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ABSTRACT This paper proposes a novel model-free adaptive control (MFAC) strategy for urban road traffic
network via perimeter control based on dynamic linearization technique and predictive control. The accurate
traffic flow model of the urban road network is replaced by equivalent data model. Based on the idea of
predictive control, the current control action is obtained by solving online, at each sampling coordinate,
a finite horizon closed-loop optimal control problem. The robustness of the MFAC strategy to time-varying
desired vehicle accumulation, random traffic demand and macroscopic fundamental diagram (MFD) model
uncertainty is verified through simulation results.

INDEX TERMS MFAC, model predictive control (MPC), MFD, perimeter control, urban road traffic
network.

I. INTRODUCTION
In the field of traffic engineering, urban road traffic network
has become increasingly important. The main reason is the
rapid development of transportation network infrastructure
and demand in metropolitan areas around the world.

Modelling of transportation networks based on MFD was
initially proposed by Godfrey in [1], and the existence was
provided later by rigorous theory from Daganzo [3]. MFD
provides aggregate relationships among traffic variables at
urban networks, i.e. the MFD can respectively link between
network vehicle density (veh/km) or accumulation (veh) and
network space-mean flow and trip completion flow (veh/hr).
The MFD aims at developing aggregate MFD-based models
of the traffic flow dynamics for large-scale urban road traffic
networks by reducing the modelling complexity.

MFD enables the design of elegant control strategies while
improving mobility and decreasing delays in large road net-
works. They were found to firstly describe the dynamics of a
congested urban road traffic network in Yokohama (Geroli-
minis and Daganzo in [2]). Adopting the concept of MFD
to model and traffic flow control on large-scale urban road,
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traffic networks have been investigated extensively in the past
few years, such as [5], [6], [24], [25].

The concept of MFD is also the basis of perimeter control
strategies. In perimeter control, MFD is used to manipulate
the transfer flows along the perimeter of an urban road region.
Different control approaches have been implemented to solve
the perimeter control problems, such as feedback control
approach and optimal control. The classical feedback con-
trol approach was adopted in [5], [6], where a Proportional-
Integral (PI) perimeter controller was designed for an urban
road region in [5], while in [6] a multivariable feedback regu-
lator for multiple regions was appeared. Recently, an optimal
perimeter controllerin [7] for a two-region urban city is for-
mulated by exploiting the notion of MFD.

Model predictive heuristic control (MPHC) [8], dynamic
matrix predictive control [22], and generalized predictive
control (GPC) [9] are representative algorithms in MPC
field. MPC methods have achieved great success in practical
applications, especially in traffic network control [10]–[12].
In [10], mixed-integer linear programming (MILP) was pro-
posed to increase the online feasibility of the proposed MPC
method. According to the results in [10], efficient network-
wide MPC-based control methods are investigated [11].
In [12], a decentralized multi-agent MPC is proposed for
decoupled urban road traffic network. Although MPC has
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many advantages, such as high control performance and
robustness to uncertainties and/or disturbances, the plant
model or its structure is still required to be known for con-
troller design, and the accuracy of the model will directly
affect the control performance. Practically, an accurate traffic
flowmodel of certain urban road network is difficult to estab-
lish and may be sensitive to some parameters of the traffic
network, including turning ratios, exit rates and saturation
flows. As a result, it is desirable to design a model-free or
data-driven control strategy for phase splits in urban road
traffic network.

Neural adaptive control [15], [16] and fuzzy adaptive con-
trol [17] can realize adaptive control for nonlinear systems
without the need of an accurate model dynamics.While either
a comprehensive understanding of the controlled system in
order to establish fuzzy rules or massive operation data of
the system to train neural networks is needed. Generally
speaking, the controller design depends on fuzzy rules or
neural network model, thus, the fundamental problems of
model-based control still exist there.

MFAC [13], [14] methodology proposed by Hou is
designed and analyzed based on the dynamic linearization
technique (DLT) for discrete-time nonlinear systems. These
theoretical analysis and extensive field applications show
their effectiveness and applicability to unknown discrete-time
nonlinear systems. In reference [23], a model-free adaptive
predictive controller is lifted for phase splits of the urban
road traffic network. MFAC, which only uses the input and
output data of closed-loop systems relaxes the requirement
of predictive control accuracy.

This paper proposed a model-free adaptive control
approach for urban road traffic network via perimeter control.
The predictive data model from dynamic linearization is used
to improve the control performance, and the effectiveness of
this control strategy is verified by simulation comparisonwith
the traditional PID controller using Matlab.

