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ABSTRACT With the development of the shipping industry, Automatic Identification System (AIS) used
for ship communication becomes more and more important. Aiming at the problem of mixing position
estimation of AIS mixed signals, this paper improves the double sliding-window detection algorithm to
estimate the mixing position of miscellaneous signals accurately. There is a significant difference in energy
between the aliased and unmixed parts of the mixed signal. When unmixed parts just enter one of the energy
detections windows, the decision function reaches its peak value by establishing a proper decision function,
that is to say, the position of the beginning and end of the mixing part is estimated. The simulation results
show that the proposed algorithm which is compared with the frequency and amplitude detection algorithm
can achieve the mixing position estimation with low complexity and strong robustness, and the estimation
accuracy is close to the Cramer-Rao Bound under the condition of the high signal-to-noise ratio.

INDEX TERMS AIS mixed signal, mixing position, decision function, double sliding-window detection.

I. INTRODUCTION
Ship Automatic Identification System (AIS) that consists of
shore-based facilities and ship-borne equipment is another
type of digital navigation aid system and equipment. The
application of AIS equipment greatly ensures the safety of
maritime traffic. In addition, the ship automatic identification
system belongs to burst communication and the modulation
mode is Gaussian minimum shift keying (GMSK). What is
more, time division multiple access (TDMA) technology is
used to divide different users into separate cells, in which each
user can communicate with each other without interference.
However, when the receiving device receives these signals,
since the receiving range covers multiple cells, and there are
multiple users in the same cell, there are factors such as
position difference and signal transmission time difference
between the users, which causes an increase in collision prob-
ability during signal transmission. As a result, the communi-
cation terminal may receive overlapping burst signals [1]-[3],
which ultimately affects the performance of the AIS system.
For the AIS mixed-signal, the accurate estimation of the
mixing position is the key to improve the effect of blind
separation of the mixed signal and the signal detection.
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Currently, the mixing position estimation of mixed signals
is realized by the signal arrival time difference. Based on
Bayesian theory, [4] proposed a particle filter joint delay
estimation algorithm, which can estimate the delay differ-
ence of two signals, but the algorithm is very sensitive
to frequency offset changes. On this basis, [5] improved
the particle filter algorithm which combined the adaptive
re-sampling with the particle filter algorithm. Although the
sensitivity to parameter changes is reduced, the algorithm
is extremely complex. [6] proposed a parallel estimation
algorithm for the delay of miscellaneous signals. This algo-
rithm can estimate the delay parameters by using the gradient
descent method to solve the analogous estimation equations
of delay parameters established based on the Auto-correlation
Function of mixed signals. However, this algorithm requires
a sustained data length and has a harsh applicable condi-
tion. [7], [8] proposed a joint estimation algorithm based on
maximum likelihood joint timing, but because it needs to
know the Signal-to-Interference Ratio(SIR), its application
is also very limited. A joint frequency and amplitude itera-
tive algorithms are proposed in reference [9]. The algorithm
judges whether the sampling point is mixing by compar-
ing the sampling value between zero-crossing points with
the estimated value. At the same time, the parameters of
the unaligned segment are iterated to gradually improve the
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estimation accuracy. However, the algorithm requires a high
accuracy of frequency and amplitude estimation. In addition,
inspired by the working mechanism of the brain, deep neural
networks [10]-[14] are designed to extract high-level fea-
ture information, which has achieved great success in many
fields and specific tasks [15]-[18] such as, speech recog-
nition [19], [20], image processing [21], natural language
processing [22], and computer vision [23]. In the field of
communication, signals are considered to be temporal data,
which can be learned with deep learning to recognize its
patterns inside [24]. Xuming Lin And Ruifang Liu[25] pro-
posed a Deep Convolutional Network Demodulator (DCND)
model and it can successfully demodulate symbol sequences
from mixed signals.

As can be seen from the above, the previous processing
method either needs to be implemented by means of data
assistance, or the complexity is extremely high or the prac-
ticality is limited. In [26], [27], a double sliding-window
detection algorithm is presented for the detection of the start-
ing position of burst signals. The algorithm uses the energy
ratio in the two energy detection windows to determine the
arrival of the burst signal by determining whether the func-
tion is abrupt. The algorithm requires no prior information
and is extremely insensitive to parameter changes. However,
the ratio of the decision function of the algorithm and the
energy detection window are not applicable when we detect
the mixing position of the mixed signal.

