)
(2)

where η is the step size. To implement machine learning
calculations, all compute processes have a partial copy of
model A, and the parameter server will aggregate the local
parameters of the compute process. The global model A
is stored on the server, which is distributed and therefore
not subject to stand-alone memory. The compute process
accesses the entire model state on the server through the
messaging interface.

In this instance, the limited synchronous parallel model
is formally expressed, assuming that the limited threshold
is l ∈ [1,P] and the global synchronization threshold is
m > 1, that is, the number of synchronizations of each limited
synchronization interval is m. Then, for a compute process p
with a number of iterations c, it can access the noise model
Ãp,c consisting of the initial model A0 and the update up,c.
Then, the limited synchronous parallel model is as shown
in (3).

Ãp,c=A0 +

c−m−1∑
c′=1

l∑
p′=1

up′ ,c′

+
 ∑
(
p′ ,c′

)
∈Up,c

up′ ,c′

 (3)

where Up,c represents an updated subset of all com-
pute processes during the [c− m, c+ m− 1] iteration;[∑c−m−1

c′=1
∑l

p′=1 up′,c′
]
indicates the global update of the pre-

vious limited synchronization interval;
[∑

(p′,c′)∈Up,c up′,c′
]

indicates the update of this limited synchronization interval.
Theorem 1(SGDExpectation Convergence TheoremUnder

the Limited Synchronous Parallel Model): For the convex
function f (A) = 1

T

∑T
t=1 ft (A), assuming that the compo-

nent ∇ft is also convex, the model minimum value A∗ is
now solved. There are P compute processes with a limited
threshold of l ∈ [1,P] and a global synchronization threshold
of m > 1. Let ut := −ηt∇f t (Ãt), where ηt =

σ
√
t
, σ =

F
L
√
2(m+1)l

, and L and F are constants. Assuming that ft
satisfies the Lipschitz continuous condition and the distance
function D (A ‖A∗) ≤ F2, then:

R [A] :=
1
T

T∑
t=1

ft
(
Ãt
)
−f

(
A∗
)
≤4FLP

√
2 (m+ 1) lT (4)

Equation (4) shows that the noise model Ãt using the
limited synchronous parallel model converges to the real
model At , i.e., the limited synchronous parallel model has a
convergence guarantee in the training of distributed machine
learning models. In addition, the limited threshold is dynam-
ically adjusted based on cluster performance, ensuring the
dynamics of machine learning fault tolerance.

171890 VOLUME 7, 2019

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

FIGURE 10. Distributed machine learning framework for security
monitoring.

C. DISTRIBUTED MACHINE LEARNING FRAMEWORK FOR
SECURITY MONITORING
This paper implements a distributed machine learning frame-
work for security monitoring by using the idea of a param-
eter server, which supports multiple parameter communi-
cation consistency models. Including novel LSP and DSP
and traditional BSP and SSP, and its structure is shown in
Fig. 10.

The framework divides nodes into parameter servers and
worker nodes. A parameter server includes a global model
parameter storage module, a global model parameter update
module, a task scheduling module, a compute process idle
queue, a parameter aggregation thread, and a communication
thread group. A worker node includes a compute process
group, a performance monitoring process, a copy of the
model parameters, and a subdata set. No communication is
performed between the worker nodes.

The global model parameter storage module on the param-
eter server stores the latest global model parameters, namely,
the initial global model parameters and the global model
parameters for each round of global iteration updates.

The global model parameter update module on the param-
eter server is responsible for global model parameter updates
and has different operations under different parameter com-
munication consistency models. For example, in the bulk
synchronous parallel model, the stale synchronous paral-
lel model, and the dynamic synchronous parallel model,
the global model parameter updating module waits for the
parameter aggregation thread to aggregate the local param-
eters of all of the compute processes and then performs an
update operation; in the limited synchronous parallel model,
the global model parameter update module only needs to
wait for the local parameters aggregated by the parameter
aggregation thread to reach a limited threshold and then starts
the update operation.

To achieve an asynchronous parallel compute process,
the framework implements an idle process queue. After each
process completes an iteration, it will be pushed into the

idle process queue. The task scheduling module performs
different scheduling operations on the idle process queue
according to different communication consistency models
with different parameters. In the limited asynchronous par-
allel model, dynamic asynchronous parallel model and stale
asynchronous parallel model, the task scheduling module
will be pushed into the idle process queue immediately and
sequentially before the limited threshold, stale threshold and
weak threshold are reached, and the next iteration task will
be allocated; under the bulk synchronous parallel model,
the task scheduling module waits for the global model param-
eter update module to perform the update operation before
launching all the spatial compute processes and assigning the
next iteration’s calculation task.

