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ABSTRACT The problem of detecting defective elements in antenna arrays from near-field measurements
by a MUSIC method is addressed. It is shown that, owing to the rank deficiency of the involved correlation
matrix, MUSIC is indeed no better than back-transformation or matrix methods. In order to restore MUSIC
performance, a rank recovering procedure is required. Therefore, here, we introduce a rank recovering
method which is properly tailored to address the pertinent near-field configuration. Numerical examples,
obtained for 2D scalar cases and linear array antennas, show the effectiveness of the method.

INDEX TERMS Array diagnostics, inverse imaging, multiple signal classification (MUSIC).

I. INTRODUCTION

Array antennas consist of a number of radiating elements
which, depending on the applications, can sometimes be
very large. Therefore, the probability that some elements are
(or become) defective is not negligible. When this occurs,
the array no longer works as intended. Thus, the need to find
such defective elements naturally arises if some corrective
strategies have to be put in place.

In order to find defective elements (array antenna diag-
nostics), a number of techniques have been developed, both
deterministic and stochastic (see for example [1]-[6] and
references therein). Here, we focus on the deterministic meth-
ods. Among them, the Back Transformation Method (BTM)
is the simplest and the most commonly used [1]. Basically,
this technique exploits the plane-wave spectrum representa-
tion and an FFT algorithm to back-propagate the measured
field to the array aperture. Hence, this method is generally
very quick but works only for planar arrays. The Matrix
Method (MM) can also be applied to conformal arrays and
does not require the measurements to be taken over a planar
measurement aperture [7]. By this method, the discretized
version of the radiation operator is inverted in order to recon-
struct the radiating currents. Since the involved matrix is
generally ill-conditioned, a regularization scheme must be
employed [8]. While BTM has a lower computational cost,
MM is more flexible and in principle can allow to achieve bet-
ter performances [7]. The distributional approach presented
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in [9] further generalizes MM as it does not require the
element positions to be a priori known.

More recently the MUItiple SIgnal Classification (MUSIC)
algorithm has been proposed for array diagnostics [10].
MUSIC is a subspace projection method borrowed from
spectral estimation [11] and Degree of Arrival Estimation
[12] literature. It is a super-resolving scheme but can only
be used for the special case where the array defects consist
of completely turned off elements [10]. However, the way
MUSIC was exploited in [10] does not allow to clearly
appreciate the improvement it can provide. This is because,
as noted there, the involved correlation matrix is rank
deficient. Consequently, MUSIC performance dramatically
decreases and it actually does not work any better than
BTM or MM.

The aims of this paper is twofold. First, to find an explicit
connection between the MUSIC method proposed in [10]
and the classical BTM and MM. This will allow to clarify
the previous statement concerning the similarity of achiev-
able performance. Second, to introduce a strategy which
allows to improve the MUSIC method. As mentioned above,
MUSIC performance degrades because the correlation matrix
is rank deficient. Accordingly, a rank recovery step before
running the MUSIC stage [13] is required. Unfortunately, for
near-zone configurations, standard de-correlation methods
(i.e., smoothing algorithms) cannot be directly applied.
To cope with this problem, instead of working in the spatial
domain, we choose to work in the spectral domain. This
simple strategy permits to easily de-correlate the correlation
matrix and to restore the performance of MUSIC.
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The rest of the paper is organized as follows.

In next Section we introduce the mathematical formula-
tion. In particular, since the main aim is somehow pedagog-
ical, we consider a simplified 2D scalar configuration and
linear arrays. In this section, we also briefly recall MUSIC
implementation as reported in [10] and show that, by that
implementation, MUSIC is actually no better than BTM or
MM. In Section 3, we describe the proposed rank recovering
procedure, whereas in Section 4 some numerical examples
illustrate the improvement in the achievable performances.
Finally, conclusions end the paper.

Il. MUSIC FOR ARRAY DIAGNOSTICS

In this section we introduce the mathematical model and the
MUSIC algorithm as presented in [10]. Moreover, we com-
pare MUSIC to an adjoint inversion method [14], which
in turn is basically an approximation (in the sense detailed
below) of MM and BTM.