In order to accurately estimate the starting and ending
positions of mixing signals, this paper improves the tradi-
tional double-sliding window detection algorithm, splits the
traditional double-sliding window into four energy detec-
tion windows, and modifies the decision function. When the
unaligned part of the mixed signal just enters a certain detec-
tion window, the improved decision function just reaches
the peak value, while at other times the decision function
tends to be flat or the magnitude is much lower than the
peak value. The improved algorithm only involves the energy
ratio of signals, which not only can accurately estimate the
mixing position of mixed signals under low complexity, but
also maintain the excellent performance of the traditional
double-sliding window detection algorithm. In conclusion,
the improved algorithm in this paper can estimate with simply
and accurately the starting and ending position of mixed
signals. The main contribution and novelty of this paper lie
in the low complexity and excellent detection performance of
the improved algorithm. In addition, the improved algorithm
eliminates the influence of signal delay, phase and other fac-
tors. It can accurately detect the starting and ending position
of the mixing part of the mixed signal under the condition of
great cost savings, which has a strong practicability.

Il. GMSK MIXED SIGNAL MODEL

The AIS system operates at two frequencies, 161.975 MHZ
and 162.025 MHZ, and is modulated by Gauss Filter Min-
imum Shift Keying (GMSK) [28]. This paper assumes that
the received signal at the receiver is composed of noise and

178954

two GMSK signals with the same modulation parameters.
The general expression of the mixed signal model is as
follows:

¥(t) =As1(t —11) +Axs2 (t —12) + 1 (1)
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In the above formula, w is the radian frequency, ¥ (¢) is
the phase function, 71 and 7, are the delay of two signals
respectively. 61 and 6, are their respective initial phases.
n(t) represents zero mean Gaussian white noise. {a; = +1}
in Eq. (2) and Eq. (3) represent the respective transmis-
sion bit information. T represents the symbol period.A(?) is
defined as the impulse response function of the Gaussian
filter. In Eq. (4), B = 3dB equivalent bandwidth of the
Gaussian filter. L denotes the number of cycles in which the
base-band response lasts.

A. BURST DETECTION OF BURST SIGNALS BY
TRADITIONAL DOUBLE SLIDING

WINDOW METHOD

In this paper, the mixing position detection of mixed signals
is based on the double-sliding window detection algorithm,
which has outstanding performance in detecting burst signals.
Compared with continuous signals, burst signals have higher
anti-interception and anti-interference ability, but the signal is
sent randomly [29]. So, it is necessary to detect the burst sig-
nal. In this paper, the detection of AIS signals also belongs to
the burst signal. For this reason, the principle of the traditional
algorithm is firstly introduced to facilitate the understanding
of the improved algorithm. The principle block diagram of the
traditional double-sliding window detection method is shown
in Fig. 1:

—>
A B

\ Mixed signal

Energy detection window

FIGURE 1. Principle Diagram of Double Sliding Window Detection
Method.
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The detection of the burst position depends on the change
of signal energy in Windows A and B. The lengths of win-
dows A and B are L. At time n, the energy in the two windows
is respectively:

L L
2
ap = Zam’a:i = Z | tnil (6)
i=1 i=1

L L
by =Y bubly =Y |bul® )
i=1 i=1

The decision function is:
=y b ®)
by, an

In Eq. (6) and Eq. (7), a, and b, respectively represent the
energy detected in the energy detection the window A and B
at time n. The traditional decision function is m, = a,/b, +
b,/a,. When two energy detection windows only contain
noise, the response of m,, is flat. As the edge of the available
data reaches the window A, the energy in A keeps increasing
and the ratio of a, /b, increases. However, the value of b, /a,,
is much smaller than a,/b,, which can be ignored until the
window A is full of valid data. At this time,m, reaches a
certain maximum value, which corresponds to the starting
position of the burst signal. When valid data starts to leave
window A, the energy in window A is always reduced, and
the ratio of b, /a,, is increasing. At this time, the ratio of a,, /b,
is much smaller than that of b, /a,, which can be neglected.
Until valid data just leave the window A. m,, reaches another
maximum value, which corresponds to the end position of the
burst signal. Thus, the burst position detection of the burst
signals can be completed.

However, the traditional double-sliding window method
is not suitable for detecting the mixing position of mixed
signals. At time n, the overlapping part of the mixed signal
just enters the window A completely. At this time, the value
of a,, /by, is not the maximum, and the value of b, /a, can’t be
ignored. Because the unmixed part of the mixing signal has
entered the window B, the energy in the window B can’t be
overlooked, which shows that the traditional double-sliding
window detection method is not suitable for the detection of
the overlapping position of the mixed signal.

