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ABSTRACT Accurate segmentation of bi-ventricle from cardiac magnetic resonance images (MRI) is a
critical step in cardiac function analysis and disease diagnosis. Due to the morphological diversification
of the heart and the factors of MRI itself, fully automated and concurrent bi-ventricle segmentation is
a well-known challenge. In this paper, we propose cascaded conditional generative adversarial networks
(C-cGANs) to divide the problem into two segmentation subtasks: binary segmentation for region of interest
(ROI) extraction and bi-ventricle segmentation. In both subtasks, we adopt adversarial training that makes
discriminator network to discriminate segmentation maps either from generator network or ground-truth
which aims to detect and correct pixel-wise inconsistency between the sources of segmentation maps. For
capturing more spatial information with multi-scale semantic features, in the generator network, we insert a
multi-scale attention fusion (MSAF) module between the encoder and decoder paths. The experiment on
ACDC 2017 dataset shows that the proposed model outperforms other state-of-the-art methods in most
metrics. Moreover, we validate the generalization capability of this model on MS-CMRSeg 2019 and
RVSC 2012 datasets without fine-tuning, and the results demonstrate the effectiveness and robustness of
the proposed method for bi-ventricle segmentation.

INDEX TERMS Bi-ventricle segmentation, ROI extraction, cascaded conditional generative adversarial
networks (C-cGANs), MSAF module.

I. INTRODUCTION
The World Health Organization reports that cardiovascular
diseases (CVDs) with a high incidence have been the lead-
ing cause of death worldwide [1]. Cardiac image analy-
sis plays an important role in the diagnosis and treatment
of CVDs. As is known to all, cardiac magnetic resonance
images (MRI) are considered as the most accurate method
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to estimate clinical indicators, such as ventricular volume,
ejection fraction, myocardial mass, etc. [2]. The accurate and
reliable method for calculating these indicators is to delineate
the contours of blood pool of left ventricle (LV), left ven-
tricular epicardium (or myocardium, MYO) and blood pool
of right ventricle (RV) in end-diastole (ED) and end-systole
(ES) phases which is also called bi-ventricle segmentation.
However, manual segmentation is not only cumbersome and
time consuming, but also prone to intra- and inter-observer
variability [3]. Therefore, accurate and automated algorithms
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FIGURE 1. (a) Short-axis slice of cardiac MRI. (b) Cross section obtained
by reconstructing multiple slices along the short axis. Note: Slice
misalignment is due to different breath-holds during successive image
acquisitions.

for bi-ventricular segmentation are urgently needed in clinical
practice.

The difficulties and challenges of heart segmentation
have been clearly demonstrated in previous studies [4]–[6].
Among them, as shown in Fig. 1 (a), the following points
are more notable: 1) local poor contrast between heart and
surrounding structures especially in apex and base; 2) similar
pixel intensity in papillary muscles and MYO; 3) inherent
noise due to motion artifacts; 4) diversity of cardiac morphol-
ogy and pixel intensity especially in RV; 5) imbalance of area
ratio of the heart and the background. Some previous works
have overcome partial challenges on the segmentation of the
single-ventricle (more on LV rather than on RV) [6]–[11].
Although the bi-ventricle contours can be obtained by putting
the results of a single-ventricle segmentation model together
in previous research [12], this practice cannot learn the related
anatomical information of the bi-ventricle, ignoring the mor-
phological correlations and resulting in the accumulation of
errors. Therefore, concurrent segmentation of the two ventri-
cles makes more sense and becomes a challenging task.

Over the past decades, some conventional methods that
performed well in single-ventricle segmentation have also
been tried for bi-ventricle. These can be roughly divided into
strong prior and weak prior methods. Specifically, strong
prior methods include: 1) active shape and appearance mod-
els [13], [14] whose results are influenced by the number
of cardiac MRI images; 2) atlas-based methods [15] using
atlas as frame of reference. Due to anatomical variability,
it is difficult to accurately segment RV with variable shapes.
Weak prior methods include: 1) pixel-based and image-based
methods such as Threshold [16] and clustering [17]. How-
ever, they cannot distinguish between the myocardium and
the blood pool leading to failure when the two ventricles
and adjacent structures exhibit similar intensity distributions;
2) deformable model methods such as active contour [18]
and level-set [19]. They are sensitive to diverse boundary
variations due to pathologies and behave badly to local weak
and no boundary due to noise and artifacts, as well as with
high computational cost. In general, strong prior methods
excessively rely on prior information such as handcrafted
features which have limited expressive power for rare patho-
logical cases. On the other hand, weak prior methods have
relatively low accuracy and robustness so as to need more

interactive operation. Automated bi-ventricle segmentation
still has more room for improvement.