Starting with the perimeter control of urban road traffic
network of Beijing, a simulation model is built by Vissim
simulation platform, based on the MFD obtained in advance.
A model-free adaptive control algorithm for an urban road
traffic network is designed via perimeter control. This paper
considers the difference between the control algorithm in
theory and practical application to better play the role of
control and further achieve the good performance on traffic
congestion.

II. PROBLEM FORMUATION
In this paper, a heterogeneous traffic network that can be
partitioned into two homogeneous regions is considered.

The traffic network for a two-region system is schematically
shown in Fig 1. The traffic model based on vehicle conserva-
tion equation [18] can be described using equation (1)-(3), as
shown at the bottom of this page.
q11(t)(veh/s) is internal traffic demand for region 1.
q12(t)(veh/s) is vehicle flow demand from region 1 to
region 2. q21(t)(veh/s) is vehicle flow demand from region 2
to region 1. n11(t)(veh) is the cumulative number of vehi-
cles on the road network destined for region 1 in region 1.
n12(t)(veh) is the cumulative number of vehicles on the road
network destined for region 1 in region 2. n1(t)(veh)is cumu-
lative number of vehicles for region 1 road network. where
n1(t) = n11(t)+ n12(t).
G1(n1(t))(veh/s) represents the total number of vehicles in

region 1 at t instant. The control input satisfy 0 ≤ u(t) ≤ 1,
which is used to adjust the flow ratio from region 1 to
region 2 or from region 2 to region 1 at the regional boundary.

The control task of this paper is to design an appropriate
control algorithm to update the control input u(t), so as to
the cumulative number of vehicles in region 1 can reach the
desired number of vehicles n1,ss.

III. DESIGN OF MODEL-FREE ADAPTIVE PREDICTIVE
BOUNDARY CONTROLLER
Define α(t) = n11(t)/n1(t), combine (1) and (2), we obtain

dn1(t)
dt
= q11(t)+ q12(t)+ (1− u(t)) · q21(t)

−α(t)·G1(n1(t))− (1−α(t))·u(t)·G1(n1(t)) (4)

Set sampling time as T , discrete (4), we can obtain

n1(k + 1)

= n1(k)+ T (q11(k)+ q12(k)+ (1− u(k)) · q21(k))

−T (α(k) · G1(n1(k))− (1− α(k)) · u(k)G1(n1(k))) (5)

System (5) has the following two properties.
Properties 1: Except for limited time instants, the partial

derivative of n1(k+1) with respect to variable u(k) is contin-
uous.
Properties 2: Except for limited time instants, the system

satisfies the generalized Lipschitz condition, namely, for any
k1 6= k2, k1, k2 ≥ 0, (6) can be established.

|n1(k1 + 1)− n1(k2 + 1)| ≤ b|u(k1)− u(k2)| (6)

where b > 0 is a constant.
It’s obviously that the partial derivative of (5) with respect

to variable u(k) is continuous, thus the correctness of property
1 is verified. In the actual traffic network, the number of

dn11(t)
dt

= q11(t)+ (1− u(t)) · q21(t)−
n11(t)
n1(t)

· G1(n1(t)) (1)

dn12(t)
dt

= q12(t)−
n12(t)
n1(t)

· G1(n1(t)) · u(t) (2)

n1(t) = n11(t)+ n12(t) (3)
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FIGURE 1. Two-region MFDs system.

vehicles will not increase indefinitely, thus, generalized Lip-
schitz condition can be satisfied for system (5), property 2 is
verified.

According to [14], for a class of nonlinear systems which
satisfying properties 1 and 2, when |1u(k)| 6= 0, there
must exist a time-varying parameter φc(k) ∈ R called
pseudo-partial derivative (PPD). The non-linear system can
be transformed into the following compact form dynamic
linearization (CFDL) model (7).

n1(k + 1) = n1(k)+ φc(k) ·1u(k) (7)

and φc(k) is bounded and nonsingular at any time instant k .
Remark 1: φc(k) is related to the system inputs and outputs.

However, φc(k) is a differential signal in some sense and
bounded for any time instant k . So we can regard φc(k) as
a slowly time-varying parameter.