Ill. OVERLAPPING POSITION ESTIMATION

OF MIXED SIGNALS

For AIS signals, the determination of mixing position is an
effective method to reduce the complexity of the blind sepa-
ration process and the bit error rate of the decoding process.
Based on the double-sliding window method to different win-
dows based on signal energy ratio, according to the decision
function to estimate the value of sudden emergency of posi-
tion signal, but the conventional algorithm has insufficient
detection [30]. When not mixing part into the energy detec-
tion window, corresponding decision function can’t enlarge
not mixing energy, lead to the final decision function can’t
response on the part of the signal. Take into account this, this
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paper improves the traditional double-sliding window detec-
tion method. Based on this, this paper improves the customary
double-sliding window detection method. By expanding the
energy detection window and optimizing the decision func-
tion, the mixing position of mixed signals can be estimated
with high accuracy.

A. ESTIMATION OF MIXED SIGNALS BY

IMPROVED ALGORITHMS

Traditional double-sliding window detection can only detect
the initial position of the burst signal. However, the traditional
method is not applied when the mixed signal has a relative
delay and it needs to estimate the position of the mixed signal.
In order to detect the mixing position of the mixed signal,
the energy detection window is expanded to four and the
decision function is redefined. The schematic diagram of the
improved sliding window is illustrated in Fig. 2 below.
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FIGURE 2. Improvement of Double Window Detection Principle Diagram.

As showed in Fig. 2, the traditional energy detection win-
dow with a length of 2L is extended to the new window with
alength of 4L. The new detection window is divided into four
segments of equal length, and each segment is defined as Ay,
Ay, B1, and Bs, respectively. And the energy to the energy
detection window is redefined as a!, a2, b} and 2.

There are:

L L )
1 1,1 1
an = Zani(ani)* = Z Api (€))
i=1 i=1
2L 2L 2
2 2,02 2
a, = Z ani(ani)>|< = Z Ay (10)
i=L+1 i=L+1
d, = ay+a, (11)
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3L 3L 5
b= Y b= k[ a2
i=2L+1 i=2L+1
4L 4L 2
bi = Z bﬁi(bfn)* = Z bgi (13)
i=3L+1 i=3L+1
b, = b} + b? (14)
The new decision function is redefined as:
(@) ay —ap)| | | 6"b; — by)
M = o + 2 (15)
n n

Parameters a,]1, aﬁ, b,ll and b,% in Eq. (9), Eq. (10), Eq. (12)
and Eq. (13) respectively represent the total energy detected
in the four detection Windows at time n. arlu., afti, brlzi and bﬁi
respectively represent symbols in the four-segment detection
window from the i-th symbol to the end of the detection
window at the time n, and i denotes the respective starting

positions of each detection window. * indicates conjugate.
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(a) Procedure Diagram of Staring Point Location Detection of
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(b) Procedure Diagram of End Point Location Detection of
Overlapping Segment.

FIGURE 3. (a) Procedure Diagram of Staring Point Location Detection of
Overlapping Segment. (b) Procedure Diagram of End Point Location
Detection of Overlapping Segment.

When the four windows only contain the noise, it is obvious
that the response of M is flat. As shown in Fig. 3(a)(b),
when the signal is in the position before 77 and after Tj.
Although the energy difference in the adjacent window is
large, there is only noise in the energy amplification win-
dow at this time, and the magnitude of amplification does
not affect the decision result. When the signal is between
T and T3, the signal in the adjacent window is basically the
same, the existence of (a! — a2) and (b2 — b)) in the decision
function make the decision result change very small. When
the signal is between 77 and 7> or 73 and Ty, the energy
in the adjacent window is inconsistent, and the amplified
non-overlapping part of the signal energy will directly affects
the decision result. It is worth mentioning that the difference
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in the magnitude of the energy levels in the adjacent window
at this time is small, so it will not affect the magnitude of
the decision result. Taking the time between 7T and T3 as an
example, there is only noise in the window B at this time,
so the right half (})!%(b2 — bl)/b? of the decision function
can be ignored. The energy of the unmixed part entering
the window A; is amplified, and the energy in A is also
increased. However, the ratio of A increase is less than the
magnitude of the amplification in Aj, so the decision value is
gradually increased. When the unmixed portion just enters A,
completely and the decision function reaches the peak value,
meanwhile the initial position of the overlapping part of the
mixed signal can be judged. It is also possible to determine
the end position of the mixing portion. When the value of
the decision function M reaches a peak, the beginning of the
overlapping portion of the signal can be determined. This
allows the mixing position of the mixed signal to be detected.