Deep learning has been applied to various pattern recogni-
tion and computer vision tasks in recent years. In particular,
convolutional neural networks (CNNs) have achieved great
success in the field of medical image segmentation com-
pared to traditional methods because of its stronger hierar-
chical learning and representation capabilities. CNN derive
representative variants such as 2D U-Net [20] and 3D U-
Net [21], which guides the new development direction for
medical image segmentation. Up to now, researchers have
developedmany automated deep learningmethods inmedical
image segmentation which are divided into three categories:
2D (a slice as unit), 3D (a volume as unit) and combination
of 2D and 3D (multiple slices as unit). 2D methods have a
wide range of applications because they have fewer parame-
ters and require less training data. However, they often per-
form fail on some special slices due to the lack of contextual
information within slices. For example, Zotti et al. [22] used
CNN-based model with shape prior to segment bi-ventricle
in every slice, and the results showed that they performed
well on most slices, but struggled on apical and basal slices.
3D methods have high accuracy on segmentation of some
organs with global context relation [23]–[25]. However, in the
study [26], the bi-ventricle segmentation result of 2D CNN is
better than that of 3D CNN. This indicates that slice thick-
ness has a great influence on 3D convolution (cardiac MRI
slices thickness is larger than the slice resolution, usually
5∼10 mm). Moreover, more training data and larger GPU
memory space are required for 3D segmentation. Further-
more, some studies used the combination of 2D and 3D
methods which absorbs the advantages of both. Du et al. [27]
combined CNN with a recurrent unit (Long Short-Term
Memory, LSTM) to segment all slices in one sequence from
the base to apex. The information of all slices was learned
as spatial context to segment the current slice. As shown
in Fig. 1 (b), slice misalignment usually occurs due to differ-
ent breath-holds during successive acquisitions, thus causing
slices to propagate erroneous information. On the other hand,
large slice thickness can also reduce the correlation between
slices and even fail to segment.

In addition to the above problems, an important con-
cern in the application of deep learning is the number
of medical images for training. Although Bai et al. [28]
and Zheng et al. [29] have already tried to use the UK
Biobank [30] dataset which is the largest cardiac dataset
including more than 3000 cases for 2D bi-ventricle segmen-
tation, this dataset is not open to researchers. They also
tried to validate generalization capability in other datasets
using trained models on large datasets, but the results didn’t
meet expectations. Fortunately, in 2017MICCAI, Automated
Cardiac Diagnosis Challenge (ACDC 2017) provides a cer-
tain number of cardiac MRI to measure the performance of
the most advanced bi-ventricle segmentation methods and
to find out ‘the reasons for the failure of the segmentation’.
Therefore, the current goal is probably to find the well-turned
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method on a limited amount of data to achieve the best results
and good generalization capability at the same level with
other methods, rather than simply relying on increase of the
amount of data to maintain and improve accuracy.

Through the above analysis, 2D slice segmentation method
based on deep learning is still relatively suitable to identify
bi-ventricle. In order to improve the performance of cardiac
MRI segmentation under a limited amount of data, we pro-
pose a novel 2D method which overcomes the bottleneck
of current 2D segmentation. The proposed work is to detect
cardiac region of interest (ROI) and intently segment the
cardiac bi-ventricle through adversarial training, inspired by
generative adversarial networks (GANs) [31] in the field of
medical image analysis in recent years [32-34]. A module
based on attention mechanism is introduced to enhance the
feature representations of the network. Specifically, the main
contributions of this work can be summarized as follows:
• We propose cascaded conditional generative adversarial
networks (C-cGANs) to detect cardiac ROI and seg-
ment bi-ventricle. The ROI obtained by the 1st cGAN
(C1-cGAN) is used as the input of the 2nd cGAN
(C2-cGAN) to eliminate the interference from other
organs and tissues and thereby reduce false positives.
Adversarial training alternately improves the segmenta-
tion and discrimination capabilities under labeled data.
Accurate pixel-wise classification is only yielded by the
generator network, without increasing complexity to the
model used in the testing phase.

• We insert the multi-scale attention fusion (MSAF) mod-
ule into encoder-decoder architecture as the genera-
tive network to generate high-level attention maps at
different scales. The module consists of two blocks:
position attention mechanism (PAM) block for paying
more attention to the contribution of the foreground and
weakening the influence of the background in the image
and multi-scale dilated fusion MDF) block for fusing
attention-based maps with different receptive fields.

• We train and test our proposed method on ACDC
2017 and the testing results show that we achieve
competitive segmentation compared to other the state-
of-the-art approaches for bi-ventricle segmentation. In
addition, we validate generalization capability through
testing on two open cardiac datasets. The results of
experiments demonstrate the possibility of accurate
bi-ventricle segmentation.

The rest of this work is listed as follows: the proposed
method is presented in Section II. The experiments and results
are shown in Section III. At last, Section IV states the discus-
sion and conclusion.

II. METHOD
A. OVERVIEW
The ultimate goal of our work is to concurrently segment bi-
ventricle objectives (LV/RV/MYO) from X short-axis slices
separated by 3D H × W × X raw cine MR images volume.
We propose a C-cGANs model to divide complex

FIGURE 2. Flowchart of the proposed C-cGANs model.

segmentation task into cascaded two segmentation subtasks:
foreground segmentation for cardiac ROI extraction and
multi-objective segmentation for bi-ventricle. The cascade
operation divides complex problems into two simple ones,
making the model easy to converge by sequentially training.
Cascaded architecture can also eliminate the interference
from other organs and tissues and thereby reduce false pos-
itives for accurate segmentation. As shown in Fig. 2, The
ROI extraction subtask aims to obtain the cardiac region
size-cropped x1 to increase the attention of the cardiac archi-
tecture. It is considered as binary classification (background
and cardiac morphology) essentially. First, the input image
with a certain size (256× 256) is obtained from H ×W raw
slices by pre-processing. The trained ROI extraction model
(C1-cGAN) outputs the predicted binary mask G1(x1) for x1.
To ensure that each ROI image has the same size and con-
tains the corresponding entire heart structure, we crop each
image x1 directly at the center of the largest 3D connected
domain based on the binary segmented result of cine MR
images volume. At the end, x2 is fed to C2-cGAN model to
produce accurate contours of LV, RV and MYO concurrently.
We consider that two network models are trained separately
in turns for avoiding deeper network layers so that they can
reduce training difficulty and avoid over-fitting.