According to (7), N-step-ahead prediction equations are
given as formula (8):

And let

YN (k + 1) = [n1(k + 1), · · · , n1(k + N )]T

1UN (k) = [1uN (k), · · · ,1uN (k + N − 1)]T

Ek = [1, · · · , 1]T

where YN (k + 1) denotes the N -step-ahead prediction vector
of the system output. 1UN (k) is the control input increment
vector, and Nu is the control input horizon.
Then Formula (8), as shown at the bottom of this page, can

be rewritten in a compact form:

YN (k + 1) = E(k)n1(k)+ A(k)1UN (k) (9)

The definition of matrix A can be found in formula (10).
If 1u(k + j− 1) = 0, j > Nu, then prediction equation (9)

can be formulated as (11), as shown at the bottom of the next
page,

YN (k + 1) = E(k)n1(k)+ A1(k)1UNu (k) (10)

where

A1(k)=



φc(k) 0 0 0
φc(k) φc(k + 1) 0 0
...

...
. . .

...

φc(k) φc(k + 1) · · · φc(k + Nu − 1)
...

... · · ·
...

φc(k) φc(k + 1) · · · φc(k + Nu − 1)


N×Nu

and 1UNu (k) = [1u(k), · · · ,1u(k + Nu − 1)]T



n1(k + 1) = n1(k)+ φc(k) ·1u(k)
n1(k + 2) = n1(k + 1)+ φc(k + 1) ·1u(k + 1)

= n1(k)+ φc(k) ·1u(k)+ φc(k + 1) ·1u(k + 1)
...

n1(k + N ) = n1(k + N − 1)+ φc(k + N − 1) ·1u(k + N − 1)
= n1(k + N − 2)+ φc(k + N − 2) ·1u(k + N − 2)+ φc(k + N − 1) ·1u(k + N − 1)

...

= n1(k)+ φc(k) ·1u(k)+ · · · + φc(k + N − 1) ·1u(k + N − 1)

(8)
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A. CONTROLLER ALGORITHM
The following control input criterion function (12) is
considered

J=
N∑
i=1

(
n1(k+i)−n1∗(k + i)

)2
+λ

Nu−1∑
j=0

1u2(k+j) (12)

where λ > 0 is a weighting factor, and n1∗(k+i) is the desired
output of the system at k + i instant, i = 1, 2 · · ·N .
Let Y ∗N (k + 1) = [n∗1(k + 1), · · · , n∗1(k + N )]T , then the

cost function (12) becomes

J = [Y ∗N (k + 1)− YN (k + 1)]T [Y ∗N (k + 1)− YN (k + 1)]

+ λ1UT
Nu1UNu (13)

To obtain the controller, differentiating the performance
index J with respect to1UNu (k), setting the derivative equals
to zero yield the control law:

1UNu (k) =
[
AT1 (k)A1(k)+ λI

]−1
AT1 (k)

×
[
Y ∗N (k + 1)− E(k)n1(k)

]
(14)

Thus, the control input at current time k is obtained accord-
ing to the receding horizon principle as follows:

u(k) = u(k − 1)+ gT ·1UNu (k) (15)

where g = [1, 0, · · · , 0]T .
When Nu = 1, Equation (15) becomes

u(k) = u(k − 1)+
1

φ2c (k)+ λ\N
1
N

· [φc(k)
N∑
i

(n∗1(k + i)− n1(k))] (16)

B. PPD ESTIMATION ALGORITHM AND
PREDICTION ALGORITHM
Since A1(k) in (15) contains unknown PPD parameters
φc(k), φc(k + 1), · · · , φc(k + Nu − 1), some time-varying
parameter estimation or prediction algorithm should be devel-
oped when it is used in applications. Theoretically speaking,
any estimation algorithm for time-varying parameters can be
applied to PPD parameter estimation, but we still use the
modified projection algorithm to estimate φc(k) here in order

to facilitate the theoretical analysis for the control system,
that is,

φ̂c(k) = φ̂c(k − 1)+
η1u(k − 1)

µ+1u(k − 1)2

· [1n1(k)− φ̂c(k − 1)1u(k − 1)] (17)

where µ > 0 is a weighting factor, and 0 < η < 1 is a step
size factor.