A. MATHEMATICAL SETTING

Consider a 2D scalar geometry with z being the axis of
invariance. Accordingly, the electric field has only the z com-
ponent. Now consider a linear array of N elements arranged
over the interval SD = [—X_,, X,;] (where SD stands for
source domain) of the x-axis. Denote as r, = (x,, 0), for
n=12---,N, the element positions. The radiated field
is observed over a rectilinear measurement aperture MA =
[—Xo0, Xo] parallel to SD and located at distance zp from
it. Finally, denote as ro,, = (xom,z0), m = 1,2,--- M,
the observation points.

The corresponding radiation model is then given as

— 2
V(xom) = TM —exp (i /4)

N .
% Z exp (—jk|rom — ral)
n=1 v |r0m - rn|

X f (Eom — Tn)an (1)

h(XOm — 1)

where w is the working angular frequency and k the corre-
sponding medium wavenumber,  the magnetic permeability
of vacuum, A(-) and f(-) are the probe and the element effec-
tive heights and a,, and V,,, = V(xo,) are the excitation coef-
ficients and the measured voltages, respectively. The array
elements are assumed all equal and not interacting with each
other. Moreover, in (1) each elementary radiator works in far-
field. The latter is indeed a reasonable assumption since ele-
mentary radiators are much smaller than the whole array and
because measurements are usually taken several wavelengths
apart (so to ensure that coupling between the probe and the
array under test is negligible). However, the configuration is
in near-zone as far as the whole array is concerned. This is
actually the model employed in [10] as well as in other papers.

In order to simplify notation, from now on we consider
the unessential constant in front of the summation embodied
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within the coefficients a, and cast Eq. (1) in matrix form as
V=Aa (2)

where the matrix A is defined as
exp (—jk[rom — ral)

Apn =

N Tom — Tyl
and represents the propagator from the array to the measure-
ment domain; the meaning of the column vectors V and a is
obvious.

In order to find defective elements, and more in general
to pursue the array diagnostics, eq. (2) must be solved for a.
In this regard, it is worth noting that the element positions
enter the definition of A. Denote as A(r;,,) the n-th column of
the propagator. Accordingly, the problem is linear, and hence
“relatively” easy to solve, only when the element positions
are a priori known. This is actually the framework of the MM.
Nonetheless, element positions may not be precisely known.
To cope with this drawback and still maintain a linear formu-
lation, a variant of the MM method, called the distributional
approach, has been introduced in [9]. By this model, actually
borrowed from inverse scattering literature [15], the unknown
excitations are represented as Dirac distributions whose sup-
ports are contained in SD. We leave aside details concerning
what a distributional unknown formally entails as far as the
mathematical framework is concerned. What matters here is
that the main idea of the distributional approach is to choose
a finer grid where the radiating elements can be placed.
Indeed, say N’ > N, then 2X,/N’ is the uncertainty at
which elemental radiators can be located. In order to gain the
same advantage as the distributional approach, we cast the
problem under the same framework. Hence, we consider the
propagator A defined as

(X om — tn)f (Com — Tn)

AiaecN svecH A3)

which of course does not mean that the number of elemental
radiators has been increased. Rather, the number of radia-
tors is still the same but their positions can be N out of
N’. In principle, to reduce the uncertainty on the radiators’
positions, N’ could be unbounded. However, increasing N’
impacts negatively on the numerical complexity and the
ill-posedness of the inverse problem at hand.