In the next, we present C-cGANs model for bi-ventricle
pixel-wise segmentation in section II.B. The core network
architectures of generator and discriminator are introduced
in section II.C. The proposed adversarial training steps are
described in section II.D.

B. CASCADED CONDITIONAL GENERATIVE
ADVERSARIAL NETWORKS
1) CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
GAN has a wide range of research and applications in the
field of image and vision. The conventional GAN [31] con-
sists of two parts: a generator network D and a discrim-
inator network D. G is mainly responsible for generating
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samples G (z) obeying the distribution of real data x through
random noise z. D is responsible for identifying the input
data samples from the generator or ground-truth. Both of
them are iteratively optimized to improve their respective
performances. UntilD cannot discriminate the source of input
data, we assume thatG has learned the distribution of ground-
truth. The GAN is trained in a competitive manner which is
like a two-player mini-max game. Thus the value function
V (D,G) is defined as:

min
G

max
D

V (D,G)

= Ex [logD (x)]+ Ez [log (1− D (G (z)))] (1)

However, the conventional GAN infers generative samples
only from random noise, thus its loss is not easy to con-
verge and it will require more training iterations to obtain
acceptable segmentation results than conditional generative
adversarial network (cGAN) [35].

In cGAN, the generator which takes auxiliary information
y and random vector z as input learns mapping from joint
hidden layer characteristics to probability distribution of real
data x. Moreover, D tries to discriminate real data x or gener-
ative data G (z | y). Similar to GAN, the objective function
of cGAN is a two-player mini-max game with conditional
probability. The value function V (D,G) is defined like this:

min
G

max
D

V (D,G)

= Ex [logD (x | y)]+ Ez [log (1− D (G (z | y)))] (2)

2) CASCADED CONDITIONAL GENERATIVE
ADVERSARIAL NETWORKS
Luc et al. [36] first applied the adversarial training for
semantic segmentation, they constructed a generator as gen-
erative network whose input is the image to be segmented.
Based on previous researches, we propose cascaded cGANs
(C-cGANs) for cardiac ROI extraction and accurate
pixel-wise bi-ventricle segmentation.

The proposed C-cGANs is a cascade-connected architec-
ture which consists of C1-cGAN and C2-cGAN. C1-cGAN
is followed by C2-cGAN. In each cGAN, G takes MR image
as input to generate segmentation mask by feature extraction
capability of convolution network. Concatenation of the gen-
erative mask and corresponding MR image (or concatenation
of ground-truth mask and MR image) are input to D for
discriminating. Until the D fails to discriminate the input
source, the adversarial training can be assumed to achieve a
Nash equilibrium between G and D. More specifically, for
the C1-cGAN, image x1 with size of 256 × 256 is taken as
condition information to G1 and D1. G1 is trained by x1 to
produce predicted binary mask G1 (x1) which is supposed to
close to ground-truth binary mask gt1. Trained D1 for input
D1 (x1, gt1) tends to output 1 (real) and for D1 (x1,G1 (x1))
tends to output 0 (fake). Nevertheless, G1 tries to control D1
to output 1. The optimization goal of G1 will minimize the
objective function and D1 is opposite. The objective function

for C1-cGAN is defined as:

Ladv (D1, G1) ← min
G

max
D

V (D1, G1)

= Ex1, gt1 [logD1 (x1, gt1)]
+Ex1 [log (1− D1 (x1, G1 (x1)))] (3)

Similar to C1-cGAN, x2 denotes ROI image, gt2 represents
the ground-truth of bi-ventricle mask in C2-cGAN.We define
similar formulations for C2-cGAN:
Ladv (D2, G2) ← min

G
max
D

V (D2, G2)

= Ex2, gt2 [logD2 (x2, gt2)]
+Ex2 [log (1− D2 (x2, G2 (x2)))] (4)

Beyond the adversarial loss, we mix the cross entropy with
weighted Dice coefficient (WDC) as generative loss. The
general Dice coefficient loss [37] is disadvantageous to the
small target in segmentation. Part of the prediction error of
the small target will lead to a large change of Dice, resulting
in drastic gradient change and unstable training. In view of the
small proportion of each category in cardiacMRI, we propose
WDC loss as:

LWDC =
∑K

k=1
λk ·

(
1−

2 ·
∑N

n=1 gkn · pkn∑N
n=1 (gkn + pkn)+ ε

)
(5)

where K is the number of classes, N is the number of total
pixels in the image, gkn represents ground-truth of class k
in the nth pixel (0 or 1), and pkn represents corresponding
predicted value (from 0 to 1), ε equals to 10−5 for numerical
stability, λk denotes the weighted factor of class k which
varies with the number of class of pixels and defined as:

λk = 1−

∑N
n=1 gkn∑K

k=1
∑N

n=1 gkn
(6)

The WDC loss improves the segmentation contour, while
the cross entropy loss optimizes each class of accuracy on
pixel-level. For two tasks with different segmentation objec-
tives, the binary cross entropy (BCE) and categorical cross
entropy (CCE) are used for G1 and G2. We get respective
generative losses:

Lgen (G1) =
∑K1

k=1
λk ·

(
1−

2 ·
∑N1

n=1 gkn · pkn∑N1
n=1 (gkn + pkn)+ ε

)
︸ ︷︷ ︸

LWDC

+

(
−

1
N1

(∑N1

n=1

∑K1

k=1
gkn log (pkn)

))
︸ ︷︷ ︸

LBCE

(7)

where K1 = 2 (2 classes: heart and background), and N1 =

H ×W = 256 × 256 which is the number of total pixels of
original image;

Lgen (G2) =
∑K2

k=1
λk ·

(
1−

2 ·
∑N2

n=1 gkn · pkn∑N2
n=1 (gkn + pkn)+ ε

)
︸ ︷︷ ︸

LWDC

+

(
−

1
N2

(∑N2

n=1

∑K2

k=1
gkn log (pkn)

))
︸ ︷︷ ︸

LCCE

(8)
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FIGURE 3. An illustration of proposed generator network. The input images are followed by the encoder path, MSAF module and decoder path to
acquire the corresponding contours. The number of output channel is shown under each block. In the last layer, Sigmoid/Softmax functions are
applied for 2 and 4 classes classification of ROI extraction subtask and bi-ventricle segmentation subtask, respectively.

where K2 = 4 (4 classes: LV, RV, MYO, and background),
and N2 = H ×W = 128× 128 which is the number of total
pixels of ROI image.

To the end, we obtain the final losses for both ROI extrac-
tion and bi-ventricle segmentation tasks as follows:

LC1−cGAN (D1, G1) = Ladv (D1, G1)+λ · Lgen (G1) (9)

LC2−cGAN (D2, G2) = Ladv (D2, G2)+λ · Lgen (G2) (10)

where λ is set to 10 empirically for magnitude balance. In
order to reduce the complexity of training and to segment the
bi-ventricle with accurate cardiac ROI, we separately train the
two networks in sequence.

C. NETWORK ARCHITECTURES
1) GENERATOR NETWORK
As shown in Fig. 3, the generator network in C-cGANs
includes three parts: the encoder path, the MSAF module and
decoder path. Compared with the 31 million (M) parameters
of the U-Net, the number of parameters of the proposed
generator network is only 6.3 M.

a: ENCODER PATH AND DECODER PATH
In the encoder path, we take a simplified inception block
as the first layer for processing the input image by channel
concatenation with multi-scales. Each group of filter num-
ber is 16 and kernels have three sizes of 1 × 1, 3 × 3
and 5 × 5(see Fig. 4(a)). Unlike U-Net, we adopt residual
block before each max-pooling layer instead of two simple
convolution layers in encoder path. As shown in Fig. 4 (b),
this block concatenates the previous layer and the layer
obtained after two convolutions as the next input. Thus,

FIGURE 4. (a) Simplified Inception block. We concatenate three C/3
channels produced by 1× 1, 3× 3 and 5× 5 convolution layers.
(b) Residual block. The number of output channel C = C1 + C2.

more significant original information can be preserved, and
vanishing gradient and exploding gradient problems can be
avoided. The feature map is resized into 1/8 of the input
image by three max-pooling operations to extract high-level
semantic information. In the decoder path, we utilize the up-
sampling operation to reshape the featuremap to original size.
In order to alleviate the number explosions of feature map
in the encoder path, we employ skip connection to combine
max-pooling layers and corresponding up-sampling layers
using pixel-wise addition rather than channel concatenation.
A 1×1 convolution which is considered as bottleneck layer is
used in the skip connection to math channel dimension. This
operation contributes to reduce parameter and memory usage
compared to the concatenation operation without affecting
the segmented quality [38]. Finally, we apply Sigmoid or
Softmax function as the last layer for the two tasks to get
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the pixel-wise classification mask. In addition, after each
convolution layer of the entire network, we add Rectified
Linear Unit (ReLU) [39] and Batch Normalization (BN) [40]
operation.

b: MULTI-SCALE ATTENTION FUSION (MSAF) MODULE
MSAF module is obtained by connecting PAM block and
MDF block. It can enhance the relationship between pixel
features through attention mechanism and extract the features
of ventricles with various scale by combining multi-scale
fusion mechanism. Specifically, the module first captures the
spatial dependence between different locations of the high-
level feature map to enhance feature representation. Then
dilated convolutions with increasing rates is used for multi-
scale context aggregation according to spatial attention map-
ping. Finally, multi-scale feature maps and attention-based
maps are fused to avoid gradient disappearance and explo-
sion, and we acquire the feature maps of the same size and
dimension as the input.
Position Attention Mechanism (PAM) Block: Previous