There is a set of transmission threads on the parameter
server for receiving local gradients transmitted by the worker
nodes and transmitting the latest global model parameters
to the worker nodes. To be able to receive and transmit in
parallel, each worker node has a unique transport thread
corresponding to it.

The data subset on the worker node is initialized before
the model training, and the parameter server divides the data
set evenly and distributes it to each worker node. The data
subset is generally stored on the disk. Each iteration extracts
part of the data from the middle batch for distributed machine
learning training.

The performance monitoring process on the worker node
is used to collect and send performance metrics for worker
nodes. The compute process on the worker node trains the
distributed machine learning model in a data-parallel man-
ner and uses the global model parameters to calculate the
local gradient through the gradient descent algorithm and the
backpropagation algorithm. Each compute process performs
an iteration independently.

IV. EXPERIMENT AND RESULT ANALYSIS
A. EXPERIMENTAL ENVIRONMENT SETTINGS
This article deploys the distributed machine learning frame-
work introduced in Section 3.3 on a cluster of three servers,
one of which is a parameter server, and the other two are
worker nodes. All servers are homogeneous nodes. Each
server is equipped with two E5-2630v4 processors with a
frequency of 2.2GHz and a total of 20 logic cores. And
two NVDIDA K80 accelerators are configured for each
server. There are 256 GB of memory and a total of 500 GB
of disk arrays. Each server is connected via Gigabit Ethernet.

This article uses the CIFAR-100 dataset, which con-
tains 100 categories of image sets. The CIFAR-100 train-
ing set contains 50,000 examples and the test set contains
10,000 examples. The trained model uses the deep residual
network ResNet [45].

B. LIMITATION OF FAULT TOLERANCE
To test the finiteness of the fault-tolerant characteristics of
machine learning algorithms and verify the performance of

VOLUME 7, 2019 171891

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

FIGURE 11. Comparison of the accuracy of the parameter communication
consistency model.

different parameter communication consistency models, this
section presents statistics regarding the time and accuracy of
training using machine learning models under the Limited
Synchronous Parallel model (LSP), Bulk Synchronous Paral-
lel model (BSP), Stale Synchronous Parallel model (SSP) and
Dynamic Synchronous Parallel model (DSP). At the same
time, to verify the scalable rows of each model, the exper-
iment also counts the experimental results using different
numbers of processes. The limited threshold of the LSP is pre-
set to the number of computing processes; the stale threshold
of the SSP and the DSP is preset to 3, and the weak threshold
of the DSP is preset to 2. Figure 11 and Figure 12 show
the accuracy and training time for training with different
models.

It can be seen from Fig. 11 that regardless of what
parameter communication consistency model is used for
the distributed machine learning model training, since the
total number of iteration tasks is constant, as the compute
process increases, the iterative tasks shared by each com-
pute process are reduced. The global synchronization of the
parameter server is also relatively reduced, and the accuracy
of the machine learning model trained using the different
parameter communication consistency model is also reduced.
As seen from Fig. 12, no matter what communication consis-
tency model is adopted, the increase in the number of com-
pute processes means that the parallel computing power is
enhanced, and the training time is reduced accordingly. How-
ever, as the compute processes increase, the parameter server
will communicate with more compute processes, and the
parameter communication overhead will gradually be greater
than the iterative computation overhead, resulting in no fur-
ther reduction of the training time of the machine learning
model.

Referring to Fig. 11 and Fig. 12, the parameter server under
the BSP model waits for all compute processes to complete
the iteration and then performs global synchronization in
each iteration calculation. Therefore, BSP guarantees strong
consistency of model training with the highest accuracy.

FIGURE 12. Comparison of training time of the parameter communication
consistency model.

