IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 5, 2019, accepted November 20, 2019, date of publication November 27, 2019,
date of current version December 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956203

Data Mining-Based Upscaling Approach for
Regional Wind Power Forecasting: Regional
Statistical Hybrid Wind Power Forecast
Technique (RegionalSHWIP)

MEHMET BARIS OZKAN"“'2 AND PINAR KARAGOZ 2, (Member, IEEE)
!Energy Institute, Scientific and Technological Research Council of Turkey (TUBITAK), 06000 Ankara, Turkey
2Department of Computer Engineering, Middle East Technical University, 06000 Ankara, Turkey

Corresponding author: Mehmet Baris Ozkan (mehmet.ozkan @tubitak.gov.tr)

This work was supported by the RITM Project directed by the TUBITAK Marmara Research Center for Renewable Energy General
Directorate of Turkey, Energy Institute, under Grant 5122807.

ABSTRACT With the increasing need for the energy, the importance of renewable energy sources has also
been increasing. In order to include the power produced by the wind into electricity grid in a controlled
manner, power prediction has an important role. To produce a reliable wind power forecast, obtaining Wind
Power Plants’ (WPP) power generation data in real time and constructing the power forecast model with
historical production values is a desirable action plan. However, this situation may not be applicable for all
WPPs in the country due to difficulties in obtaining such data from WPP in real time. Therefore, there is a
need for upscaling algorithm for generating the power forecast of such WPPs and producing a regional power
forecast for a given region or the whole country. In this work it is aimed to construct an upscaling wind power
forecast model to answer these needs. Many models in the literature propose techniques for the estimation of
the entire zone rather than an offline plant. Offline plants are the plants such that their production data is not
available in the system. In this work, we propose a method for generating power forecasting for offline plants,
and for a region at the same time. The technique is based on firstly power forecasting for offline plants, and
then upscaling to region by using forecasts for both online and offline wind power plants. The performance
of the method is experimentally evaluated with baseline and previous techniques and it is shown to provide
higher accuracy for power prediction.

INDEX TERMS Data mining, numerical weather production, regional wind power forecasting.
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I. INTRODUCTION

Climate change is one of the most important problems
that the world has been facing in recent years [1], [2].
The main reason behind the climate change is reported
as excessive usage of fossil fuels such as coal, oil and
natural gas, which release high carbon dioxide to the
atmosphere [1], [2].

For a better future, human beings need to reduce energy
consumption and greenhouse gas emissions. In the last cen-
tury, this situation was also realised by the world leaders and
Kyoto Protocol was signed in 1997. The main aim of this
agreement is to reduce the proportion of the methane and
carbon dioxide release to the atmosphere by using alternative
energy sources [3].

Renewable energy sources such as wind, solar, geothermal,
hydroelectric and biomass are the main alternative energy
sources with their substantial benefits. Use of these sources
is not only important for our climate and health but also for
our economy.

There are inherent conveniences and difficulties in obtain-
ing energy from each of these alternative energy sources.
Wind energy has an important place among these sources
with its high potential. However, due to its stochastic nature,
unlike other renewable energy sources, it iS so unstable
and volatile. Therefore, in order to control this unsta-
ble energy source, a reliable forecast system is inevitable
for the system operator who manages the energy flow in
the country [4], [5].

