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ABSTRACT In orthogonal frequency division multiplexing (OFDM) systems, high peak to average power
ratio (PAPR) is one of its core issues. The OFDM signal with high PAPR passes high-power amplifier (HPA)
will result in severely nonlinear distortions, which not only decreases HPA power efficiency, but also
increases the whole system’s bit error rate (BER). In order to attain the OFDM signal with lower PAPR
and better BER, we consider PAPR optimization with error vector magnitude (EVM) constrains in this
paper. Different from the second order conic programming (SOCP) scheme with high complexity proposed
in the literature, we present an innovative approach based on linearized alterative direction method of
multipliers (LADMM) to deal with the PAPR optimization. The proposed LADMM algorithm is a simple
and efficient method with FFT/IFFT complexity in every iteration. We also prove LADMM algorithm’s
convergence and then perform simulations. Simulation results demonstrate that LADMM algorithm not only
acquires larger PAPR reduction, but also obtains better BER.

INDEX TERMS Error vector magnitude (EVM), linearized alterative direction method of multipliers
(LADMM), orthogonal frequency division multiplexing (OFDM), peak to average power ratio (PAPR).

I. INTRODUCTION
As a multi-carrier transmission technique, orthogonal fre-
quency division multiplexing (OFDM) is extensively adopted
to next-generation wireless communication systems, because
it provides a lot of benefits, such as higher bandwidth effi-
ciency, modulation and demodulation’s implementation by
discrete Fourier transform (DFT) and inverse discrete Fourier
transform (IDFT), immunity to multipath environments [1].
However, the high peak to average power ratio (PAPR) of the
transmitted signal is one of the primary flaws of the OFDM
systems. The high PAPRmakes OFDM to be very sensitive to
nonlinear effects touched off by transmitter power amplifier.
When the high PAPROFDM signal is passed through a power
amplifier followed a limited linearity, it will give rise to a
significant loss of power efficiency, severe in-band distortion
and out-of-band noise.

Plenty of research works carried out for the issue, and
many methods and techniques have been put forward to
decrease the PAPR of the OFDM signal. These methods
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can basically be divided into three categories, i.e. coding,
signal scrambling, and signal distortion [2]. The work of [3]
discusses in detail the PAPR reduction techniques.

Coding technologies [4], such as complement block code
(CBC) [5], low density parity-check (LDPC) code [6], etc,
provide better PAPR reduction, but the scheme’s complexity
is too high to be applied in practice.

Signal scrambling scheme is based on improving signal’s
statistical properties to reduce the OFDM signal’s PAPR. The
representative schemes are selected mapping (SLM) [7], [8]
and partial transmit sequence (PTS) [9], [10]. The PTS tech-
nology is discussed in detail in the literature [11]. The two
methods can achieve better PAPR reduction, but getting an
optimal solution needs to solve a combination optimization.
Hence the high computational complexity restricts their prac-
tical applications. Another flaw of the two methods is to send
side information to receiver, which reduces data throughput.

Signal distortion technology has attracted much atten-
tion because it can be directly embedded into OFDM
system and does not need to change the mechanism of
transceiver. Clipping OFDM signals under a given PAPR is
the easiest scheme [12], which degrades the whole system’s
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bit-error-rate (BER) and leads to severe in-band distortion
and great out-of-band radiation. In order to lower out-of-
band radiation, clipping and filtering (CF) methods is pre-
sented [13]. While lowering out-of-band radiation, the CF
method also results in peak regrowth. So iterative CF (ICF)
scheme is proposed to reduce peak regrowth [14]. The com-
mon disadvantage of all CF or ICF schemes is that they are
unable to diminish in-band distortion, thus increasing the
whole system’s BER.

Tone reservation (TR) approach presented in [15] is
an undistorted technique. However, achieving optimized
peak-cancelling signals in the TR technique require to tackle
a quadratically constrained quadratic program, that is a very
high computational burden. To avoid this flaw, TR algorithm
of integrating ICF technology was proposed in [16]. The
method first clips time domain OFDM signal under a prede-
fined clipping level, and then filters the clipped signal making
clipping noise only on protected subcarriers. However, the
performance of this scheme is difficult to meet the actual
requirements. In order to get a satisfied PAPR reduction,
these schemes require very large iterations. To accelerate
the clipping-filtering technique’s convergence, the adaptive-
scaling (AS) TRmethod with a predefined threshold was also
presented in [16], [17]. But the AS algorithm has two major
flaws, i.e. 1) pre-selecting the optimal clipping threshold is
very hard work, because many factors, including subcarrier
number, position and size of reserved tones are closely rel-
ative to the optimal target clipping threshold. 2) different
clipping threshold may lead to different PAPR decrease per-
formance. To conquer two major flaws of the AS algorithm,
an adaptive amplitude clipping (AAC) TR method [18] and
adaptive iterative clipping and filtering (AICF) method [19]
were put forward to reduce PAPR. Regardless of the initial
clipping level, and different clipping levels almost gain same
PAPR reduction.