works [41], [42] presented that local features extracted from
general convolutional networks could lead to misclassifica-
tion of objects. The PAMblock is designed to search abundant
contextual correlations over local features[43], thus we use it
to enhance the representation of each feature by utilizing the
association between any two position features. More specifi-
cally, as shown in Fig. 5, firstly we utilize input local feature
I ∈ RH×W×C to generate feature maps A and B (A,B ∈
RH×W×C/4) by dimension reduction of 1 × 1 convolution
and reshape them to RN×C/4, where N = H × W is the
total elements of one feature map. The new feature maps
C ∈ RH×W×C are also generated from I by convolution
operation and reshaped into RN×C . Then, we feed B × AT

into Softmax function to calculate spatial attention map P ∈
RN×N (see Equation (11), where Sji denotes the impact of
the ith position on the jth position). After that, we multiply
C and PT, and reshape the matrix into Q ∈ RH×W×C .
At last, we sum Q and I by pixel-wise addition operation
to get the final output O ∈ RH×W×C . According to this,
the output O at each position is considered as a weighted sum
of features across all positions and original features. The PAM

FIGURE 5. The details of PAM block. N = H ×W is the total elements of
one feature map.

FIGURE 6. The details of MDF block. This block has one main branch and
four sub-branches of which the receptive field is 1, 3, 7, and 15 in turn.

module enables similar semantic features to achieve mutual
position benefits, thereby improving intra-class correlation
and semantic consistency.

sji =
e(Bi,Cj)∑N
i=1 e(Bi,Cj)

(11)

Multi-Scale Dilated Fusion (MDF) Block: After PAM
block, we design the MDF block which consists of dilated
convolution with different rates to encode output maps based
on spatial attention mechanism. The dilated convolution
introduced by [44] is widely used in object extraction and
semantic segmentation. Compared with pooling layer, it can
expand receptive fields by changing the rate value without
loss of resolution or coverage. Rate = 1 means standard
convolution. As shown in Fig. 6, this block has one main
branch and four sub-branches. In sub-branches, we firstly use
1×1 convolution to reduce the dimension of the input channel
to a quarter. Then we gradually increase dilated convolu-
tion layers with increasing rate of 1, 2 and 4. Accordingly,
the receptive field of each sub-branch is 1, 3, 7, and 15 in
turn. Finally, the multi-scale feature maps of each sub-branch
are fused by concatenation operation. In the main branch,
we directly add the original input with concatenation ofmulti-
scale features for stable feature propagation, similar to a
residual connection. Small receptive field can contribute to
detect small target regions and large receptive field can have
a larger spatial area to capture high-level abstract features.
By fusion of different receptive fields on attention-based
maps, we get multi-scale context features as input of decoder
path.

2) DISCRIMINATOR NETWORK
As listed in Table 1, the discriminator network uses a general
CNN and acts as a classifier with positive and negative feed-
back. We encode and downsample the feature maps by four
convolution layers with kernel size of 5 × 5, strides 2 and
reduce dimensionality from 3D to 1D which represents one
response for every heat map by global maxpooling operation.
LeakyReLU [45] (0.2 slope) and BN [40] operation follow
each convolution layer. After that we flatten the heat map and
output a classification value by Sigmoid function. The value
close to 0 represents false segmentation, whereas value close

172310 VOLUME 7, 2019



L. Qi et al.: C-cGANs With MSAF for Automated Bi-Ventricle Segmentation in Cardiac MRI

TABLE 1. The architecture of discriminator network. The value close to 0 represents false segmentation, whereas value close to 1 represents successful
segmentation.

to 1 represents successful segmentation. The discriminator
network has only 1.1 M parameters.

D. ADVERSARIAL TRAINING STEPS
We take C2-cGAN as an example to describe the process of
adversarial training since the training processes of two tasks
are in the same pattern.

The adversarial training process contains four steps of
updates for the parameters θG of G2 and parameters θD of
D2: (1)G2 generates segmentation mapG2 (x2) similar to gt2
to update parameters θG; (2)D2 attempts to output 1 to update
parameters θD using gt2 and ROI image as input; (3) D2
attempts to output 0 to update parameters θD using G2 (x2)
and ROI image as input; (4) G2 and D2 work together (the
former generates G2 (x2) and the later makes a discrimina-
tion) to update parameters θG based on fixed parameters θD.
These four updates of parameters are performed alternately
for mutual iteration between G and D.

III. EXPERIMENTS, RESULTS AND DISCUSSION
A. DATASET AND EVALUATION CRITERIA
In this study, we train and test the proposed network model
on ACDC 2017 [46] (provided for MICCAI 2017 challenge).
This open dataset includes 150 exams of individual patients
divided into 5 evenly distributed subgroups (4 pathologi-
cal plus 1 healthy subject groups). The data is acquired
over 6 years using two MRI scanners of different magnetic
strengths (1.5 T and 3.0 T) from Hospital of Dijon (France).
Images are acquired in breath hold with a retrospective or
prospective gating and a steady state free precession (SSFP)
sequence in short axis orientation. In particular, a series of
short-axis slices cover from the base to the apex of LV, with
a thickness of 5 or 8 mm and an interslice gap of 5 or 10 mm.
The spatial resolution goes from 1.37 to 1.68 mm2/pixel.
Each exam contains 28∼40 images that cover completely
or partially the cardiac cycle. The dataset has been divided
into two parts: 100 exams for training and 50 exams for
testing. The pixel-level manual annotations of bi-ventricle
(LV/RV/MYO) were manually drawn on short-axis slices in
ED and ES phases by two cardiologists. It should be noted
that manual annotations are only provided for the training set.