In recent years, as in other developed countries in the
world, investments on wind energy are increasing fastly in
Turkey. At present, there are nearly 160 WPPs in the country
with an installed power of 6.5 GW. This wind power is
equivalent to about 8% percent of the installed capacity of
Turkey. Investments are increasing with the aim of upgrading
this rate to 20% in the near future [6]. In order to manage wind
power in the country, RITM project was started in 2010 by
TUBITAK for YEGM and first power forecasts in the system
were produced in 2011 [7]-[9]. Two main aspects of this
project are monitoring the wind power in the country in real
time and producing trusty wind power forecasts for improved
energy management. In the center, various power forecast
models are in operation for solving the different problems
such as short term wind power forecasting (up to 48 hours),
very short term wind power forecasting (up to 6 hours), proba-
bilistic wind power forecasting and ramp forecasting. For the
regional wind power forecasting, the method described in this
paper has been recently integrated as the upscaling module of
the RITM project.
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In this work, we aim to provide regional wind power
forecasting capability to RITM. Regional Wind Power Fore-
casting (i.e., upscaling) problem deals with the prediction of
the aggregated power output of wind farms located within a
defined region [4], [5], [10]-[12]. Although this problem has
become a very popular research topic in the recent years, there
is no standard definition for the region. Some researchers
define region for areas of a few hundreds of kilometers
in diameter, while for some other researchers, regions are
defined according to the wind power plants’ density. The
main problem in the regional wind power forecasting is that
dynamic information of all wind power plants such as weather
forecasts and production data is not usually available. Cur-
rently, in RITM project, a hybrid forecasting method namely
Statistical Hybrid Wind Power Forecast Technique (SHWIP)
[13], [14] is in use as the point forecasting model. However,
this method needs past power data of the wind power plant
for forecast model construction. So this model is applicable
for online plants whose production data is monitored by the
system in real time. Therefore, for power prediction of offline
plants, and hence, of a given region, there is a need for an
alternative model.

The contributions of this work can be summarized as
follows:

o With this method, power estimation can be done for
each wind power plant in the country even if the power
generation history is not available for some of them.

« Proposed model uses a bottom-up approach (different
from the methods in the literature) by first producing
power forecasts of all WPPs. Therefore, regional fore-
cast results are more accurate and stable compared to
the other direct scaling models.

o This model can be used on a hypothetical plant area
to estimate the wind power potential of the location.
This problem is named as Wind Resource Assessment
and by applying this method the wind power potential
of a wind farm location under consideration can be
estimated. In large scale, a wind power potential atlas
for the country can be produced by using the proposed
method.

The rest of this paper is organized as follows: In Section II,
the upscaling models and related work in the literature are
presented. General structures of these models with real world
examples are also given in this section. The general architec-
ture of the RITM project and the details of the data used in
the forecast application are described in Section III. In Sec-
tion IV, the proposed models are presented in detail. The
computational details of the models are given as well in this
section. The evaluation results of the models are presented
and discussed in Section V. Finally, the paper is concluded
with further remarks and possible future work in Section VL.

Il. RELATED WORK

Regional wind power forecast models deal with predicting
the wind power production of the region or whole country by
using the measurements of some reference online wind power
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plants. Getting the power measurement data of all plants in
the country is expensive and sometimes impossible if the
number of wind power plants is too high. Therefore there is
a need for a model that can generate consistent estimates for
the entire region using the existing data in the system [12].
This kind of power forecasts are crucial for the management
of the electricity grid and planning of the energy sources more
effectively.

In [15], Siebert and Kariniotakis focus on the selection of
the reference wind farms in the regional forecasting model.
For the selection of the reference wind plant they propose
k-means clustering and they evaluate the impact of the num-
ber of reference wind farms selection on the accuracy of
regional forecasting. According to their results, increasing
the number of reference wind farms up to optimal number
reduces the error rate.

Lueder er al. [16] propose a hybrid physical-statistical
upscaling approach based on PCA. They show that spatial
decomposition of wind power production can be performed
with PCA in order to extract the pattern of variability. With
this approach they produce forecast maps for different regions
of Germany.

In their work, Drew et al. [17] investigate the importance
of the regional wind power forecasting for determination of
the ramps in the power grid. They discuss three different high
resolution weather forecast models for understanding their
impact on forecasting. They conclude that an accurate and
reliable regional wind power forecast model minimizes the
costs of the power grid management.

Lobo and Sanchez propose a regional wind power fore-
casting model based on smoothing techniques [18]. They
apply their model to the Spanish peninsular system. Their
approach focuses on searching for similarities between the
current wind speed forecasts in the region and historical wind
speed forecasts. Power production forecast is generated from
the historical power data on the basis of the wind speed
similarity.