Recently, signal distortion schemes based on convex opti-
mization theory [20] have been widely used in PAPR
reduction of OFDM signals. An error vector magni-
tude (EVM) optimization using second order conic pro-
gramming (SOCP) [21], [22] and semi-definite programming
(SDP) [23] was tackled. The SOCP scheme were also used
to minimized the PAPR of OFDM signals with EVM con-
straints [24]. But SOCP and SDP methods have high com-
putational complexity, so the two schemes can not apply in
practical systems. A simplified ICF (SICF) approach was
proposed to deal with the EVM optimization [25]. Fast
iterative shrinkage-thresholding algorithm (FISTA) [26] and
alterative direction method of multipliers (ADMM) [27]
were presented to tackle the optimal OFDM signals with
IFFT/FFT complexity. In this paper, we reconsider to min-
imized the PAPR of OFDM signals with EVM constraints.
We focus on developing a low complexity algorithm to
tackle the optimization. The contributions of the paper are as
follows:

(1), Although the similar question had been solved by
SOCP method in [24], high complexity of the SOCP

method restricts its application. Here, we tackle the issue
and provide a simple and efficient solution with a lower
complexity.

(2), we develop an innovative approach based on lin-
earized alterative direction method of multipliers (LADMM)
[28]–[30] with low complexity to proceed the optimization.
Firstly, we apply the proximal operator to tackle subprob-
lems, and then supply the closed-form solution of each
subproblem of the LADMM algorithm which is different
from the ADMM in [27]. Furthermore, we provide a the-
oretical proof to ensure the convergence of the presented
LADMM algorithm and analyze its complexity on every
iteration.

Simulation results indicate that proposed LADMMmethod
not only acquires larger PAPR reduction, but also obtains
better bit error ratio (BER) performance compared with those
existing technologies.

This paper is organized as follows. In Section II, theOFDM
system model is introduced and the corresponding optimiza-
tion is described. The LADMM is described in Section III.
In Section IV, The LADMM’s convergence is proposed.
The performances of LADMM are evaluated by computer
simulations in Section V. Finally, conclusions are drawn in
Section VI.
Notations: in the following, ‖ · ‖2 and ‖ · ‖∞ stand

for a vector’s Euclidean and `∞ norm, respectively. E[·]
represents a random variable’s expectation. < • > denotes
the inner product of two real vectors. (·)T and (·)H represent
the transpose, the conjugate transpose of a vector or a matrix,
respectively.

II. SYSTEM MODEL
Let us take into account an OFDM system with N sub-
carriers. By carried out IDFT to the data signals X =

[X0, . . . ,XN−1]T , we achieve the discrete-time baseband
OFDM signal x = [x0, . . . , xJN−1]T with oversampling fac-
tor J , that is

x = FX, (1)

where F is a JN × N IDFT matrix, whose (m, j)-th entry is
Fm,j = 1

√
JN
e
j2πmj
JN .

The PAPR of an OFDM signal x is defined as the ratio of
maximal power to average one,

PAPR(x) =
‖x‖2∞
E[‖x‖22]

. (2)

where ‖ · ‖2 and ‖ · ‖∞ stand for a vector’s Euclidean
and `∞ norm, respectively. E[·] represents a random vari-
able’s expectation.

Error vector magnitude (EVM) is adopted to measure the
in-band distortion of an OFDM signal, which is denoted
as

EVM =
‖FHx− X0‖2

‖X0‖2
(3)
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where X0 represents the ideal data signal. In order to min-
imize in-band distortion and obtain a satisfactory PAPR,
An EVM optimization with PAPR constraint was addressed
by SOCP method in [21], [22]. To decrease the SOCP com-
putational complexity, a simplified ICF (SICF) scheme was
also presented in [25]. However, most modern digital commu-
nication standards have a predefined EVM threshold. So we
consider the following optimization.

min
x∈CJN

‖x‖2∞

s.t. EVM ≤ ε (4)

Using (3), the EVM constraint on x can be represented as
follows.

min
x∈CJN

‖x‖2∞

s.t. ‖FHx− X0‖2 ≤ ε‖X0‖2 (5)

where ε is an EVM threshold. If the transmitted OFDM signal
meets the EVM constraint, then the received signal has an
acceptable BER after decoding [24].

We have the following comments on the optimization (5).
(1), Because directly minimizing PAPR will result in a

complicated non-convex optimization, we replace the PAPR
with ‖x‖2∞, rather than ‖x‖∞ in [26] as the objective function
in (5). So we can get a convex optimization and achieve
a globally optimal solution. Another reason for this sub-
stitution is that we can achieve an exact solution of the
proximal operator of ‖x‖2∞. Solving the proximal oper-
ator of ‖x‖∞ in [26] is only an approximate solution.
(The definition of the proximal operator will be given in
Section III).