The final segmentation results on testing set need to be sub-
mitted online for evaluation.1

Segmentation accuracy is measured by geometrical met-
rics: Dice [47] and Hausdorff distance (HD) [48] at the
ED and ES phases. Dice measures the overlap between
both predicted contour P and manual contour G by varying
from 0 (without overlap) to 1 (full overlap) in Equation (12).
HD measures symmetric distance between both two contours
in Equation (13), where p and g are the pixel in P and G,
respectively.

D(P,G) = 2
P ∩ G
P+ G

(12)

H (P,G) = max
(
max
p∈P

(
min
g∈G

d (p, g)
)
,

max
g∈G

(
min
p∈P

d (p, g)
))

(13)

In addition, clinical metrics are also introduced which are
the most widely used in cardiac clinical practice. The clinical
metrics include the correlation, the bias and the standard
deviation from the ejection fraction (EF, for LV and RV),
the ED volume (EDV, for LV and RV) and the myocardial
mass. Let VED and VES be the volume at ED and ES phases,
the calculation of EF is shown in Equation (14).

EF =
VED − VES

VED
· 100% (14)

B. IMPLEMENTATION DETAILS
We implemented our code using Keras2 library with Tensor-
flow backend based on Ubuntu 16.04 system. The proposed
model was trained and tested using GPU of NVidia GeForce
GTX 1080Ti with 11G memory.

Before training, we adopted mean-variance normalization
to normalize the pixel intensity distribution of each input
image. In addition, we utilized horizontal flip, vertical flip,
random scaling (0.2 scale) and random rotation transforma-
tion between±90

◦

operations to generate new images for data
augmentation. During the training stage, the hyper-parameter

1https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
2https://keras.io/
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TABLE 2. Intra-comparison of ablation experiments on Dice metric for bi-ventricle segmentation performance on ACDC 2017. The bold values refer to the
best scores for each metric. Number format: mean value (standard deviation).

TABLE 3. Intra-comparison of ablation experiments on HD metric for bi-ventricle segmentation performance on ACDC 2017. The bold values refer to the
best scores for each metric. Number format: mean value (standard deviation).

setting is consistent for both ROI extraction and segmentation
tasks of the network. We employed ‘‘Xavier’’ [49] initializer
to randomly initialize network weights. We used Adam [50]
optimizer (β1 = 0.9,β2 = 0.999 and ε = 108) with the
initial learning rate (initial_lr) of 104 for G network and
105 for D network. This is because D can have sufficient
impact on the G network by making D adapts more slowly
than the G[51]. We set the decay policy for learning rate as
initial_lr ×

(
1− iter

max_iter

)power
, where power is set to 0.5,

iter is the current iteration and max_iter is the maximum
iteration. We trained for 200 epochs with batch-size 1. In the
testing stage, the discriminator network did not work and the
generator network generated accurate segmentation contours
automatically.

Moreover, based on the fact of prior information that each
target (LV/RV/MYO) has only one connected component and
the heart has two complete blood pools, we employed mor-
phological post-processing including maximum connected
component preserving and binary hole filling operations for
bi-ventricle segmentation results.

C. ABLATION EXPERIMENTS ANALYSIS
In order to evaluate the effectiveness of the main components
of the proposed model, we have performed an internal com-
parison by ablation experiments. Note that manual contours
of testing set of ACDC 2017 are not provided, so we select
4 cases from each subgroup to construct the validation set
(20 cases), and construct the training set with the left 80 cases.
As shown in Table 2 and Table 3, we design five methods by
controlling variates for intra-comparison. Specifically, we use
original U-Net [20] as the standard segmentation baseline.

cGANmeans that the model without cascaded network (with-
out ROI extraction part) uses 256× 256 size of original car-
diac MRI as input. C-cGANs without MSAF means that we
remove the MSAF module from the two generative networks
in C-cGANs. We also use post-processing to process our
results of C-cGANs for comparison.

The segmentation results are shown in Table 2 and Table 3.
We observe that cGAN frame obtains huge improvements
for all metrics compared with U-Net. C-cGANs avoid false
positive segmentation caused by other similar tissues and
organs by ROI extraction firstly, making a substantial decline
of HD and 0.2∼4% rise of Dice for each value compared
with cGAN. False positives only results in a slight decrease
of Dice, while it does bring an explosion of HD. The success
rate of ROI extraction is 100%. The reason is that the fixed
size ROI can completely contain the heart region, and on
the other hand, occasional failures of slice do not affect the
heart center positioning of the whole sequence. Since the
MSAF module also plays an important role in segmenta-
tion, especially in Dice of RV, we compare the C-cGANs
with and without MSAF. This shows that the proposed mod-
ule can robustly learn complex and variable RV geometric
structure. In addition, post-processing including two mor-
phological operations yields the correct cardiac anatomy to
reduce HD while maintaining good Dice. At the bottom
rows of Table 2 and Table 3, the final results of proposed
method are presented: for ES phase, we obtain the Dice
of 0.965±0.015, 0.949±0.013, 0.893±0.027 and the HD of
4.94±2.73 mm, 9.27±5.97 mm, and 8.78±6.00 mm for LV,
RV, andMYO, respectively; for ED phase, we obtain the Dice
of 0.930±0.039, 0.881±0.063, 0.910±0.026 and the HD of
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FIGURE 7. ED example of cardiac MRI segmentation results from ablation experiments. Images from top to down represent slices located from base to
apex.