In [19], [20], regional forecasting model integrated to the
Previento forecast tool is described. This forecast tool uses
physical characteristics of the plants such as turbine hub
height, roughness in the plant area etc. Finally, on the basis
of physical characteristics, several reference wind plants are
chosen, and from these plants, power forecasts of the whole
region are calculated.

Rohrig et al. [21] propose neural network based regional
forecasting approach. They use two networks in the model.
The first network is used for computing the power output of
some reference wind plants. Then these forecasts are given as
input to the second network to compute the forecasts of the
whole region.

Yan et al. [22] introduce a multiscale regional wind power
forecast model for controlling the high penetration of the
wind power on the electricity grid. Their model is constructed
on multi-to-multi mapping network and the use of stacked
denoising autoencoder. They produce power forecasts for
the region with 24 to 72 hours time horizon. According to
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the reported results, their model provides better performance
compared to the other individual regional power forecast
models.

A post-processing technique with PCA is presented by
Davo et al. [23]. They apply the model not only for regional
wind power forecasting but also on solar irradiance fore-
casting. For the numerical weather predictions, they use
ECMWF and GFS as the source and their forecast hori-
zon is 0-72 hours. According to their experimental results,
combining PCA with these post-processing techniques leads
to better performance in comparison to the results of the
technique without the PCA reduction.

RegioPred is developed by Ignacio et al. [24] by using the
point forecasts of online wind plants, which are generated by
their statistical point forecasting model, namely LocaPred.
The model uses Computational Fluid Dynamics (CFD) and
power curve modelling for power forecasts. Selection of the
reference wind farms is performed by clustering.

In [25], Alvaro et al. compare performance of MLPs and
SVR for reference wind farm selection in their regional wind
farm forecasting model. It is reported that SVR based model
offers better performance as the training time is much less
than MLP.

The proposed model described in this paper is based on
statistical models like most of the methods described above.
In the proposed model, reference online plants are chosen
according to geographical relations and neighboring, histor-
ical wind speed and wind direction similarities as in the
models described in [15], [18]-[20]. However, unlike these
models, in the proposed model, the reference online plants
are determined separately for each offline plant rather than
for the region. Therefore, differently from the models in the
literature, the proposed model estimates the power forecast
for each offline plant in the system before estimating the
regional power forecasts. As a result, the main advantage of
the proposed method is that it is possible to generate power
forecasts for every plant in the system while generating power
forecasts to the region even if for some of the WPP historical
power data is not available. Additionally, another advantage
of this method is that it can be applied to a hypothetical
plant area in order to investigate the wind power potential.
Therefore, the proposed method can be used in wind power
assessment problem.

Ill. GENERAL ARCHITECTURE OF THE RITM SYSTEM

This section summarizes the general architecture of the RITM
system and the structure of the data that is used in the pro-
posed method. The structure of the RITM project is shown
in Figure 1. The production data of the power plants is
measured by wind power analyzers and sent to servers in real
time. Apart from the wind power data, from the plant SCADA
system and wind masts, wind speed and wind direction values
on the turbine levels are sent to the center. The most important
data source in the architecture is the NWP. In the absence
of the weather forecasts it is impossible to produce power
forecasts obtained by the models described in this work. Due
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FIGURE 1. The general architecture of the RITM system.

to their importance in power forecasting, these weather fore-
casts are obtained in hourly resolution for 48 hours (48 hour
tuples for the current day and the next day) to the system
from three different sources, namely GFS [26], ECMWEF [27]
and MGM [28]. Since weather forecast inputs are in 48-hour
resolution, power forecasts generated in the system are also
in 48-hour resolution. These weather forecasts are updated in
every 24 hours.

By using the weather forecasts and past power data 48-hour
day ahead power forecasts are produced in the system by
SHWIP model for online WPPs [13] for every day. SHWIP
point forecasting model is based on dynamic clustering of
weather events according to the most important weather
parameters such as wind speed, wind direction and pressure.
As of the end of 2017, there are about 160 WPPs in Turkey
and 110 of them are monitored online in this system.