(2), Low complexity algorithms, such as FISTA [26] and
ADMM [27] can not deal with (5) directly. We develop the
LADMM algorithm to tackle the optimization (5) in the next
section. We provide the closed-form solution of each sub-
problem in the LADMM algorithm, then prove the proposed
LADMM algorithm is convergent and analyze its complexity
on every iteration is about O(JN log(JN )).

III. LINEARIZED ACCELERATE PROXIMAL
GRADIENT METHOD
A. ALTERATIVE DIRECTION METHOD OF MULTIPLIERS
Linearized alterative direction method of multipliers
(LADMM) comes from alterative direction method of mul-
tipliers (ADMM) which was discussed in [31], [32]. The
core of ADMM algorithm is that it can decompose complex
problems into simple sub-problems, and each sub-problem is
easy to solve or has a closed-form solution. In order to utilize
ADMM, we introduce an auxiliary variable y, so the (5) can
be reformulated as

min
x∈CJN ,y∈CN

‖x‖2∞

s.t. ‖y‖2 ≤ ε‖X0‖2

FHx− X0 = y (6)

The augmented Lagrangian function of (6) is:

Lµ(x, y,u) = ‖x‖2∞ −<(u
H (FHx− X0 − y))

+ (µ/2)‖FHx− X0 − y‖22 (7)

where u ∈ CN is the Lagrangian multiplier and µ > 0 is a
penalty parameter.

The resulting ADMM is the the following

xi+1 = argmin
x
Lµ(x, yi,ui), (8a)

yi+1 = arg min
y∈M

Lµ(xi+1, y,ui), (8b)

ui+1 = ui − µ(FHxi+1 − X0 − yi+1). (8c)

whereM = {y : ‖y‖2 ≤ ε‖X0‖2}.

B. SOLVING SUBPROBLEM (8A)
Based on (7), subproblem (8a) is equivalent to solve

xi+1 = argmin
x
‖x‖2∞ + (µ/2)‖FHx− X0 − yi −

ui

µ
‖
2
2 (9)

Although the subproblem (9) can be solved by the
fist-order algorithm such as FISTA or ADMM, this will lead
to a double loop algorithm for tackling the optimization (5),
i.e. the outer layer is the ADMM algorithm and the inner
layer is the ADMM or the FISTA algorithm. It is evident that
the double loop algorithm will lead to a high computational
complexity. Here, our goal is to find an algorithm with low
complexity and each subproblem has a a closed-form solu-
tion. Because ‖x‖2∞ is non-smooth andFFH is not an identity
matrix, so the closed-form solution of (9) is not available for
the original ADMM. Generally speaking, it is not necessary
to exactly solve the original subproblem (9) under the condi-
tion of ensuring the convergence of iterations (8). So we try
to simplify the subproblem as much as possible to achieve a
closed-form solution of the subproblem (9). Motivated by the
objective, we propose to approximate the subproblem (9) by
linearizing the quadratic term in (9), which is alsowidely used
to deal with the constrained linear least-squares problem [28],
nuclear norm minimization [29] and Dantzig selector [30].
More specifically, we have

1
2
‖FHx− X0 − yi −

ui

µ
‖
2
2

≈
1
2
‖FHxi − X0 − yi −

ui

µ
‖
2
2

+<(gHi (x− x
i))

+
1
2λ
‖x− xi‖22 (10)

where λ > 0 is a proximal parameter (satisfying the condition
0 < λ < ρ(FFH ), and ρ expresses the spectral radius of a
matrix, that will be explained in Lemma 4.3 of Section IV)
and

gi = F(FHxi − X0 − yi −
ui

µ
) (11)
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is the gradient of 1
2‖F

Hx − X0 − yi − ui
µ
‖
2
2 at x = xi.

Plugging (10) into (9) and ignoring the first item 1
2‖F

Hxi −
X0 − yi − ui

µ
‖
2
2 on the right of (10), we acquire the following

approximation to (9)

xi+1 = argmin
x
‖x‖2∞ +

µ

2λ
‖x− (xi − λgi)‖

2
2

= prox‖x‖2∞ (x
i
− λgi,

λ

µ
) (12)

where the proximal operator prox f : R
m
→ Rm of a function

f with parameter τ is denoted as [32]

prox f (v, τ ) = argmin
x
(f (x)+ 1/(2τ )‖x− v‖22). (13)

Let f (x) = ‖x‖2∞, v = xi − λgi. By modifying the scheme
in [33], we can achieve an exact solution of the proximal
operator of f (x).