IV. SIMULATION RESULTS AND ANALYSIS

Determination of the signal energy amplification index in
the decision function. The algorithm uses the ratio of signal
energy to determine the mixing position of the mixed signal.
We consider that the algorithm is more affected by the signal-
to-noise ratio. Through simulation experiments, it is found
that when the SNR is reduced to 9dB, the signal energy
amplification index is at least above 7. Only at the beginning
and end of the mixing position can be the decision function
show obvious mutation effect.

The simulation uses two co-frequency GMSK mixed sig-
nals with a rate of 9600B. The amplitude is 1, and the time-
bandwidth is BT = 0.4. The frequency offset and phase
are 0. The information sequence has a length of 256 bits
and an oversampling rate of 10, for a total of 2560 points.
The length of the individual energy detection windows before
and after the improvement is 64. The estimation effect of
the decision function was observed under different SNR and
different magnified index. In order to ensure the practicability
of the algorithm as far as possible, we reduced the signal to
noise ratio to 9dB and set the magnified index at 9 and 10.

As can be seen from Fig. 4, when the magnified index is set
to 9, although the decision function will have abrupt changes
at the corresponding position. There will be non-quantitative
abrupt changes in the intermediate process, which will have
a certain impact on the final judgment.

When the SNR increases to 15dB, the magnified index is
set to 6 and 8, and the simulation effect is shown in the Fig. 5.
From the simulation results, it can be concluded that when
the magnified index is 6, there is an obvious mutation at the
starting and ending position of mixed signals. But there are
also mutations at the point where the signal comes and goes.
This phenomenon is caused by the fact that the energy of the
unmixed part of the signal is amplified too low. When the
magnified index is 8, the expected judgment effect can be
achieved.

When the SNR increases to 20dB, the magnified index
is 4 and 6. The simulation result is shown in Fig. 6.
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Similarly, when the amplification index is insufficient,
the decision function changes as the signal arrives and leaves.
When the magnified index reaches 6, the estimation effect can
be better achieved.

In summary, when the SNR is relatively low. If the
expected estimation effect is to be achieved, it is necessary
to amplify the power of the un-overlapped part of the mixed
signal by a larger exponent. With the increase of signal-to-
noise ratio, the energy of the signal is much than the energy
of the noise. The magnitude of amplification is reduced.
In general, we set the magnifying exponent of the decision
function to 10.

Simulation verifies the practicability and superiority of the
algorithm. The other parameters are consistent with simula-
tion 4. The signal-to-noise ratio (SNR) is set to 20dB, and
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the magnified index is set to 10. The mixing position of the
mixed signal is compared with that estimated by the decision
function.

As can be seen from Fig. 7, at the beginning and end of
the mixing of the mixed signal, the decision function will
reach its respective peak and reach the order of 10'? orders
of magnitude. Between the mixing start and end positions,
the mixed signal energy in the window A; and A; is much
larger than the noise. At this time, the result of (a} — a2) is
close to zero but not be negligible, and the (a2)'"/a) ratio
is equivalent to (a,11)9, so the intermediate fluctuation can be
observed.
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g 210
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FIGURE 7. Mixing position detection of mixed signals.

The other simulation parameter settings are consistent with
the above, and the improved double-sliding window algo-
rithm is compared with the frequency amplitude algorithm
in [9] under different relative delay conditions. 500 Monte
Carlo experiments are performed for each point. The error is
used as the verification parameter, and the results are shown
in Fig. 8 and Fig. 9. In order to simplify the representation
in the following simulation, the Frequency And Amplitude
Detection algorithm is abbreviated as Frequency-Amplitude,
and the Double-sliding Window Detection algorithm is abbre-
viated as sliding-window.

5 [—<— Frequency-Amplitude. Relative delay=0.5
©— Frequency-Amplitude. Relative delay=1
Frequency-Amplitude. Relative delay=2 33
5 | < sliding-window. Relative delay=0.5 ~.
& sliding-window. Relative delay=1 <
sliding-window Relative delay=2
-~~~ CRLB

0 5 10 15 20
Eb/No(dB)

FIGURE 8. Performance comparison of overlapping position detection
with relatively small delay.

It can be reached from the simulation results that when

the relative delay difference of the mixed signal is small,
the detection effect of the improved algorithm is not ideal.
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5 | —<—sliding-window: Relative delay=5 ~<
sliding-window: Relative delay=10 ~

sliding-window: Relative delay=15 3
|- --CRrB [
0 5 10 15 20
Eb/No(dB)

FIGURE 9. Performance comparison of overlapping position detection
with large relative delay.