As shown in the rightmost modules in Figure 1, produced
power forecasts are sent to the WPP owners and they enter the
energy market by using these power forecasts. Additionally,
by using the monitoring and forecast software, TSO can view
the production data in real time and visualize the power
forecasts.

IV. PROPOSED TECHNIQUE:REGIONAL STATISTICAL

HYBRID WIND POWER FORECAST (RegionalSHWIP)

Regional wind power forecasting is important especially for
system planning. Most of the models in the literature make
predictions of the wind power of the region by scaling up
the power estimates of several reference online wind farms
in the region. Unlike this approach, in the proposed method,
first of all, the wind power forecast is produced for the offline
power plants in the region and then the power forecast of
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the region is obtained from the sum of all the online and
offline power plants in the region. With this method, for all the
power plants in the country, it is possible to produce power
estimates even if they are not monitored in the system, and
these forecasts can be used for improving regional forecasts.
Unlike previous similar systems, the most important factor
in the implementation of this method is the availability of
weather forecast data for all the coordinates in the country,
not just online plants in the system.

The general architecture of the proposed work is pre-
sented in Figure 2. The inputs of Stage-1 are 48-hour power
forecasts of the online plants obtained by SHWIP method
[13], [14], 48-hour NWP data for the online plants and
48 hour NWP data for the offline plants. Individual offli-
neSHWIP power forecasts are produced in Stage-1 for the
offline plants and these forecasts are combined to obtain the
final 48-hour power forecasts for offline WPPs. We have
proposed 6 alternative models that can be used for this phase,
and their performance have been analyzed as given in Sec-
tion V. The forecasts of the whole region are determined in
Stage-3 by summing up the SHWIP power forecasts of the
online plants and offlineSHWIP power forecasts of the offline
plants.

A sample region in the country is presented in Figure 3.
In this map, the green circles represent the online plants in
the region and black circles denote the offline ones. With the
proposed approach, initially, power forecasts for each of the
individual offline plants are calculated and the power fore-
casts of the whole region are determined as the summation of
all plants in the region.

Stage 1. In this stage, firstly, 48-hour weather forecast
data is retrieved for the candidate reference online plants and
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FIGURE 3. A sample region from the marmara sea.

Vonlinelt, t + 1, +2, ..., t +47] 2)
offline plants. In the constructed model, wind speed values 0 v<5m/s
are used in the generation of the power forecasts. 0014 v=5m/s
Let vogine and Vopjine are the 48-hour wind speed forecast 0.07 v=6m/s

vector for the time instance 7. Equation 1 and Equation 2

represent the 48-hour wind speed input vector for the offline 0.1408 v ="7m/s

and online plant, respectively. From these values, capacity 0232 v=_8m/s

factor of each hour is calculated as given in Equation 3, Cr(v) = 10.35 v=9m/s 3)
by using a typical power curve of 1| MW wind turbine given 0.5044 v=10m/s

in Figure 4. According to power curve in Figure 4, according 0.6744 v=11m/s

to the wind speed forecast, expected capacity is determined

by using the ranges in Equation 3. 0.8348 v = 12m/s

0.9596 v =13m/s
Voftine[t, t + 1,8 +2, ..., 1 +47] €))] 1 v> 13m/s
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From the capacity factor ratio, capacity of the plant and
48-hour SHWIP power forecasts of the online plant, 48-hour
offlineSHWIP power forecast of the offline plant is calculated
as given in Equation 4.

Stage 2. The main job of the second stage is selection of
the reference online WPPs and combination of the individual
offlineSHWIP forecasts that were calculated in the previous
stage in order to generate the final power forecasts of the
offline plant. For the selection of the online plants, geograph-
ical region, neighborhood relation and historical weather data
similarities are considered.