Specially, let c be a rearrangement of |v| in descending
order, i.e. cπ (1) ≥ cπ (2) ≥ cπ (3) ≥ · · · ≥ cπ (i) ≥ · · · ≥
cπ (JN ). Let si =

∑i
k=1 cπ (k) for i = 1, 2, . . . , JN , and

j = max{i : cπ (i) ≥
si

i+2τ }. Set β =
sj

j+2τ , we obtain the
proximal operator of f (x) by the following formula

prox f (v, τ ) =

β
vπ (i)
|vπ (i)|

, if i ≤ j,

vπ (i), otherwise.
(14)

C. SOLVING SUBPROBLEM (8B)
Based on (7), subproblem (8b) is equivalent to solve

yi+1 = arg min
y∈M

Lµ(xi+1, y,ui)

= arg min
y∈M

(µ/2)‖FHxi+1 − X0 − y−
ui

µ
‖
2
2 (15)

Let ωi = FHxi+1 − X0 −
ui
µ
, we can achieve the solution

of (15) as follows.

yi+1 =

ω
i, ‖ωi‖2 ≤ ε‖X0‖2,

ε‖X0‖2

‖ωi‖2
ωi, otherwise.

(16)

Through the above derivation and analysis, we can find
that the main difference between LADMM and ADMM is
the solution of subproblem (9). By linearizing the quadratic
term of (9) and using the proximal operator, we obtain the
closed-form solution of (9), which is not available for the
ADMM method [27]. So we call the algorithm linearized
ADMM (LADMM) in order to distinguish it from the orig-
inal ADMM. The presented LADMM algorithm is summed
up in Algorithm 1.

D. COMPLEXITY ANALYSIS OF LADMM
We use the order of complexity of an algorithm to eval-
uate the complexity of this algorithm, which is also used
in [25], [27], [31]–[33]. In Algorithm 1, the computational
burden of each iteration is very low. In Step 2.1, we first
need to compute gi by (11). Because the matrix F and FH

are Fourier-type operators, so evaluating gi does not need

Algorithm 1 LADMM Algorithm

1: Input X0, parameters µ > 0, ε > 0, 0 < λ < ρ(FFH ),
and initial solutions x0, y0,u0, i = 0.
2: While stopping condition is not satisfied
Step 2.1 Compute gi by (11),
Step 2.2 Compute xi+1 by (12) and (14),
Step 2.3 Compute yi+1 by (16),
Step 2.4 Update ui+1 by (8c),
Step 2.5 Update i← i+ 1.
3: Output x.

to carry out matrix-vector products, it can be efficiently
computed by FFT and IFFT with complexityO(JN log(JN )).
For the proximal operation in step 2.2, we acquire to calcu-
late |v| and perform sort operations, which have an O(JN )
and O(JN log(JN )) computational complexity, respectively.
Evaluating j and β acquire O(JN ) complexity, respectively.
Similarly, calculating the the proximal operation (14) also
needs O(JN ) complexity. So the computational complexity
of evaluating xi+1 is aboutO(JN log(JN )) complex multipli-
cations. In Step 2.3, we first calculate ωi which need to per-
form an FFT operation. so it needs O(JN log(JN )) complex
multiplications. And then computing yi+1 which has O(JN )
complex multiplications. Finally, in step 2.4, becauseFHxi+1

has been achieved in Step 2.3, updating the Lagrangian mul-
tiplier ui+1 only takes JN complex multiplications. A few
complex vector additions or subtractions is negligible. By the
above analysis, the whole complexity of Algorithm 1 is about
O(JN log(JN )). Compared with the SOCP with complexity
O(N 3), the proposed algorithm has lower computational cost
and is a simple and efficient method with the computational
complexity O(JN log(JN )).

E. CONNECTIONS TO FISTA AND ADMM
Although FISTA and ADMM can not tackle (5) directly,
the two methods solve the unconstrained alternative of (5):

min
x∈CJN
‖x‖∞ +

1
2α
‖FHx− X0‖

2
2 (17)

where α > 0 is a regularized parameter.
Let r(x) = 1

2α ‖F
Hx − X0‖

2
2 and q(z) = ‖z‖∞. The

iterations of the FISTA consist of the following steps:

θ = yk −
1
αL

F(FHyk − X0)

xk = PL(yk ),

tk+1 =
1+

√
1+ 4t2k
2

yk+1 = xk +
tk − 1
tk+1

(xk − xk−1) (18)

where L is the smallest Lipschitz constant for the gradient
∇r(x) of the function r(x) and the proximal map

PL(y) = argmin
z

{
‖z‖∞ +

L
2
‖z− (y−

1
αL

F(FHy− X0)‖22

}
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For ADMM, the augmented Lagrangian associated with
the problem (17) is

Lρ(x, z, c)=r(x)+q(z)−<(cH (x−z))+(ρ/2)‖x−z‖22 (19)

where c ∈ CJN is the Lagrangian multiplier and ρ > 0 is a
penalty parameter. The ADMM can be expressed as

xi+1 = argmin
x
Lρ(x, zi, ci),

zi+1 = argmin
z
Lρ(xi+1, z, ci),

ci+1 = ci − ρ(xi+1 − zi+1). (20)