But it is obviously better than the frequency amplitude detec-
tion. When the relative delay difference of the mixed signal
is large, the performance of the improved double-sliding
window algorithm is significantly better than the frequency
amplitude detection algorithm and close to the Cramer-Rao
bound because the frequency amplitude detection algorithm
requires a priori data to estimate the frequency and amplitude
and then iterate, and the estimation accuracy of the frequency
and amplitude is very high.

The other parameter settings are consistent with the
experimental one, and the relative delay difference is set
to 15 symbols, and the performance of the improved algo-
rithm is verified under different frequency offset and phases.
It can be consulted on the simulation results below that the
improved double-sliding window detection method is insen-
sitive to parameter changes and has good robustness.

10 ¥ -~ Frequency-Amplitude, Normalized frequency deviation=0.3
% - Frequency-Amplitude, Normalized frequency deviation=0.1
1ok ) Frequency-Amplitude, Normalized frequency deviation=0
& —4— slidi dow, frequency .3
S|+ siid dow, frequency 1
frequency

MSE

0 5 10 15 20
Eb/No(dB)

FIGURE 10. Overlap position detection at different frequency offsets.

It can be seen from Fig. 10 and Fig. 11 that the frequency
offset and phase have no significant effect on the results of
the proposed algorithm, but have a greater impact on the
frequency amplitude detection algorithm because the algo-
rithm principle of this paper is based on the ratio of signal
energy. Changing the parameter frequency and phase does not
have a significant effect on the energy of the signal. The fre-
quency amplitude algorithm needs to estimate the frequency
and amplitude of the original signal more accurately, and
then iteratively realize the estimation of the mixing position.
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FIGURE 11. Overlap position detection under different initial phases.

The changes of the initial phase and frequency offset of
the signal will have a greater impact on the original signal
model. The ratio of the aliased position estimation algorithm
based on energy is more robust than the frequency amplitude
detection algorithm.

It can be intuitively seen from the above simulation results
that the two maximum values of the decision function of the
improved algorithm correspond exactly to the mixing start
and end positions of the mixed signal, and the magnitude of
the maximum value reaches 7.11 % 10'2. This can greatly
reduce the impact of noise on the final result. From this,
the effectiveness of the improved double-sliding window
detection method for estimating the position of the mixed
signal mixing segment can be obtained. On the basis of the
estimation of the mixed signal mixing start and end posi-
tion, the same initial simulation conditions are set, and the
performance of the improved double-sliding window detec-
tion method and Frequency-Amplitude detection algorithm
is compared. It can be seen from the simulation results that
the improved algorithm has higher estimation accuracy, lower
complexity, stronger robustness, and more importantly, blind
estimation without prior information. Moreover, with the
signal-to-noise ratio increasing, its performance is getting
better and better. This is because the magnitude of the sig-
nal energy is much larger than the noise energy, and the
resulting error of the decision function is smaller. It can
be seen from Fig. 6 that when the relative delay differ-
ence of the mixed signal reaches 15 symbols, the mean
square error of the mixed position estimation reaches
10752 orders of magnitude very close to the Cramer-Rao
bound.

V. CONCLUSION

In this paper, the problem of mixing position estimation
of mixed signals is improved. The double-sliding window
detection method is improved. The traditional two energy
detection windows are refined into four, and the decision
function is redefined. When the unaligned part of the signal
completely enters the amplified energy detection window,
the decision function just reaches the peak value; and at other
times, the magnitude of the decision result is reduced by
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multiplying the energy difference in the adjacent window.
The closer the energy of the adjacent window is to the effect
on the magnitude of the final decision function, the more
significant the effect is when the decision function reaches
its peak value. The improved algorithm can not only estimate
the mixing position of the AIS mixed signal, but also the
accuracy and complexity of the estimation are better than
the frequency amplitude detection algorithm. The simula-
tion results show that the proposed algorithm can accurately
estimate the mixing position of the AIS mixed signal, and
the estimation accuracy is close to the Cramer-Rao bound
when the signal-to-noise ratio is high, which is not sensitive
to the change of parameters and has strong robustness. The
algorithm designed in this paper can be used in the pretreat-
ment stage of the blind separation of mixed signals. If the
overlapping part of the mixed signal is less and only blind
separation is carried out for the overlapping part, the separa-
tion effect can be greatly improved. However, this method is
also limited by the power of the signal. If the power difference
between the mixed signals is large, the detection effect will
be poor, so this method still has a high research value. And i,
in the future, will consider adding a deep learning algorithm
to further improve the accuracy of the estimation.
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