To this aim, we define the following 6 alternative models:

e Model 1: Region Based Exponential Distance
Weighting. Each online plant within the offline plant’s
geographical region is selected as reference and individ-
ual offlineSHWIP forecasts are weighted in inverse pro-
portion to the distance as shown in Equations 5, and 6.

o Model 2: Region Based Average Weighting. Each
online plant within the offline plant’s geographical
region is selected as reference and individual offlineSH-
WIP forecasts are equally weighted for each reference
online WPP.

o Model 3: Neighbourhood Based Exponential Dis-
tance Weighting. The nearest 15 online plants with
respect to the offline power plant’s central coordinates
are selected reference and individual offlineSHWIP
forecasts are weighted in inverse proportion to the dis-
tance given in Equations 5, and 6.

o Model 4: Neighbourhood Based Average Weight-
ing. The nearest 15 online plants with respect to the
offline power plant’s central coordinates are selected
as reference. Individual offlineSHWIP forecasts are
equally weighted for each reference online WPP.

o Model 5: Historical Wind Speed Similarity k Nearest
Neighborhood based Weighting.

For this model initially, for the data retrieval step, the fol-
lowing operations are performed:

— For every plant, 48-hour daily weather (wind speed)
forecast is obtained.

— For every plant, 30-day historical weather forecast
data is obtained. Weather forecasts are obtained
as the average forecasts of the 4 (Experimentally
shown that 4 is optimal as the nearest neighbor
count) nearest grid points to the WPP’s central coor-
dinate.

— For the online plants, 48-hour SHWIP power fore-
casts are obtained.
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TABLE 1. r value correlation table.

r value Relation

+.70 or higher | Very Strong positive relationship
+.40 to +.69 Strong positive relationship

+.30 to +.39 Moderate positive relationship
+.20 to +.29 Weak positive relationship

+.01 to +.19 No or negligible relationship

0 No relationship

-.01 to-.19 No or negligible relationship
-.20 to -.29 Weak negative relationship
-.30to-.39 Moderate negative relationship
-40to -.69 Strong negative relationship

-.70 or higher | Very Strong negative relationship

After the data retrieval for the selection of the reference
online WPPs, the following procedure is followed:

1) For an offline plant, from the historical wind speed
vectors, a correlation coefficient is calculated for
each online plant in the system, independent of the
regional neighbourhood. For the correlation coef-
ficient The Pearson Product-Moment Correlation
equation whose formula is given in Equation 7 is
used [29].

_ n(y_xy) — Q0 y)

VI x) = (02 y?) = ()]
(N

In this equation, x value is the 30-day historical
wind speed vector of the offline wind power plant
and y value is the corresponding historical wind
speed vector of the online WPP.

2) According to r value correlation in Table 1 1
k online WPPs whose correlation coefficient is
greater than 0.4 are selected as the reference online
plants.

3) Finally from the selected k online WPPs final
power forecasts of the offline plant are calculated
as correlation coefficients are assigned as the com-
bination weights.

o Model 6: Historical 2D Wind Data Similarity Near-
est Neighborhood based Weighting. In Model-5, data
similarity is investigated with respect to the most recent
30-day wind speed data of the offline plant, and reference
online plants. While finding the similarity, the Pearson
Product-Moment Correlation is used. In this model, not
only wind speed forecast data but also wind direction
forecast data are considered. Additionally, for extracting
the seasonal pattern, the training day size is extended to
90 days.

In this model, the Pearson Product-Moment Correlation
is not suitable since the correlation calculation involves

1t value correlation table shows the borders of strong, moderate and weak
relation between two data sets
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TABLE 2. Results of all models (in terms of NMAE %).