However, the iterative calculation time of the BSP model
depends on the slowest computation process, which results in
considerable time being spent training with the BSP model.
LSP, SSP and DSP all use the fault-tolerant characteristics
of machine learning algorithms for limited asynchronous
training, which shortens the synchronization waiting time of
the parameter server; therefore, the training time is signifi-
cantly lower than that of BSP. However, due to the abuse of
the fault-tolerant feature of the SSP, in the case where the
performance of each worker node is similar, the worker nodes
each cause too many local iterations, which easily fall into the
local optimal solution. As the compute processes increase,
the number of local iterations also increases, and the number
of global model parameter updates decreases, resulting in a
continuous decrease in accuracy, and the model cannot meet
the usage requirements. The DSP increases the communica-
tion overhead and sets the weak threshold, which reduces the
number of local updates of the compute process, and it thus
has higher accuracy than the SSP but also takes more training
time. The LSP implements a limited synchronization barrier,
which ensures the number of updates of the global model,
prevents the global model from approaching the local optimal
solution after local iteration, and thus has higher accuracy
than SSP andDSP. At the same time, because the LSP reduces
the communication overhead during global synchronization,
the LSP also has a faster training speed.

This section of the experiment verifies the finiteness of
the fault-tolerant nature of the iterative-convergence algo-
rithm. When performing distributed machine learning model
training on clusters with machines with similar performance,
LSP is synchronized due to less synchronous communication
overhead and low latency parameters., has (1) higher train-
ing accuracy than SSP, DSP; (2) faster training speed than
BSP.

C. DYNAMICS OF FAULT TOLERANCE
Different from the experimental setup in Section 4.2, to sim-
ulate the real mixed load cluster environment, this section of

171892 VOLUME 7, 2019

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

FIGURE 13. Scalability verification based on accuracy of the parameter
communication consistency model.

FIGURE 14. Scalability verification of training time based on the
parameter communication consistency model.

the experiment adds random communication delay to one of
the worker nodes during the execution of the model training
task (the experimental environment of each model is the
same). In this manner, the dynamics of the fault-tolerant
characteristics of the machine learning iterative-convergence
algorithm are verified, and the performance differences of the
distributed machine learning model training of each parame-
ter communication consistency model in the case of dynamic
performance changes of the worker nodes are compared.
Figures 13 and 14 show the accuracy and training time for
training with different models, respectively.

It can be seen from Fig. 13 that because the BSP clearly
separates the calculation phase and the communication phase,
the accuracy of the machine learning model trained under the
BSP model is not affected by the performance fluctuation of
the worker node. The SSP and DSP can increase the syn-
chronization condition faster as the node performance differ-
ence increases, which avoids the expansion of fault tolerance
and improves the accuracy of the training model. However,
the setting of the weak threshold in the DSP is therefore
lost, and the accuracy is almost the same as that of the SSP.

In addition, the LSP is reduced due to the difference in node
performance, and the limited threshold is reduced, that is,
the number of processes entering the limited synchronization
barrier is reduced, so that the LSP still ensures a high accuracy
and is higher than the SSP and the DSP.

It can be seen from Fig. 14 that because the single iteration
time of the BSP is limited by the process with the longest iter-
ation time, the BSP needs more time to iterate in the perfor-
mance fluctuation of the worker node, which seriously affects
the efficiency of the model training. In addition, because
the LSP implements a limited synchronization barrier and
realizes the asynchronous calculation of the worker node,
the waiting problem caused by the performance lag process
in the synchronization phase is weakened. Thus, LSP has sig-
nificant advantages for the overall performance lag problem
caused by the difference in performance of the worker node.

This part of the experiment verifies the dynamics of
the fault-tolerant characteristics of the iterative-convergence
algorithm. When the distributed machine learning model is
trained under the mixed load of the cluster, the LSP can
dynamically adjust the limited threshold and reduce the delay
of the performance lag node to themodel training. The impact
causes LSP to have a significant advantage in computational
efficiency.

V. CONCLUSION
Mobile computing takes full advantage of the computing
power and communication capabilities of various sensing
devices and uses these devices to form a computing cluster.
When using such clusters for training of distributed machine
learning models, the use of the bulk synchronous parallel
model causes the machine learning model to have high accu-
racy. However, in the scene of large-scale security monitor-
ing, because it is limited to the worst-performing nodes in the
cluster, the overall computing performance of the cluster will
be greatly wasted as the performance difference of the worker
nodes increases. The stale synchronous parallel model (SSP)
and the dynamic synchronous parallel model (DSP) utilize
the fault-tolerant characteristics of the iterative-convergence
algorithm, which realizes the asynchronous parallel comput-
ing of the worker nodes and improves the utilization of the
computing cluster, but at the same time, the accuracy of the
model training is greatly reduced due to the delay of the
parameters.