6.34±3.06 mm, 12.82±5.54 mm, and 9.88±4.52 mm for LV,
RV, and MYO, respectively. The quantitative mean value and
standard deviation demonstrate the effectiveness of each part
in the ablation experiment.

Representative examples in ED and ES phases are shown
in Fig. 7 and Fig. 8 (enlarged view). Through the intuitive and
qualitative comparison, the adversarial training has been suf-
ficiently improved rather than U-Net. The addition of MSAF
module makes the model more focused on the diversity

of ventricular morphology and achieves better effects in
bi-ventricle segmentation, especially on the base and apex
slices.

D. COMPARISON WITH THE STATE-OF-THE-ART
METHODS
In order to measure the quantitative evaluation metrics of
our model, we upload the segmentation results of ACDC
2017 testing set for online evaluation. Fig. 9 shows the
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FIGURE 8. ES example of cardiac MRI segmentation results from ablation experiments. Images from top to down represent slices located from base to
apex.

geometric metrics for ED/ES. Average Dice of LV/RV
(0.968/0.951) in ED tends to be higher than that (0.936/0.894)
in ES, however, theMYO is opposite (0.904/0.921 in ED/ES).
This is because that the relatively large area ismore conducive
to the segmentation of the contour. HD of RV are the largest in
both phases due to complex variable shape. Geometric results
with fewer outliers are promising and need to be compared
with other methods. Moreover, we quantify three main clini-
cal metrics: EF for LV, EF for RV and mass for MYO. In the
left column of Fig. 10, linear regression analyses indicate the

correlation of clinical metrics between the manual contours
and automated segmentation. We can see most red points are
close to the blue line (y = x), indicating that the predicted
results are highly correlated to manual metrics. Right column
of Fig. 10 shows consistency between the automated and
the manual segmentation by using bland-Altman analysis.
We observe that most points locate in the range of the Mean
±1.96SD, which reports the 95% limits of consistency. They
demonstrate the predicted results of our method are highly
consistent with manual metrics.
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TABLE 4. Comparison of the geometric metrics for published methods on ACDC 2017 testing set. No. 1∼9 are online leaderboard, No. 10∼12 are recent
reported studies. Red is the best score and blue is the second-best score. Number format: mean value.

TABLE 5. Comparison of the clinical metrics for published methods on ACDC 2017 testing set. No. 1∼9 are online leaderboard, No. 10∼12 are recent
reported studies. Red is the best score and blue is the second-best score.

FIGURE 9. The box-plot results of Dice (left) and HD (right) on the ACDC
2017 testing set for both ED and ES phases.

Table 4 and Table 5 show the geometric and clinical metrics
from the ACDC 2017 online leaderboard (No. 1∼9) and
latest researches (No. 10∼12). For each metric, the red color

represents the best score, the blue color is the second-best
score for reference. The paper [46] describes the leaderboard
methods of this challenge as details, and eight of the top
nine (No. 1∼8) use deep learning methods so that we can
anticipate the importance of deep learning and the accuracy
compared with traditional methods. In addition, we also col-
lect the latest state-of-the-art researches on ACDC 2017 test-
ing set for comparison. Tong et al. [52] proposed a recurrent
interleaved attention network based on recurrent feedback
blocks and interleaved attention mechanism. Zotti et al. [22]
implemented CNN architecture which is an extension of the
U-Net that embeds a cardiac shape prior and involves a loss
function tailored to the cardiac anatomy. Khened et al. [53]
presented a novel DenseNet based on FCNwith incorporating
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FIGURE 10. The comparison of EF for LV, EF for RV and mass for MYO
between manual (ground-truth) and automated (our method)
segmentation on the ACDC 2017 testing set. Left column: linear
regression analysis. Right column: Bland-Altman analysis.

long skip and short-cut connections to overcome the feature
map explosion. In geometric metrics, we perform best or
second-best in the LV andMYO, and also Dice of ED and HD
of ES in RV. In clinical metrics, we get the best correlation in
EF for LV and EDV for RV, and second-best result in EDV
for LV and Mass for MYO, except for EF for RV. The highest
accuracy in ED segmentation and the general accuracy in ES
segmentation result in relatively low EF for RV compared
with other studies (calculation in Equation 14). As shown
in Table 4 and Table 5, the proposed method yields most
colored scores. This shows that we get competitive results
of ACDC 2017 testing set. In general, we conclude that the
proposed model is a more efficient bi-ventricle segmentation
method than other existing methods. This indicates the poten-
tial of the proposed model in clinical practice.