‘WPP Model-1 | Model-2 | Model-3 | Model-4 | Model-5 | Model-6 | Base Model | Persistent Model
WPP1 1327% | 1336 % | 12.87% | 13.47% | 1290 % | 12.71 % 13.43 % 19.32 %
WPP2 16.14 % | 1642 % | 16.66 % | 16.70 % | 15.42 % | 15.09 % 17.65 % 18.95 %
WPP3 13.92% | 1407 % | 1434 % | 14.65% | 1510 % | 14.79 % 14.40 % 16.40 %
WPP4 13.75% | 13.89 % | 13.73% | 13.78 % | 13.11 % | 13.17 % 16.37 % 17.15 %
WPP5 1797 % | 1817 % | 1822% | 1956 % | 1793 % | 17.55 % 21.79 % 21.01 %
WPP6 1554 % | 1639 % | 1558 % | 16.17 % | 15.72 % | 15.43 % 16.52 % 21.70 %
WPP7 1549 % | 15.09% | 16.83 % | 16.26 % | 14.76 % | 14.00 % 14.99 % 18.14 %
WPP8 1619 % | 1640% | 17.22% | 18.75% | 16.02% | 15.84 % 20.32 % 21.12 %
WPP9 1714 % | 1733 % | 1704 % | 17.27 % | 16.59 % | 16.70 % 19.43 % 19.21 %
WPP10 17.03 % | 17.25% | 16.67% | 17.07% | 1470 % | 14.38 % 18.83 % 20.78 %

2D matrices that include wind speed and wind direc- ,/M

tion data. Therefore, instead, we use RV Coefficient NRMSE = TN x 100 % (10)

technique [30]. The RV coefficient is a generalization
of the squared Pearson correlation coefficient. As in
Pearson correlation, in RV coefficient values range in
[0,1], where 1 denotes the highest similarity. As in the
Model-5, the online plants whose RV correlation coeffi-
cients are higher than 0.4 are selected as reference online
plants and these coefficients are used as the combination
weights.

N
RegionalSHWIP =

n=1

SHWIP n = Online
offlineSHWIP n = Offline

Stage 3. In the final stage, the power forecasts of the whole
region (RegionalSHWIP) are calculated as the summation
of the online plants’ SHWIP forecasts, and offline plants’
final offlineSHWIP forecasts within the region, as given in
Equation 8.

V. EXPERIMENTAL RESULTS

In this section, experimental evaluation results are presented.
Firstly, data used in the experiments is introduced. Then we
present the experiments on power forecasts for offline plants.
Following this, the experiments on regional wind power fore-
casting are presented in the next section.

A. DATA USED IN THE EXPERIMENTS

In the experiments, we used 10 offline WPPs in order to
evaluate the forecasting accuracy of the proposed method.
Additionally, 9 regions, determined by TSO, are used for
evaluating the performance of the regional power forecasts.
As the ground truth, we used the power values for these offline
WPPs and the regions for the period between 1 January 2017
to 31 December 2017, which are obtained from the study
in [31].

N
Dot lyi—xil

NMAE = — N 100 % )
c
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Performance results are obtained for the hourly power
forecast and power data in this time period. Error results are
reported as average NMAE and NRMSE, by using Equation 9
and Equation 10.

In Equation 9 and Equation 10, x; is the real power, y; is
the power forecast at i hour, C is the installed capacity of
the WPP and N is the total number of hours processed in the
test phase which correspond 8760 (365 x 24) hour data in one
year test region.

B. EXPERIMENT 1: ANALYSIS ON POWER FORECAST FOR
OFFLINE PLANTS

In the first experiment, performance of the final offlineSH-
WIP power forecasts (result of Stage-2 in Figure 2) of the
10 offline plants for all of the 6 models are investigated
in terms of NMAE and NRMSE error rates. These plants
are selected from different geographical regions of country.
Additionally, these models are compared with two other fore-
cast models whose details are as follows:

« Base Model: In this method, the weather forecasts of
the offline plant are directly used in the power curve in
Equation 3 without checking a relation between refer-
ence online plants.

« Persistent Model: In this approach, mean power data of
the previous day is assigned as the power forecasts of the
next day for each 24-hour tuple.

According to error rates presented in Table 2 and Table 3,
Model-6 error rates are lower than Model-5 in 7 plants. Also,
for 7 of 10 WPPs the lowest error rates are obtained by
Model-6. For three other plants, the error rates of all models
are close to each other and these plants have high number of
geographical neighbors.