This paper draws on the advantages of bulk synchronous
parallel model (BSP) and asynchronous parallel model (ASP)
and proposes a limited synchronous parallel model (LSP),
which implements a limited synchronization barrier, which
synchronizes a part of the worker process that is itera-
tively fast in each iteration, ensures frequent synchronization,
and reduces communication overhead. In addition, LSP also
implements finite asynchronous calculation of the worker
process, which ensures the balance of computational effi-
ciency and convergence speed. Finally, the experiments in
this paper prove that the model is superior to the bulk syn-
chronous parallel model, the stale synchronous parallel model

VOLUME 7, 2019 171893

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

and the dynamic synchronous parallel model in terms of
computational efficiency and convergence speed.

Finally, in the finite experiment to verify the fault-tolerant
characteristics of the machine learning iteration-convergence
algorithm, the accuracy of the LSP is not as good as that of
the BSP, but it is 11.12% higher than the SSP and 9.91%
higher than the DSP. The training time of LSP is as good
as the SSP and DSP and is 29.73% shorter than the BSP.
In the dynamic experiment to verify the fault-tolerant charac-
teristics of machine learning iterative-convergence algorithm,
the accuracy of LSP performance is still less than that of BSP,
and LSP is only improved by 7.83% and 5.09% compared
with SSP and DSP because SSP and DSP tend to synchro-
nize more times. The training efficiency of LSP has been
improved, which is 16.89% and 22.35% shorter than SSP and
DSP, and 39.53% shorter than BSP.

In the scenario of large-scale security monitoring, the bulk
synchronous parallel model is more suitable for machine
learning training tasks in offline scenarios, and the limited
synchronous parallel model proposed in this paper is more
suitable for scenarios with higher real-time requirements.

Although the distributed machine learning framework
based on the limited synchronous parallel model proposed
in this paper has certain advantages compared with other
methods, it still has the potential to improve in terms of the
convergence speed and accuracy ofmodel training. Our future
work will address these shortcomings to further improve the
effectiveness of the limited parallel model.

APPENDIX: PROOF OF THEOREM 1
Theorem 1 (SGD Expectation Convergence Theorem Under
the Limited Synchronous Parallel Model): For the convex
function f (A) = 1

T

∑T
t=1 ft (A), assuming that the compo-

nent ∇ft is also convex, the model minimum value A∗ is
now solved. There are P compute processes with a limited
threshold of l ∈ [1,P] and a global synchronization threshold
of m > 1. Let ut := −ηt∇f t (Ãt), where ηt =

σ
√
t
, σ =

F
L
√
2(m+1)l

, and L and F are constants. Assuming that ft
satisfies the Lipschitz continuous condition and the distance
function D (A ‖A∗) ≤ F2, then:

R [A] :=
1
T

T∑
t=1

ft
(
Ãt
)
− f

(
A∗
)
≤ 4FLP

√
2(m+ 1)lT

Proof:

R [A] : =
1
T

T∑
t=1

ft
(
Ãt
)
− f

(
A∗
)

≤

T∑
t=1

〈∇ft (Ãt), Ãt − A∗〉

=

T∑
t=1

〈g̃t , Ãt − A∗〉

Lemma 2:Assume that model A is n-dimensional, i.e., A =
Rn, for all A∗:

〈g̃t , Ãt − A∗〉 =
1
2
ηt ‖g̃t‖

2
+
D (A∗ ‖At)− D (A∗ ‖At+1)

ηt

+

∑
i∈Qt

ηi〈g̃i, g̃t 〉 −
∑
i∈Rt

ηi〈g̃i, g̃t 〉


where D (A ‖A∗) = 1

2 ‖A− A
∗‖

2, Qt represents the update
set of Ãt compared to At , and Rt represents the additional
update set of Ãt compared to At . |Qt | + |Rt | ≤ 2m(P − 1),
min(Qt∪Rt) ≥ max(1, t−(m+1)l), max (Qt ∪ Rt) ≤ t+mP.