The corresponding iterations of the ADMM include the fol-
lowing steps:

xi+1 = (I −
1

1+ αρ
FFH )(α−1FX0 + ρzi + ci),

zi+1 = proxq(x
i+1
−
ci

ρ
,
1
ρ
),

ci+1 = ci − ρ(xi+1 − zi+1). (21)

Based on (18), the main computational cost of the FISTA
algorithm consists of two parts. Firstly, evaluating θ requires
a pair of FFT/IFFT with roughly computational complex-
ity O(JN log(JN )). The computational complexity of cal-
culating the proximal map PL(y) is about O(JN log(JN )).
So the overall complexity of the FISTA algorithm is about
O(JN log(JN )). According to (21), the computational com-
plexity of the ADMM algorithm is dominant by xi+1, which
needs two IFFT and an FFT with complexityO(JN log(JN )).
While calculating zi+1 also requiresO(JN log(JN )) complex
multiplications. Hence, the proposed LADMM-based PAPR
reduction algorithm have the same computational complex-
ity as the FISTA and ADMM i.e. O(JN log(JN )). But the
LADMM algorithm has two advantages. Firstly, the algo-
rithm 1 provides a closed solution for the proximal operator
of the function ‖x‖2∞, but the FISTA [26] gives only a
truncated solution for the proximal operator of the function
‖x‖∞. Moreover, the FISTA algorithm in [26] also requires
to calculate the smallest Lipschitz constant L of the gradient
∇r(x), which has a very large computational cost. Secondly,
the LADMM algorithm can deal with more complex con-
strained optimization problems which is not easy to solve for
the ADMM and FISTA algorithms.

IV. ANALYSIS OF GLOBAL CONVERGENCE
We provide the global convergence of the LADMM method
in the subsection by referring to the methods of [28]–[30].
Because standard theory of convex optimization operate on
real numbers and the complex numbers are used in (6),
we expand every vector and matrix to a real-imaginary form
which will be denoted in boldface. As an example, the vector
x ∈ CJN has the following expanded form x ∈ <2JN , where

x = [<x1,=x1,<x2,=x2, · · · ,<xJN ,=xJN ]T (22)

M = {y : ‖y‖2 ≤ ε‖X0‖2} has the following expanded form
M = {y : ‖y‖2 ≤ ε‖X0‖2}. The matrix F has the following

expanded form F ∈ <2JN×2N , where every element Fm,j of
F is replaced by the following 2× 2 block[

<Fm,j, −=Fm,j
=Fm,j, <Fm,j

]
. (23)

Using theory of convex optimization, solving (6) is equiv-
alent to finding(x∗, y∗, u∗) ∈ 9 := R2JN

× M × R2N and
h(x∗) ∈ ∂(‖x∗‖2∞) such that the following condition are
satisfied: 

h(x∗)− Fu∗ = 0,
< y′ − y∗, u∗ >≥ 0, ∀y′ ∈M,
FT x∗ − X0 − y∗ = 0.

(24)

where ∂ represents the subdifferential operator of a
non-smooth convex function.

Let 9∗ be the set of elements satisfying conditions (24)
in 9, ξ∗ = (x∗, y∗, u∗) ∈ 9∗ and h(x) ∈ ∂(‖x‖2∞). Then
solving (24) corresponds to finding ξ∗ ∈ 9∗ and h(x∗) ∈
∂(‖x∗‖2∞), such that

< ξ − ξ∗,A(ξ∗) >≥ 0, ∀ξ ∈ 9 (25)

where ξ = (x, y, u) and

A(ξ ) =

 h(x)− Fu
u

FT x − X0 − y

 . (26)

In order to set up the LADMM’s global convergence, we need
to prove the following lemma.
Lemma 1: Let the matrices

H =

−µFµI
0

, B =

 µ
λ
I − µFFT 0 0

0 µI 0
0 0 1

µ
I

 then

the sequence ξ i generated by the Algorithm 1 satisfies the
following inequality:

< ξ − ξ i+1,A(ξ i+1)− B(ξ i − ξ i+1)+ H (yi − yi+1) >≥ 0,

∀ξ ∈ 9. (27)

Proof: Based on the iteration (12), (16) and (8c),
we obtain ξ i+1 ∈ 9, h(x i+1) ∈ ∂(‖x i+1‖2∞), and
(x−x i+1)T [h(x i+1)+ µgi+

µ

λ
(x i+1−x i)]≥0,

(y−yi+1)T ui+1 ≥ 0,

(u−ui+1)T [(FT x i+1−yi+1 − X0)−
1
µ
(ui − ui+1)]≥0.