According to the MM method, we consider the least square
solution of (3), which is given by

a=@Ala~1ally 4

where A is the Hermitian of A (i.e., 7 stands for transposi-
tion and conjugation). In order to address the ill-conditioning
of A, (4) should be paired with some regularization scheme
[8]. By assuming (A7 A)~! ~ 7, T being the identity matrix,
then (4) can be approximated as

a~Ay (%)

Basically, in (5) the inverse operator has been approximated
by the adjoint one. This is similar to some well known
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inversion schemes common in radar imaging, like migra-
tion and/or time-reversal [16]. More in detail, this inversion
scheme allows to deal with the ill-posedness of the problem
at hand, since it can be viewed as an inverse filtering proce-
dure [8] where the filter is chosen according to the singular
value behaviour of A. Therefore, (5) establishes a trade-off
between stability and accuracy of solution, which in turn
depends on the measurement aperture size. However, to be
precise, it must be remarked that (5) is not a regularization
scheme in the sense of Tikhonov since it does not return the
generalized solution, even in absence of noise. The adjoint
based inversion in (5) is also similar to the BTM. This
can be understood when the Green function, and hence the
propagator, is expressed in terms of the plane-wave spectrum
and by noting that BTM achieves inversion by a fruncated
(because measurements are collected over a finite aperture)
filtered Fourier transform, which in turn approximates the
adjoint of the radiation operator.

B. MUSIC ALGORITHM
In order to perform array diagnostics, in [10] a MUSIC
method has been proposed. Unlike MM, however, MUSIC
method can only detect defective elements that are com-
pletely turned off. Accepting this limitation, MUSIC in prin-
ciple appears a good option since it can allow for a resolution
that can be much better than standard inversion schemes.

As well known, the MUSIC framework is the following.
First, the so-called correlation matrix

R=y Vv (©6)

is built. Then, its eigenspectrum is computed. This is done
in order to separate the so-called signal, S, and noise, N,
subspaces. In particular, if the excitation coefficients are
uncorrelated, the rank of A coincides with the one of R and
is N. Therefore, the data space can be factorized as cM =
S ® N, with S = Range(A) = spanf{u,, u,, - - - , uy} being
the range of A and u,, the eigenvectors of R. Note that in the
previous discussion we have implicitly assumed that M > N,
namely that the number of measurements is greater than the
number of the elemental radiators in the array. However, it can
well be that M < N’ since N’ > N.

According to the data space representation, the elemental
radiators that work properly correspond to the columns of
A that belong to S. Therefore, radiators’ positions can be
identified as the r, (n € 1, ---, N’) for which the projection
of A(r,,) onto N is zero or equivalently where the indicator

2
Hey = _JACDI

—IPAAT)? N

achieves its maxima (ideally of infinite value). In (7), Pas
denotes the projector operator onto the noise subspace and
the trial column vector A(r,,) (the steering vector in the usual
MUSIC terminology) has been normalized to its Euclidean
norm. Once the radiators that works correctly have been
found the remaining ones are identified as being defective.
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The problem of applying MUSIC in the present case is that
R is singular. This is because the vector a is deterministic.
Therefore, if MUSIC is applied without a rank restoring pro-
cedure (as done in [10]) then a dramatic loss in the achievable
performance is experienced. Actually, the achievable perfor-
mances are no better than those returned by standard BTM
or MM procedures [17]. To show this, observe that for the
case at hand the rank of R is just one. Accordingly, the signal
subspace is the one-dimensional set S = spanf{u,} of cM.
Moreover, since S = Range(A), then the signal eigenvector
is simply

u =V/IV]| ®)

Let us rewrite (7) by using the projector operator onto the
signal subspace, Ps = Z — P/, then

A |I?

I(r,) = 9
) = T = PoAEI ®
with
A(r) 2 A(r) 2
T—P =1- _ 10
I =P amn] <Atz a0

and < x, y >= x" y s the scalar product in C¥.

From (10) and in view of (8) and (9), one deduces that
it is not necessary to compute the eigenspectrum of R to
build the indicator function. This fact of course is relevant
from the computational point of view and seems to have been
completely missed in [10]. Furthermore, the detection ability
of the MUSIC is now clearly linked to the behavior of the
scalar product | < A(r,)/||A(r,)ll, u; > | which, when (8) is
used, can explicitly be written as

A(ry) A"V an
< Jup >= =
Al [ACHIIVI AV

where (5) has been used in the last term on the right hand side.
Accordingly, (7) can be rewritten as

_ (AE)IIVID?
ATV ID? = (lan)?