E. GENERALIZATION CAPABILITY ON OTHER DATASETS
To test the generalization capability and performance of the
model we proposed on the untrained dataset, we directly
apply the trained model without fine-tuning on other
two datasets: Multi-sequence Cardiac MR Segmentation
Challenge (MS-CMRSeg 2019) [54] and Right Ventricle
Segmentation Challenge (RVSC 2012) [55]. Although the
motivation of MS-CMRSeg 2019 is not exactly the same as
ours, it is the only open dataset containing balanced-SSFP
(bSSFP) short- axis cardiac sequences with bi-ventricle con-
tours delineation besides ACDC 2017. Furthermore, since the

FIGURE 11. Comparison of ground-truth between MS-CMRSeg 2019 and
ACDC 2017. (a) RV is delineated by MS-CMRSeg 2019, but not by ACDC
2017 for the similar base position. (b) The segmentation convention of
the slices below the base seems roughly consistent for both datasets.

segmentation of RV with complex variable shape is more
difficult than that of LV, we also extend the generalization
test on RVSC 2012.

1) GENERALIZATION EXPERIMENT ON MS-CMRSeg 2019
MS-CMRSeg 2019 consists of 35 bSSFP cardiac sequences
withmanual delineation at ED phase. Consistency of segmen-
tation convention between different datasets is critical to the
performance of segmentation [29]. As shown in Fig. 11 (a),
for the similar base position in two datasets, RV is delineated
by MS-CMRSeg 2019, but not by ACDC 2017. By con-
trast, the segmentation convention of the slices below the
base seems roughly consistent (see Fig. 11 (b)). Therefore,
we select the slices below the base to eliminate the effects
caused by different segmentation conventions.

The performance of bi-ventricle segmentation on
MS-CMRSeg 2019 is listed in Table 6, with the segmentation
results of ACDC 2017 testing set at ED phase as a reference.
We can see that Dice and HD for LV are very close to that
on ACDC 2017. Specifically, Dice of RV and MYO is about
4% lower than ACDC 2017, which is probably due to some
inappropriate ground-truth provided by MS-CMRSeg 2019.
As shown in Fig. 12 (a), for some slices in MS-CMRSeg
2019, the predicted contours are more reasonable and consis-
tent with the anatomical structure. Incomplete ormissing con-
tours of MYO and RV may reduce the accuracy of evaluation
metrics. The results of LV also indicate that the segmentation
of LV is easier due to its geometric shape. The similar
standard deviations show the robustness of generalization
for bi-ventricle segmentation. Examples of ground-truth and
prediction on MS-CMRSeg 2019 are shown in Fig. 12 (b).

2) GENERALIZATION EXPERIMENT ON RVSC 2012
In RVSC 2012, 16 cases of training set with the manual
delineation of RV are all located between the base and apex
(Test1 and Test2 sets are no longer accepted for online eval-
uation, so we use training set only). Cardiac images given by
RVSC 2012 have been zoomed and cropped to 256 × 216
(or 216 × 256) sized ROI [55]. Therefore, the images are
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TABLE 6. The generalization results of our trained model on the MS-CMRSeg 2019 (without fine-tuning). The bottom reference shows the metric values of
the ED phase on ACDC 2017 testing set. Number format: mean value (standard deviation).

TABLE 7. The generalization results of our trained model on the RVSC 2012 (without fine-tuning). The reference list includes the recent state-of-the-art
researches on RVSC 2012. Number format: mean value (standard deviation).

FIGURE 12. Examples of ground-truth vs prediction on two datasets. (a) Inappropriate ground-truth of certain slice. The green arrows indicate some
examples with incomplete MYO contours and missing RV contours on MS-CMRSeg 2019. (b) Examples of bi-ventricle segmentation on MS-CMRSeg 2019
(without fine-tuning). (c) Examples of RV segmentation on RVSC 2012(without fine-tuning).

directly zero-padded to square (256×256) and then reshaped
to 128× 128 as the input of trained C2-cGAN.

Table 7 presents the comparison with other state-of-the-art
researches on RVSC 2012. We achieve better scores such as
Dice at ES phase. In addition, we also get the smaller standard
deviation at ES phase which demonstrates the robustness of
our model for RV segmentation. Examples of ground-truth
and prediction on RVSC 2012 are shown in Fig. 12 (c).

IV. CONCLUSION
Bi-ventricle segmentation is the first step in cardiac function
analysis. In this work, we propose a cascaded network frame
named C-cGANs to detect cardiac ROI and concurrently

segment LV, RV and MYO. The generator generates segmen-
tation mask, meanwhile the discriminator distinguishes the
source of the segmentation mask of input, and finally both are
optimized by competing with each other. In order to capture
more spatial information with multi-scale semantic features,
we design aMSAFmodule embedded in the encoder-decoder
architecture as the generator network. The proposed model
has several advantages: 1) The cascaded framework helps to
reduce false positives because the formal bi-ventricle seg-
mentation works on the cardiac region by ROI extraction;
2) adversarial training between generator and discriminator
mitigates the class imbalance of the heart, improving the
segmentation accuracy of the general ‘‘difficult’’ slices such
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as the base and apex; 3) our model with fewer parameters
get better performance compared with other methods in small
datasets.

Finally, on the testing set of ACDC 2017, the proposed
method is fairly accurate with geometric metrics and clinical
metrics for LV, RV and MYO segmentation. To the best
of our knowledge, our approach is generally superior to all
advanced methods on ACDC 2017. Besides, the proposed
model shows a powerful generalization performance without
any fine-tuning. This brings hope for clinical application in
automated bi-ventricle segmentation under the restriction of
expensive annotation cost for medical images.
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