Since φc(k + 1), · · · , φc(k + Nu − 1) cannot be directly
calculated from the I/O data till sample time k , they need
be predicted according to the past estimated sequence
φ̂c(1), · · · , φ̂c(k). In this paper, the multilevel hierarchical
forecasting method [13] is applied here to predict unknown
parameters φc(k + 1), · · · , φc(k + Nu − 1).
Assume that the estimated values φc(1), · · · , φc(k) have

been calculated by (17) at time k . Using these estimated
values, an auto regressive (AR) model for prediction is con-
structed as follows:

φ̂c(k + 1) = θ1(k)φ̂c(k)+ θ2(k)φ̂c(k − 1)+ · · ·

+ θnp (k)φ̂c(k − np + 1) (18)

where θi, i = 1, · · · , np is the coefficient and np is
the fixed model order, which is usually set to 2 − 7 as
recommended.

Using (18), the prediction equation becomes,

φ̂c(k + j) = θ1(k)φ̂c(k + j− 1)+ θ2(k)φ̂c(k + j− 2)

+ · · · + θnp (k)φ̂c(k + j− np) (19)

where j = 1, · · · ,Nu − 1.
Let θ (k) = [θ1(k), · · · , θnp (k)]

T , it is determined by the
following equation:

θ (k) = θ (k − 1)+
φ̂(k − 1)

δ + ‖φ̂(k − 1)‖2

· [φ̂c(k)− φ̂
T
(k − 1)θ (k − 1)] (20)

where φ̂(k − 1) = [φ̂c(k), · · · , φ̂c(k − np)], and δ ∈ (0, 1] is
a positive constant.

C. CONTROL SCHEME
Integrating control algorithm (15), parameter estimation
algorithm (17), and the prediction algorithm (19) and (20),
model-free adaptive predictive control (MFAPC) scheme is

A(K ) =



φc(k) 0 0 0 0 0
φc(k) φc(k + 1) 0 0
...

...
. . .

...
...

φc(k) · · · φc(k + Nu − 1)
...

...
. . . 0

φc(k) φc(k + 1) · · · φc(k + Nu − 1) · · · φc(k + N − 1)


N×N

(11)
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designed as follows:

φ̂c(k) = φ̂c(k − 1)+
η1u(k − 1)

µ+1u(k − 1)2

· [1n1(k)− φ̂c(k − 1)1u(k − 1)] (21)

φ̂c(k) = φ̂c(1) if |φ̂c(k)| ≤ ε or |1u(k − 1)| ≤ ε

or sign(φ̂c(k)) 6= sign(φ̂c(1)) (22)

θ (k) = θ (k − 1)+
φ̂(k − 1)

δ + ‖φ̂(k − 1)‖2

· [φ̂c(k)− φ̂
T
(k − 1)θ (k − 1)] (23)

θ (k) = θ (1), if ‖θ (k)‖ ≥ M , (24)

φ̂c(k + j) = θ1(k)φ̂c(k + j− 1)+ θ2(k)φ̂c(k + j− 2)

+ · · · + θnp (k)φ̂c(k + j− np)

j = 1, 2, · · · ,Nu − 1 (25)

φ̂c(k + j) = φ̂c(1), if |φ̂c(k + j)| < ε

or sign(φ̂c(k + j)) 6= sign(φ̂c(1)),

j = 1, 2, · · · ,Nu − 1 (26)

1UNu (k) =
[
AT1 (k)A1(k)+ λI

]−1
AT1 (k)

×
[
Y ∗N (k + 1)− E(k)n1(k)

]
(27)

u(k) = u(k − 1)+ gT ·1UNu (k) (28)

where ε, λ, µ and M are positive constants, η and δ ∈

(0, 1], Â1(k) and φ̂c(k + j) are the estimated values of A1(k)
and φc(k + j) respectively.

The stability and convergence can be seen the proof of
Theorem 6.1 in [14].

IV. SIMULATION STUDY
A. SIMULATION SETUP
In this section, an isolated junction with 4 phases is simulated
on Matlab platform to show the effectiveness of the proposed
scheme for phase splits.

The MFD is well defined, that is, there is no uncertainty.
The parameters of the selected regional macroscopic fun-
damental diagram (MFD) are set as (29), and the shape of
the MFD is schematically shown in Fig.2. For controller
parameter tuning, the sampling period adopted is 1 second
and the simulation time is 10800 seconds.

G1(n1) = (−0.02331n12 + 29.3706n1)/3600

n1,cr = 630(veh)

G1(n1,cr ) = 2.57(veh/s)

n1,jam = 1260(veh)

α (0) = 0.2 (29)

Two scenario was considered, the initial accumulations
n1(0) is set to be 200 in initial nocongested network and
n1(0) = 1000 in initial congested network.