Proof:

D
(
A∗ ‖At

)
− D

(
A∗ ‖At+1

)
=

1
2

∥∥A∗ − At∥∥2 − 1
2

∥∥A∗ − At + At − At+1∥∥2
=

1
2

∥∥A∗ − At∥∥2 − 1
2

∥∥A∗ − At + ηt g̃t∥∥2
= ηt 〈g̃t ,At − A∗〉 −

1
2
ηt ‖g̃t‖

2

= ηt 〈g̃t , Ãt − A∗〉 + ηt 〈g̃t ,At − Ã∗〉 −
1
2
ηt ‖g̃t‖

2

where

〈g̃t ,At − Ã∗〉 = 〈−
∑
i∈Qt

ηig̃t +
∑
i∈Rt

ηig̃i, g̃i〉

= −

∑
i∈Qt

ηi〈g̃i, g̃t 〉 +
∑
i∈Rt

ηi〈g̃i, g̃t 〉

Lemma 2 certification.
Then, for R [A] where:

R [A] ≤
T∑
t=1

〈g̃t , Ãt − A∗〉

=

T∑
t=1

1
2
ηt ‖g̃t‖

2
+

T∑
t=1

D (A∗ ‖At)− D (A∗ ‖At+1)
ηt

+

T∑
t=1

∑
i∈Qt

ηi〈g̃i, g̃t 〉 −
∑
i∈Rt

ηi〈g̃i, g̃t 〉


=

T∑
t=1

1
2
ηt ‖g̃t‖

2
+
D (A∗‖A1)

η1
−
D (A∗‖AT+1)

ηT

+

T∑
t=2

[
D
(
A∗
∥∥At) (1

ηt
−

1
ηt−1

)]

+

T∑
t=1

∑
i∈Qt

ηi〈g̃i, g̃t 〉 −
∑
i∈Rt

ηi〈g̃i, g̃t 〉


In this instance, is the boundary of each item of the above

formula. The first item:
T∑
t=1

1
2
ηt ‖g̃t‖

2
≤

T∑
t=1

1
2
ηtL2

171894 VOLUME 7, 2019

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

=

T∑
t=1

1
2
σ
√
t
L2

≤ σL2
√
T

The second section:

D (A∗‖A1)
η1

−
D (A∗‖AT)

ηT
+

T∑
t=2

[
D
(
A∗
∥∥At) (1

ηt
−

1
ηt−1

)]

≤
F2

σ
+ 0+

F2

σ

T∑
t=2

[√
t −
√
t − 1

]
=

F2

σ
+
F2

σ

[√
T − 1

]
=

F2

σ

√
T

The third item:

T∑
t=1

∑
i∈Qt

ηi〈g̃i, g̃t 〉 −
∑
i∈Rt

ηi〈g̃i, g̃t 〉


≤

T∑
t=1

[|Qt | + |Rt |] ηMAX(1,t−(m+1)l)L2

= L2

(m+1)l∑
t=1

[|Qt | + |Rt |] η1

+

T∑
t=(m+1)l+1

[|Qt | + |Rt |] ηt−(m+1)l


= L2

(m+1)l∑
t=1

[|Qt | + |Rt |] σ

+

T∑
t=(m+1)l+1

[|Qt | + |Rt |]
σ

√
t − (m+ 1) l


≤ σL2

(m+1)P∑
t=1

2m (P− 1) σ

+

T∑
t=(m+1)P+1

2m (P− 1)
σ

√
t − (m+ 1) l


≤ 2σL2 (P− 1)

[
(m+ 1)P+ 2

√
T − (m+ 1) l

]
≤ 2σL2 (P− 1)

[
(m+ 1)P+ 2

√
T
]

≤ 2σL2 [(m+ 1)P]2 + 4σL2 (m+ 1)P
√
T

Then:

R [A] ≤
T∑
t=1

〈g̃t , Ãt − A∗〉

≤ σL2
√
T +

F2

σ

√
T + 2σL2 [(m+ 1)P]2

+ 4σL2 (m+ 1)P
√
T

Let σ = F
L
√
2α
, where α = (m+ 1)l, then:

R [A]≤
FL
√
T

√
2α
+FL
√
2αT+

√
2FLP2α3/2

l2
+
2
√
2FLP

√
αT

l

≤
FL
√
T

√
2α
+ FL

√
2αT+

√
2 FLP2α3/2+2

√
2 FLP

√
αT

=FL
√
2αT

(
1
2α
+ 1+

P2α
√
T
+ 2P

)
≤ FL
√
2αT

(
1
2α
+
P2α
√
T
+ 3P

)
When T →∞, 1

2α +
P2α
√
T
≤ 1, then:

R [A] ≤ 4FLP
√
2αT

= 4FLP
√
2(m+ 1)lT

Theorem 1 is complete.

REFERENCES
[1] L. G. Valiant, ‘‘A bridging model for parallel computation,’’ Commun.