Eq. (12) is the sought after link between MUSIC and MM.
It is now clear that the achievable resolution is basically
related to a and hence it is the same for both methods. In other
words, if two elements are not resolved in @, MUSIC will
fail to resolve them as well. Indeed, the MUSIC method
presented in [10] seems to perform better than MM simply
because of the use of the function in (7) (instead of the mere
| < A(ry),u; > |) which only makes the MUSIC indicator
sharper than the MM reconstruction in correspondence to the
radiating elements.

Y

I(r,) 12)

Ill. RECOVERING THE RANK OF R

In order to exploit the super-resolving capability of MUSIC
algorithm it is necessary to recover the rank of R, or equiv-
alently to have the signal subspace dimension equal to the
number of correctly working elements (< N). To this end,
one can consider exploiting some de-correlation methods
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(i.e., smoothing procedures), which have been developed to
deal with coherent or partially coherent signals [18]. Unfor-
tunately, all the smoothing procedures found in literature
require the field to exhibit a special dependence on the obser-
vation variable x¢,, and the element positions x,,. In particular,
the rank recovering is simple to achieve if the operator matrix
has a form like A,,;, = o exp (jBxomXn), With o and 8 being
constants. Clearly, this is not the case here (see eq. (1)).
Fortunately, model (1) can be recast in a form suitable
for smoothing by a simple Fourier transformation. Indeed,
by rewriting (1) in the spectral domain yields

h(k)f (ki)
k

4

N
exp (—jk:20) Y exp (—jkexda,  (13)

n=1

V(ky) =

where © denotes the Fourier transform, k, is the spectral
variable and k; = /k? — k2 is real since evanescent waves
are considered negligible. Note also that the truncation effect
due to the finite measurement aperture has not been con-
sidered. To further simplify the notation, we normalize the
term h(ky)f (ky)/k; exp (—jk,zp0) which is basically equivalent
to performing the so-called probe and element correction.
Accordingly, we have

N
V(kan) =) exp (—jkumXn)atn (14)

n=1

where we continued to denote as V the Fourier transform
of the normalized voltage. The observation variables is now
kyn = mAg, form = -M',--- M', M = (M — 1)/2,
M is assumed odd, and Ay is the step in the wavenumber
domain. (14) is now in the "right" form for the application
of a smoothing procedure. In particular, this can be easily
achieved by rearranging the data vector 2 in a Toeplitz matrix
as

Wooon e
A V_] VO e VM/_I

=] . . , . (15)
Vo Vearn - T

which maps CM "over CM'. The rank of Tp(z) can be easily
deduced once it is factorized as follows

Tp(V) = B diag(a) B” (16)
where
1 1 1
&1 ¢) RN Y
B=| . . . . (17)
é—lM/ gé"” .. ijw
and
al 0 0
0 a - 0
diag(a) = | . . . . (18)
0 0 an
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and ¢, = exp (—jAxxy). Indeed, as long as M’ > N, since B
is a Vandermonde matrix, the rank of Tp(z) coincides with
the number of g, which are not zero, that is the number
of elemental radiators working correctly. Hence, the rank
is actually restored and at most can be N. Also, it is seen
that the range of Tp(ﬁ) is spanned by the columns of B.
For convenience denote as £(r,) = (1,¢,,---,¢M), T
meaning transposition. Accordingly, the element positions
can be found by building an indicator function like (7) which
now particularizes as

g (ea)l?
IPArg (el

Here, we continued to denote the projector onto the noise
subspace as Pys, even though now such a space is CM -
Range(Tp(ﬁ)). Also, as opposed to the MUSIC version in
[10], here, in order to implement the projector onto the noise
subspace, the eigenspectrum of Tp(ﬁ) must be computed.