The parameters of MFAPC scheme are n = 3, nu = 1, ε =
10−5, δ = 1, η = 1. The initial value of PJM is set to be.

Flow on the boundary is also accurate, that is, there is no
measurement noise. Flow demand is shown in Table 1.

FIGURE 2. The shape of the MFD.

TABLE 1. Constant traffic demand.

FIGURE 3. Control performance with time-varying desired vehicle
accumulation.

B. SIMULATION RESULT
In order to demonstrate the advantages of the model-free
adaptive predictive boundary control algorithm, traditional
PID boundary control algorithm is involved under different
scenarios, including time-varying desired accumulation vehi-
cle, random traffic demand and MFD model uncertainty.

1) TIME-VARYING DESIRED VEHICLE ACCUMULATION
On the one hand, it is difficult to determine an accurate
desired vehicle accumulation due to the complexity of traffic
network. On the other hand, the universality of the algorithm
require the tracking task should be complex and changeable.
And a time-varying desired vehicle accumulation could better
react the real traffic situation than a time invariant desired
vehicle accumulation. In this scenario, n1,ss = 550 + 50 ∗
sin(k ∗ pi/5400).

The control performances under the method of PID and
MFAPC are shown in Fig. 3. The results show that both PID
algorithm and the proposed model-free adaptive predictive
boundary control algorithm (MFAPPC) can realize desired
vehicle accumulation tracking under complicated scenes.
When the morning peak arriving at 7 : 30, it begins to appear
a very large tracking fluctuation using PIDmethod.While the
proposedmethod could realize almost perfect tracking, which
achieves a better performance than PID.
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TABLE 2. Time-varying traffic demand.

FIGURE 4. Control performance under random traffic demand.

2) RANDOM TRAFFIC DEMAND
Traffic demand is also a uncertainty factor in the actual traffic
systems. On the one hand, the detection ability of vehicle
detector is limited, it can’t give the accurate vehicle number
at each sampling time. on the other hand, the drivers’ route
choice is not entirely fixed due to their temporary behavior,
thus it is difficult to count the exact traffic demand.

Comparing to the fixed traffic demand is table (1), the ran-
dom varying traffic demand is used in table (2) to simulate
the traffic demand.

The tracking performance of the two boundary control
algorithms in the initial nocongested network and congested
road network is studied. The variation of vehicle cumulative
number in the road network is shown in Fig. (4). It can be
seen that model-free adaptive predictive boundary control
algorithm still could achieve a good tracking performance
under more complex traffic demand, which increases the
application possibility of the proposed in practice traffic
road network. It is precisely because model-free adaptive
predictive boundary control algorithm synthesizes the advan-
tages of the model-free adaptive control and predictive con-
trol. Accurate model is not needed in model-free adaptive
control. While future steps could be predicted using pre-
dictive control under many uncertainties or time-varying
variables.

3) MFD MODEL WITH UNCERTAINTY
In previous simulation scenarios, MFD model is considered
well defined. In practices, there exists errors in the process
of data measurement, collection, handling and fitting. And
these errors could lead to the uncertainty of the MFD model.
The vehicle cumulative number in the road network is shown
in Fig. (5).

Compared with the simulation scenario 1, 2 and 3, the con-
trol effect is slightly reduced in this scenario, while the
tracking error is also within acceptable range. It also can
been seen that the uncertainty of the MFD model is an
important factor for perimeter control for urban traffic
network.

FIGURE 5. Control performance with MFD uncertainty.

C. SUMMARY OF SIMULATION
In the simulation of this chapter, the tracking effects ofmodel-
free adaptive predictive boundary control and traditional PID
control are observed and analyzed under there simulation
scenarios. It is not difficult to see that the proposed model-
free adaptive predictive perimeter control algorithm based on
MFD has good tracking performance and strong robustness.
Feasibility and control performance of the two control algo-
rithms were compared using MATLAB software.

V. CONCLUSION
In this paper, a MFAC strategy is developed for urban road
traffic network with perimeter control. It is different from the
studies based on the known traffic model that the dynamic
model of the MFD considered here is unknown except for
input/output data. Utilizing the dynamic linearization tech-
nique and the principle of predictive control, the proposed
control scheme is obtained online by minimizing an cost
function in prediction horizon. The simulation studies verify
the effectiveness of the proposed operation strategy by time-
varying desired vehicle accumulation, random traffic demand
and MFD model uncertainty. It can be used in urban road
traffic systems to improve traffic response.
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