ACM, vol. 33, no. 8, pp. 103–111, 1990.
[2] J. Dean and L. A. Barroso, ‘‘The tail at scale,’’ Commun. ACM, vol. 56,

no. 2, pp. 74–80, Feb. 2013.
[3] S. Dutta, V. Cadambe, and P. Grover, ‘‘Short-Dot: Computing large linear

transforms distributedly using coded short dot products,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100–2108.

[4] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, ‘‘Large scale
distributed deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2012,
pp. 1223–1231.

[5] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, ‘‘More effective distributed ml via a stale
synchronous parallel parameter server,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 1223–1231.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.

[7] T. Chen,M. Li, Y. Li,M. Lin, N.Wang,M.Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, ‘‘MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems,’’ Dec. 2015, arXiv:1512.01274.
[Online]. Available: https://arxiv.org/abs/1512.01274

[8] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, ‘‘Petuum: A new platform for distributed machine
learning on big data,’’ IEEE Trans. Big Data, vol. 1, no. 2, pp. 49–67,
Jun. 2015.

[9] A. Coates, B. Huval, T.Wang, D. J.Wu, A. Y. Ng, and B. Catanzaro, ‘‘Deep
learningwith COTSHPC systems,’’ inProc. Int. Conf. Mach. Learn., 2013,
pp. 1337–1345.

[10] V. Smith, S. Forte, C. Ma, M. Takac, M. I. Jordan, and M. Jaggi, ‘‘CoCoA:
A general framework for communication-efficient distributed optimiza-
tion,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 8590–8638, 2018.

[11] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez,
M. J. Franklin, M. I. Jordan, and T. Kraska, ‘‘MLI: An API for distributed
machine learning,’’ in Proc. IEEE 13th Int. Conf. Data Mining (ICDM),
Dec. 2013, pp. 1187–1192.

[12] R. Collobert, K. Kavukcuoglu, and C. Farabet, ‘‘Torch7: A MATLAB-
like environment for machine learning,’’ in Proc. NIPS Workshop, 2011,
pp. 1–6.

[13] Y. Huang, T. Jin, Y.Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo, and J. Cheng,
‘‘FlexPS: Flexible parallelism control in parameter server architecture,’’
Proc. VLDB Endowment, vol. 11, no. 5, pp. 566–579, 2018.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, ‘‘TensorFlow: A system for
large-scale machine learning,’’ in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[15] F. Seide and A. Agarwal, ‘‘CNTK: Microsoft’s open-source deep-learning
toolkit,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2016, p. 2135.

VOLUME 7, 2019 171895

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

[16] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, ‘‘MLlib: Machine learning in
apache spark,’’ The J. Mach. Learn. Res., vol. 17, no. 34, pp. 1–7, 2016.

[17] X. Liu, M. Zhao, A. Liu, and K. K. L. Wong, ‘‘Adjusting forwarder nodes
and duty cycle using packet aggregation routing for body sensor networks,’’
Inf. Fusion, vol. 53, pp. 183–195, Jan. 2020.

[18] H. Gao, W. Huang, and X. Yang, ‘‘Applying probabilistic model checking
to path planning in an intelligent transportation system using mobility tra-
jectories and their statistical data,’’ Intell. Automat. Soft Comput., vol. 25,
no. 3, pp. 547–559, 2019.

[19] H. Gao, W. Huang, Y. Duan, X. Yang, and Q. Zou, ‘‘Research on cost-
driven services composition in an uncertain environment,’’ J. Internet
Technol., vol. 20, no. 3, pp. 755–769, 2019.

[20] H. Gao, H. Miao, L. Liu, J. Kai, and K. Zhao, ‘‘Automated quantita-
tive verification for service-based system design: A visualization trans-
form tool perspective,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 28, no. 10,
pp. 1369–1397, 2018.

[21] Y. Yin, J. Xia, Y. Li, Y. Xu, W. Xu, and L. Yu, ‘‘Group-wise itinerary
planning in temporary mobile social network,’’ IEEE Access, vol. 7,
pp. 83682–83693, 2019.

[22] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, ‘‘QoS prediction
for service recommendation with deep feature learning in edge computing
environment,’’ inMobile Networks and Applications. NewYork, NY, USA:
Springer, 2019, doi: 10.1007/s11036-019-01241-7.