(28)

Using (8c) and the expanded form of (11), we can obtain
the first inequality of (28) as follows.

h(x i+1)+ µgi +
µ

λ
(x i+1 − x i)

= h(x i+1)− Fui+1 − µF(yi − yi+1)

+µ(FFT −
1
λ
I )(x i − x i+1) (29)

By the definitions of A(ξ ) in (26) and the matrices B, H ,
combining (28) and (29) will result in (27) immediately.
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Based on Lemma 4.1, we have the following lemma.
Lemma 2: let ξ i be the sequence generated by the

Algorithm 1 and ξ∗ ∈ 9∗, the matrix B is defined by
Lemma 4.1, then we have

< ξ i − ξ∗,B(ξ i − ξ i+1) >≥< ξ i − ξ i+1,B(ξ i − ξ i+1) >

− < ui − ui+1, yi − yi+1 > (30)

Proof: Let ξ = ξ∗ in (27), we obtain

< ξ∗ − ξ i+1,A(ξ i+1)− B(ξ i−ξ i+1)+H (yi − yi+1) >≥ 0.

(31)

By the equality FT x − X0 = y, (31) is equivalent to

< ξ i+1 − ξ∗,B(ξ i − ξ i+1) >≥< A(ξ i+1), ξ i+1 − ξ∗ >

−µ < FT x i+1 − yi+1 − X0, yi − yi+1 > . (32)

Noting (8c), we have FT x i+1 − yi+1 − X0 = 1
µ
(ui − ui+1).

Plugging it into (32), we achieve

< ξ i+1 − ξ∗,B(ξ i − ξ i+1) >≥< A(ξ i+1), ξ i+1 − ξ∗ >

− < ui − ui+1, yi − yi+1 > . (33)

On the other hand, we can achieve

< A(ξ i+1)− A(ξ∗), ξ i+1 − ξ∗ >

= <

 h(x i+1)− Fui+1 − h(x∗)+ Fu∗

ui+1 − u∗

FT x i+1 − yi+1 − FT x∗ + y∗

x i+1 − x∗yi+1 − y∗

ui+1 − u∗

 >

= (x i+1 − x i)T
(
h(x i+1)− h(x∗)

)
≥ 0 (34)

where the final inequality utilizes the monotonicity of the
subdifferential operator of the convex function ‖x‖2∞. Since
ξ∗ is a solution of (24), we have by means of (25) and (34)

< A(ξ i+1), ξ i+1 − ξ∗ >≥< A(ξ∗), ξ i+1 − ξ∗ >≥ 0 (35)

Plugging (35) into (33), we can achieve

< ξ i+1 − ξ∗,B(ξ i − ξ i+1) >≥−< ui − ui+1, yi − yi+1 > .

(36)

Using the identity ξ i+1 − ξ∗ = (ξ i+1 − ξ i) + (ξ i − ξ∗),
we obtain (30) immediately.
For ∀ξ , ζ ∈ 9, we define an inner product by the following

formula

< ξ , ζ >B= ξTBζ (37)

where the matrix B is denoted in Lemma 4.1 and the induced
norm by ‖ξ‖2B =< ξ , ξ >B. According to the definition of
induced norm, we must guarantee that matrix B is positive
definite, so we restrict 0 < λ < 1/ρ(FFT ), where ρ(FFT )
represents the spectral radius of FFT . Then we have the
following lemma.
Lemma 3: let ξ i be the sequence generated by the Algo-

rithm 1, if 0 < λ < 1/ρ(FFT ), then we have
(1) lim

i→∞
‖ξ i − ξ i+1‖B = 0.

(2) The sequence {ξ i} is bounded.

(3) For ∀ξ∗ ∈ 9∗, the sequence ‖ξ i − ξ∗‖B is monotonically
non-increasing and thus converges.

Proof: By (37), (30) can be rewritten as

< ξ i − ξ∗, ξ i − ξ i+1 >B≥ ‖ξ
i
− ξ i+1‖2B

− < ui − ui+1, yi − yi+1 > (38)

By the identity ξ i+1 = ξ i − (ξ i − ξ i+1) and (30), (38),
we have

‖ξ i − ξ∗‖2B − ‖ξ
i+1
− ξ∗‖2B

= 2 < ξ i − ξ∗, ξ i − ξ i+1 >B −‖ξ
i
− ξ i+1‖2B

≥ ‖ξ i − ξ i+1‖2B − 2 < ui − ui+1, yi − yi+1 > (39)

Recalling the second inequality of (28), ∀y ∈M, we have{
(y− yi+1)T ui+1 ≥ 0,
(y− yi)T ui ≥ 0.

(40)

Substituting y in the above first and the second inequality with
yiand yi+1, respectively, we obtain{

(yi − yi+1)T ui+1 ≥ 0,
(yi+1 − yi)T ui ≥ 0.