It is remarked that after the rank recovering procedure is
applied, the dimension of the noise subspace reduces. Indeed,
while for uncorrelated signals the noise subspace dimension
is M — N, for (19) it is M’ — N. In other words, half the
measurements are used to restore the rank. This reduction
can impact on the achievable performances and put a more
stringent limit on the size of the arrays that can be diagnosed
since N < M’ = (M — 1)/2 must hold. This drawback is
common to any smoothing procedure, even though it can be
less severe by employing the forward-backward smoothing
method [19]. However, under particular circumstances, this
drawback can be avoided completely. In particular, for the
case at hand, this happens if the excitation coefficients are all
real. Indeed, if the a,, are all real then the data vector can be
arranged as

I(ry) = 19)

) Vo ‘A/—A(M’—l) ce A‘A/M’
Vi Vom V-
. =1y
Tp,(V) = . (20
Ve Vo Ve

where * means conjugation. It is easy to verify that Tp,(V)
enjoys the same factorization as Tp(V) with B being replaced
by

CI*M, é-;M/ .. é-;\klM/
oL oy

B, = 1 1 1 21
4] '$) LN
;f"f/ ¢l o CN/

Therefore, while the rank of Tp, (2) is the same as Tp(ﬁ),
now the noise subspace is clearly CM — Range(Tpr(ﬁ)) and
hence its dimension turns out to be M —N. The corresponding
MUSIC indicator has the same form as (19) but the columns
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FIGURE 1. Normalized eigenvalue value behavior of Tp,@ for different
SNR.

of B, must be used as trial vectors. For this case, in the sequel,
the indicator will be denoted as I,.

IV. NUMERICAL EXAMPLES

In this section we report some numerical examples in order
to corroborate previous arguments. In particular, for the sake
of simplicity, we consider the array elements as well as the
probe antennas to be isotropic 2D radiators. The excitation
coefficients are assumed real so that the formulation in (20)
and the corresponding indicator I are employed. The indi-
cator resulting from the MUSIC method presented in [10] is
instead indicated as I.

| (]

I [d8]

r

>/

| [#8]

T

B —a = o 2 a 6
E75N

As a first example we consider a slice (linear array) that
mimics the array configuration addressed in [10]. In partic-
ular, the linear array consists of N = 27 elements arranged
uniformly over SD = [—6.5X, 6.5A], X being the wavelength,
whereas the radiated field is collected at zp = 5A over
the measurement aperture [—20A, 201] and sampled at A /2,
hence M = 81. The defective elements are 13 and are all
located on the same side of the array. In Fig. 1, the eigenvalue
behaviour of Tp,(ﬂ) is reported for different SNR whereas
in Fig. 2 the corresponding indicators 7 and I are compared.

From Fig. 1 it can clearly be appreciated that the rank
recovering procedure works very well. Indeed, even for a
relatively high level of noise, the number of working elements
is clearly determined. Moreover, the signal eigenvalues are
well discerned from the noise ones. This allows to easily
identify the noise subspace. This circumstance occurs also for
the other examples in the following. Therefore, for such cases
we omit to report the corresponding eigenvalue behavior
again. As to the defective element detection, Fig. 2 shows that
both methods succeed in finding them under different noise
levels. However, I, is definitely better. Indeed, the indicator
amplitude range is much higher, which entails a sharper
detection. Moreover, while the method in [10] fails to resolve
the working elements, I does. This is a clear indication that
the proposed method has a better resolution.

Nonetheless, as previously said, both methods identify
the defective elements and hence it is natural to inquire if
the proposed method is really worth using. We need hence
to elaborate more in depth on this question. First, it is

0.9
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FIGURE 2. The array consists of 27 elements. The defective ones are denoted by black bullets whereas the working ones as red
bullets. For (a) and (b) SNR= 30dB, for (c) and (d) SNR= 20dB and for (e) and (f) SNR= 10dB. Left column report /» whereas the

right one the results reported by the method described in [10].
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FIGURE 3. The case of a single defective element located at position 13. The configuration parameters are the same as Fig. 2.
The defective element is denoted by a black bullet whereas the working ones as red bullets. For (a) and (b) SNR= 30dB,
for (c) and (d) SNR= 20dB and for (e) and (f) SNR= 10dB. Left column report I whereas the right one the results reported by

the method described in [10].
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x/ X
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FIGURE 4. The effect of reducing the measurement aperture (MA). The configuration parameters are the same as Fig. 3 with
MA = [-101, 101] in (a) and MA = [-7), 71] in (b). The number of measurement is 41 and 29, respectively. SNR has been fixed

at 20dB.