[23] Y. Yin, W. Zhang, Y. Xu, H. Zhang, Z. Mai, and L. Yu, ‘‘QoS prediction for
mobile edge service recommendation with auto-encoder,’’ IEEE Access,
vol. 7, pp. 62312–62324, 2019.

[24] S. Pang, H. Chen, H. Liu, J. Yao, and M. Wang, ‘‘A deadlock resolution
strategy based on spiking neural P systems,’’ J. Ambient Intell. Hum.
Comput., pp. 1–12, 2019, doi: 10.1007/s12652-019-01223-3.

[25] T. Song, S. Pang, S. Hao, A. Rodríguez-Patón, and P. Zheng, ‘‘A parallel
image skeletonizing method using spiking neural P systems with weights,’’
Neural Process. Lett., vol. 50, pp. 1485–1502, Oct. 2018.

[26] J. Zhou, X. Li, P. Zhao, C. Chen, L. Li, X. Yang, Q. Cui, J. Yu, X. Chen,
Y. Ding, and Y. A. Qi, ‘‘KunPeng: Parameter server based distributed
learning systems and its applications in Alibaba and ant financial,’’ inProc.
23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 1693–1702.

[27] K. Yu, ‘‘Large-scale deep learning at Baidu,’’ in Proc. 22nd ACM Int. Conf.
Inf. Knowl. Manage., Oct./Nov. 2013, pp. 2211–2212.

[28] J. Jiang, L. Yu, J. Jiang, Y. Liu, and B. Cui, ‘‘Angel: A new large-scale
machine learning system,’’ Nat. Sci. Rev., vol. 5, no. 2, pp. 216–236, 2018.

[29] A. Smola and S. Narayanamurthy, ‘‘An architecture for parallel topic
models,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 703–710, 2010.

[30] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola,
‘‘Scalable inference in latent variable models,’’ in Proc. 5th ACM Int. Conf.
Web Search Data Mining, Feb. 2012, pp. 123–132.

[31] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, ‘‘Scaling distributed machine learning
with the parameter server,’’ inProc. OSDI, vol. 14, Oct. 2014, pp. 583–598.

[32] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons, ‘‘Pro-
teus: Agile ML elasticity through tiered reliability in dynamic resource
markets,’’ in Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017, pp. 589–604.

[33] M. Li, Z. Liu, A. J. Smola, and Y.-X. Wang, ‘‘DiFacto: Distributed factor-
ization machines,’’ in Proc. 9th ACM Int. Conf. Web Search Data Mining,
Feb. 2016, pp. 377–386.

[34] E. Zhong, Y. Shi, N. Liu, and S. Rajan, ‘‘Scaling factorization machines
with parameter server,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage.,
Oct. 2016, pp. 1583–1592.

[35] J. Zhou, Q. Cui, X. Li, P. Zhao, S. Qu, and J. Huang, ‘‘PSMART: Parameter
server based multiple additive regression trees system,’’ in Proc. 26th Int.
Conf. World Wide Web Companion, Apr. 2017, pp. 879–880.

[36] L. Yut, C. Zhang, Y. Shao, and B. Cui, ‘‘LDA*: A robust and large-
scale topic modeling system,’’ Proc. VLDB Endowment, vol. 10, no. 11,
pp. 1406–1417, 2017.

[37] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, ‘‘GeePS:
Scalable deep learning on distributed GPUs with a GPU-specialized
parameter server,’’ in Proc. 11th Eur. Conf. Comput. Syst., Apr. 2016,
Art. no. 4.

[38] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing, ‘‘High-
performance distributed ML at scale through parameter server consistency
models,’’ in Proc. AAAI, Jan. 2015, pp. 79–87.

[39] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, ‘‘Project adam:
Building an efficient and scalable deep learning training system,’’ in Proc.
OSDI, vol. 14, 2014, pp. 571–582.

[40] E. P. Xing, Q. Ho, P. Xie, and D. Wei, ‘‘Strategies and principles of
distributed machine learning on big data,’’ Engineering, vol. 2, no. 2,
pp. 179–195, 2016.

[41] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, J. Wang, L. Yu, C. Zhao,
and L. Zhang, ‘‘A parameter communication optimization strategy for
distributed machine learning in sensors,’’ Sensors, vol. 17, no. 10, p. 2172,
2017.

[42] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, and J. Wang, ‘‘An adaptive
synchronous parallel strategy for distributed machine learning,’’ IEEE
Access, vol. 6, pp. 19222–19230, 2018.