(41)

Adding up the above two inequalities, we have

< ui − ui+1, yi − yi+1 >≤ 0 (42)

Combining (39), we get

‖ξ i − ξ∗‖2B − ‖ξ
i+1
− ξ∗‖2B ≥ ‖ξ

i
− ξ i+1‖2B. (43)

By the above inequality (43), the statements of the lemma
follow immediately.
Now, we prove the global convergence of Algorithm 1.
Theorem 1: For any µ > 0 and an arbitrary initial point

ξ0 = (x0, y0, u0), the sequence ξ i = (x i, yi, ui) generated by
Algorithm 1 with 0 < λ < 1/ρ(FFT ) converges to ξ∗ =

(x∗, y∗, u∗), where (x∗, y∗) is a solution of (6).
Proof: It can be drawn from (1) of Lemma 4.3 that

lim
i→∞
‖x i − x i+1‖ = 0,

lim
i→∞
‖yi − yi+1‖ = 0,

lim
i→∞
‖ui − ui+1‖ = 0.

(44)

Based on the (2) of Lemma 4.3, ξ i = (x i, yi, ui) has at least
a limit point that is denoted by ξ∞ = (x∞, y∞, u∞). Let ξ ik

be a subsequence converging to ξ∞, i.e.
lim
k→∞
‖x ik − x ik+1‖ = 0,

lim
k→∞
‖yik − yik+1‖ = 0,

lim
k→∞
‖uik − uik+1‖ = 0.

(45)

Next, we demonstrate that ξ∞ satisfies the optimality con-
dition (25). In fact, based on (45) and (27), we can draw that

lim
k→∞

< ξ − ξ ik+1,A(ξ ik+1) >≥ 0,∀ξ ∈ 9 (46)
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FIGURE 1. The convergence performance of the LADMM algorithm.

So any limit point of ξ ik is a solution of (25), i.e. ξ∞ satisfies
the optimality condition (25).

On the other hand, combing (3) of lemma4.3 and (43),
it can be derived that

‖ξ i − ξ∞‖2B ≥ ‖ξ
i+1
− ξ∞‖2B,∀k ≥ 0 (47)

The fact implies that ξ∞ is the only limit point of the sequence
ξ i, and so ξ i converges to ξ∞. Hence (x∞, y∞) is a solution
of (6) .

V. SIMULATION RESULTS
The computer simulations of the presented LADMM algo-
rithm are carried out in the section. 104 OFDM symbols
with 16-QAM modulation are randomly produced so as to
achieve CCDF of PAPR, Oversampled factor is J = 4.
We compare the LADMM algorithm with the AS, the FISTA,
the AAC, the SICF, the SLM and the ADMM algorithms,.
In the LADMM algorithm, µ = 0.01, λ = 0.99, ε = 0.0316.
The stopping criterion of the LADMM algorithm is

max{
‖xi+1 − xi‖2

‖xi+1‖2
,
‖yi+1 − yi‖2

‖yi+1‖2
} ≤ tol

where tol is a tolerance.
The convergence performance of the LADMM algorithm

is shown in Fig. 1.We select max{ ‖x
i+1
−xi‖2

‖xi+1‖2 ,
‖yi+1−yi‖2

‖yi+1‖2 } as the
relative residual error of the LADMMalgorithm and set tol =
10−4. From the curve in Fig. 1, we can find that the relative
residual error decreases rapidly. About 25 iterations, the tol
is satisfied. This fact is consistent with our convergence the-
orem 4. However, this may be a big computational burden for
a practical system. We will demonstrate the PAPR and BER
of the LADMM algorithm can achieve better performances at
about 10 iterations in Fig. 5 and Fig. 6.

The PAPR decrease performance of different methods,
i.e. the LADMM, the FISTA, the AS, the AAC, the SICF,
the SLM and the ADMM algorithms are compared in Fig. 2.
The computational complexity is the same for all schemes.
The PAPR of unclipping OFDM signal is 11.5 dB. The

FIGURE 2. PAPR comparison of different schemes for 16-QAM
modulation.

FIGURE 3. Average PAPR reduction versus iterations.

PAPR reduction performance of the AS, the AAC, the SLM,
the SICF, the FISTA and the ADMM algorithms are about
2.3 dB, 4.7 dB, 5.0 dB, 6.5 dB, 8.5 dB and 9.0 dB, better than
that of the original OFDM signal, respectively. Compared
with the PAPR of the AS, the AAC, the SLM, the SICF,
the FISTA and the ADMM algorithms, the LADMMmethod
obtains an approximate 7.4 dB, 5.0 dB, 4.7 dB, 3.2 dB,
1.2 dB, and 0.7 dB PAPR decrease gain, respectively.
The average PAPR reduction performance of different

algorithms with the same iteration numbers are compared
in Fig. 3. We can find that when the iteration number is 3 the
AS and the SICF algorithms converge to about 6.3 dB and
5 dB, respectively. Continuing to increase iteration, the two
algorithms do not have any performance improvement. After
14 iterations, PAPR of the AAC converges to about 5.2 dB.
Among all the curves, the FISTA algorithm has the fastest
descent rate. For the ADMM and the LADMM algorithms,
the two curves show similar trend.