noted that in the previous example the defective elements
are close to each other and on the same side. This actu-
ally simplifies the detection stage. A more difficult scenario
is when a defective element occurs amidst two that works
properly. Indeed, in this case, because of the limited reso-
lution, the reconstruction of the working elements may hide
the defective one. Therefore, in order to check our method
under such circumstances, we chose to consider the extreme
case whereby only one non-functional element is positioned
amidst the functional ones. One may argue that this case
could have limited practical interest as, in general, only one
defective element does not significantly modify the radia-
tion pattern of the array antenna. However, it may happen
that many isolated (i.e., which are surrounded by properly
functioning elements) defective elements may be present.
Therefore, such a case can be considered as the most crit-
ical scenario against which diagnostic methods have to be
checked.

VOLUME 7, 2019

According to the previous discussion, we just rerun the
same example as in Fig. 2 but now a single defective element
is located at position 13. The corresponding indicator func-
tions are reported in Fig. 3. By looking at such a figure it is
evident that the proposed approach performs much better than
the MUSIC method presented in [10]. Indeed, I, (reported
on the left column) succeeds in detecting and locating the
defective element as well as all the correctly working ones.
Instead, from / (reported on the right column) it is even more
difficult to detect the defective element since the indicator in
correspondence of the faulty elements does not even exhibit
a local minimum.

As a final example, we consider the effect of reducing the
measurement aperture. This is an important issue since reduc-
ing the measurement aperture entails reducing the number of
measurements and hence speeding up the overall diagnos-
tic procedure. The corresponding I functions are reported
in Fig. 4 for the case MA = [—10A, 10A] and [—7A, 7A],
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respectively, while the array is kept the same as for previ-
ous examples. In particular, for these cases the number of
measurements (still taken with a A/2 step) are M = 41
and M = 29 and the SNR has been fixed at 20dB. As can
be seen, the defective element is still clearly detected. This
confirms the weak dependence of MUSIC performances on
the measurement aperture. In particular, it is interesting to
remark that the proposed method works well also for the
case reported on the right panel of such a figure, where the
dimension of the noise subspace is only 3. This is of course
consistent with MUSIC theory which prescribes that M >
N +1. The latter condition can be considered as a prescription
of how large the measurement aperture must be once the array
to be diagnosed has been given. In particular, for the case at
hand, having chosen a sampling step of A /2, the measurement
aperture should be at least 13.5) in size. Note that we just
considered MA of 14A.

V. CONCLUSION

In this contribution we considered the problem of detecting
turned off defective elements which can be located inside an
array antenna from near-field measurements. In particular,
we focused on the MUSIC based method which has recently
been proposed in [10].

First, we showed that the MUSIC presented in [10] is in
general no better than BTM or MM. This is because the corre-
lation matrix R is rank deficient, which makes the signal sub-
space of dimension one, regardless of the number of elements
in the array. Then, to cope with this limitation, here we pro-
posed a simple scheme for recovering the rank of R based on
a suitable arrangement of data in terms of a Toeplitz matrix.
In particular, this was possible after casting the problem in
the spatial frequency domain. Numerical simulations actually
showed that the proposed method outperforms the MUSIC
implementation presented in [10]. In particular, the method
works well also for a limited measurement aperture as long
as M > N + 1 and the field is sampled at A /2.

Of course the considered 2D scalar case is a rather simple
scenario and should be meant as a way to more easily convey
the discussion and show the numerical examples. However,
the study can be easily extended to more realistic scenar-
ios and this is actually one of our commitments for future
developments.
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