[43] E. B. Khunayn, S. Karunasekera, H. Xie, and K. Ramamohanarao, ‘‘Strag-
gler mitigation for distributed behavioral simulation,’’ in Proc. IEEE 37th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017, pp. 2638–2641.

[44] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing, ‘‘Addressing the straggler problem for
iterative convergent parallelML,’’ inProc. 7th ACMSymp. Cloud Comput.,
Oct. 2016, pp. 98–111.

[45] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

RUI YANG is currently pursuing the M.S.
degree with the School of Computer Science
and Technology, Hangzhou Dianzi University,
China. His research interests include parallel com-
puting, machine learning, and high performance
computing.

JILIN ZHANG received the Ph.D. degree in
computer application technology from the Uni-
versity of Science Technology Beijing, Beijing,
China, in 2009. He serves as a Professor with
the School of Computer Science and Technol-
ogy, Hangzhou Dianzi University. His research
interests include high performance computing and
cloud computing.

JIAN WAN received the Ph.D. degree in com-
puter application technology from Zhejiang Uni-
versity, Zhejiang, China, in 1989. He is currently a
Professor in software engineering with Hangzhou
Dianzi University, China. His research interests
include grid computing, service computing, and
cloud computing.

LI ZHOU received the master’s degree from
Hangzhou Dianzi University, Hangzhou, China,
in 2003. She is currently an Associate Professor
with the School of Computer Science and Tech-
nology, Hangzhou Dianzi University. Her current
research interests include virtual storage systems,
cloud storage, cloud computing, and high perfor-
mance computing.

171896 VOLUME 7, 2019

http://dx.doi.org/10.1007/s11036-019-01241-7
http://dx.doi.org/10.1007/s12652-019-01223-3

R. Yang et al.: Parameter Communication Consistency Model for Large-Scale Security Monitoring Based on Mobile Computing

JING SHEN is currently pursuing the Ph.D. degree
with the School of Computer Science and Tech-
nology, Hangzhou Dianzi University. Her areas of
research interest include high performance com-
puting and system reliability.

YUNCHEN ZHANG is currently pursuing the
M.S. degree with the School of Computer
Science and Technology, Hangzhou Dianzi Uni-
versity, China. His research interests include
parallel computing, machine learning, and high
performance computing.

ZHENGUO WEI graduated in business adminis-
tration from the Zhejiang University of Technol-
ogy. In 2000, he was with Dawning Information
Technology Company, Ltd. In 2018, he was the
General Manager with Zhejiang Dawning Infor-
mation Technology Company, Ltd. He was fully
responsible for the business of the enterprise
and responsible for the research and development
and management of software products related
to high-performance computing, big data, and
artificial intelligence.

JUNCONG ZHANG graduated in computer sci-
ence and technology from Xiangfan University.
In 2018, he was the Manager of the Technology
Center, Zhejiang Dawning Information Technol-
ogy Company, Ltd. He was responsible for the
research and development of software products
and technical support related to high performance
computing, big data, and artificial intelligence.

JUE WANG is currently an Associate Profes-
sor with the Supercomputing Center, Chinese
Academy of Sciences. The motivation behind his
work is to improve soft systems by increasing the
productivity of programmers and by increasing
software performance on modern architectures,
including many-core clusters and GPUs.

VOLUME 7, 2019 171897

	INTRODUCTION
	RELATED WORK
	DISTRIBUTED MACHINE LEARNING SYSTEMS
	PARAMETER SERVER
	CONSISTENCY MODEL

	LIMITED SYNCHRONOUS PARALLEL MODEL
	MODEL DESIGN
	LIMITED SYNCHRONIZATION BARRIER
	LIMITED ASYNCHRONY
	LOCAL UPDATE

	THEORETICAL ANALYSIS
	DISTRIBUTED MACHINE LEARNING FRAMEWORK FOR SECURITY MONITORING

	EXPERIMENT AND RESULT ANALYSIS
	EXPERIMENTAL ENVIRONMENT SETTINGS
	LIMITATION OF FAULT TOLERANCE
	DYNAMICS OF FAULT TOLERANCE

	CONCLUSION
	REFERENCES
	Biographies
	RUI YANG
	JILIN ZHANG
	JIAN WAN
	LI ZHOU
	JING SHEN
	YUNCHEN ZHANG
	ZHENGUO WEI
	JUNCONG ZHANG
	JUE WANG