But we should note the fact that PAPR decrease perfor-
mance of the LADMM algorithm is the best for all the same
iteration numbers.
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FIGURE 4. BER performance comparison of different methods for
16-QAM modulation.

To compare BER performance of the whole system, we
make the optimized signal to pass through a solid-state
power amplifier (SSPA). Usually, the operation point of
the HPA is far away from the saturation region, and is
reduced by certain input power back-off (IBO). The IBO is
denoted as the saturation power of the HPA and the average
power of the input signal. We set the IBO = 4 dB in the
simulations.

We compare BER performance of different approaches
over an additive white Gaussian noise (AWGN) channel
in Fig. 4. Here, the word ‘‘Linear’’ represents the BER of
the original OFDM signal without PAPR reduction and any
distortion. The word ‘‘Original-SSPA’’ expresses the BER
obtained by the original OFDM signal of no PAPR reduction
passing through the SSPA. We can see that the BERs of the
SICF and the SLM algorithms are inferior to other methods
except the ‘‘Original-SSPA’’. This may be due to the fact
that two methods have a cut-off CCDF (refer to Fig. 2). The
OFDM signal of no PAPR reduction and distortion has a
BER level at approximate 13.5 × 10−5 dB. However, when
the SSPA with IBO = 4 dB is employed, the BER loss for
the LADMM, the ADMM, the FISTA, the AAC, the AS
and the SLM algorithms are approximately 3.2 dB, 3.8 dB,
4.1 dB, 5.0 dB, 5.8 dB and 8.5 dB, respectively, compared
with the ideal BER curve. The BER of the LADMMapproach
is about 0.6 dB, 0.9 dB, 1.8 dB, 2.6 dB and 5.3 dB, better than
ones of the ADMM, the FISTA, the AAC, the AS and the
SLM algorithms at 10−5 BER level, respectively.

In Fig. 5, we simulate the PAPR decrease performance of
different iterations on the LADMM algorithm. This can be
found that as iterations increase, the PAPR reduction perfor-
mances become better. For example, when iteration numbers
are 6, 9, 12 and 15, corresponding PAPR are approximate
2.63 dB, 2.51 dB, 2.38 dB and 2.25 dB at CCDF = 10−4,
respectively. The PAPR reduction gaps are about 0.12 dB.
The gap between the PAPR obtained at iteration number
30 (the LADMM algorithm converges) and that achieved at
iteration number 6 is only 0.83 dB.

FIGURE 5. PAPR reduction versus iterations for 16-QAM modulation.

FIGURE 6. BER versus iterations for 16-QAM modulation.

In Fig. 6, we evaluate the BER performances of the
LADMM algorithm on different iterations over an AWGN
channel. The BER of the OFDM signal without PAPR reduc-
tion and distortion is also ploted in Fig. 6 as a reference.
It is showed that as iterations increase, the BER performances
become better. For example, when iteration numbers are 6,
9, 12 and 15, corresponding BER are approximate 24.8 dB,
18.6 dB, 18 dB and 17.5 dB at the BER of 10−5, respectively.
Combining with Fig. 5, we can find that with the increase-
ment of iterations, the better the PAPRs are, the better the
BERs become. But more iterations do not lead to more PAPR
and BER gains. In order to decrease computational cost for
practical system, we can make a trade-off between PAPR
reduction, BER and iterations.

In Fig. 7 and Fig. 8, we also evaluate the PAPR and
BER performances in 64-QAM modulation for different
schemes.We can find that the PAPR performance in 64-QAM
modulation is similar to that in 16-QAM modulation. But
for 64-QAM modulation, BER performances of the AS,
the AAC, the SICF and the SLM methods drop rapidly,
which may be due to the high PAPRs of these methods
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FIGURE 7. PAPR comparison of different schemes for 64-QAM
modulation.

FIGURE 8. BER performance comparison of different methods for
64-QAM modulation.

and their sensitivity to high-order constellations. However,
the proposed LADMM scheme still achieves the best BER
performance, which shows that this method is robust to PAPR
and BER performance of higher-order constellation.

VI. CONCLUSION
The PAPR reduction with an EVM constraint for OFDM
systems is took into account in the paper. Unlike the SOCP
method with a huge computational burden, We present an
innovative approach based on linearized alterative direc-
tion method of multipliers (LADMM) to tackle the PAPR
optimization. Based on the ADMM method, we first get
the LADMM algorithm by linearizing the quadratic term
of subproblem. Because every subproblem of the LADMM
algorithm has a closed-form solution, this gives rise to its
simplicity and high efficiency. Then we analyse the LADMM
algorithm’s complexity. The analysis results show that the
computational complexity is about O(JN log(JN )) in every
iteration. We also give and prove the LADMM algorithm’s

convergence theorem. At last, we compare the LADMM
algorithm with the existing technologies on PAPR and BER
performances. Simulation results demonstrate that LADMM
algorithm not only acquires larger PAPR reduction, but also
obtains better BER.
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