Adding wind direction to selection of the reference online
WPPs improved the error rates, and compared to other mod-
els, Model-6 is more stable especially in the determination
of the peak values. An example of this situation is shown
in Figure 6. Although WPP1 has 40 MW installed capacity,
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Summer Average Error Rates NMAE %

Model-1 Model-2 Model-3 Model4 Model:5 Model-6 Base Model Persistent Model

Models

FIGURE 5. Seasonal performance of the all models.

TABLE 3. Results of all models (in terms of NRMSE %).

Spring Average Error Rates NMAE %

Model-1 Model2 Model3 Model-4 Model-5 Model-6 Base Model  Persistent Model

Models

2 T T T T T

Autumn Average Error Rates NMAE %

Base Model  Persistent Model

Model-1 Model:2 Model3 Model4 Model5 Model
Models

WPP Model-1 | Model-2 | Model-3 | Model-4 | Model-5 | Model-6 | Base Model | Persistent Model
WPP1 1924 % | 2046 % | 1857 % | 19.710% | 1791 % | 17.72 % 19.87 % 27.07 %
WPP2 2448 % | 2491 % | 2490% | 2501 % | 23.82% | 23.35% 26.89 % 25.93 %
WPP3 2074 % | 2097 % | 21.41 % | 21.76 % | 2243 % | 22.05 % 22.82 % 24.24 %
WPP4 1956 % | 19.75% | 1948 % | 19.54 % | 1848 % | 18.55% 23.68 % 24.08 %
WPP5 25.83% | 2690 % | 26.67% | 2894 % | 26.20% | 26.06 % 31.50 % 30.12 %
WPP6 2240 % | 2335% | 2235% | 22.88% | 22.85% | 22.22% 24.66 % 29.98 %
WPP7 2173 % | 2121 % | 2329 % | 22.48% | 21.07% | 20.21 % 22.11 % 26.77 %
WPPS8 2395% | 2398 % | 2448 % | 2639 % | 23.07 % | 23.16 % 28.97 % 31.51 %
WPP9 2471 % | 25.19% | 24.00 % | 2427 % | 2413 % | 2428 % 28.59 % 26.52 %
WPPI10 | 2514 % | 2551 % | 24.66 % | 2531 % | 22.11 % | 21.60 % 28.37 % 29.62 %

Capacity (MW)

Model-6 and Maodel-1 Comparisonin Peak Values

=—REAL POWER

Model 1

Model 6

Time (Hourly)

FIGURE 6. Model-6 and model-1 comparison in determination of the peak values.

maximum power forecast value obtained by the Model-1 is
at 35 MW levels while Model-6 reaches the plant installed
capacity as the power forecast values for the same period.
All of the models are also compared in terms of sea-
sonal performances during the one-year test period as shown
in Figure 5. Seasonal error rates are calculated as the average
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NMAE rates of the 10 offline test plants during the sea-
sons. According to the seasonal performances, for all of
the seasons, Model-6 shows better performance compared
to other models on the average. Similarly, for all of the
models, the lowest error rates are obtained in the autumn
season while the highest error rates are obtained in the winter
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TABLE 4. Results of all regions (in terms of NMAE %).

Region Name Capacity (MW) | Model-1 Error | Model-2 Error | Model-3 Error | Model-4 Error | Model-5 Error | Model-6 Error | Base Model ANN SVM
Trakya YTM 680.35 9.61 % 9.62 % 9.53 % 9.54 % 9.46 % 9.42 % 11.63 % 923% | 9.16 %
North West Anatolia YTM 305 9.79 % 9.82 % 10.17 % 10.04 % 9.92 % 9.74 % 11.83 % 13.19% | 10.55 %
West Anatolia YTM 3287 8.10 % 8.12 % 7.59 % 7.61 % 7.35% 7.11 % 10.10 % 8.30 % 8.40 %
Middle Anatolia YTM 4425 9.65 % 9.62 % 9.95 % 10.13 % 9.33% 9.28 % 12.97 % 11.32% | 11.64 %
West Mediterranean YTM 341.5 10.74 % 11.48 % 11.08 % 10.90 % 10.31 % 9.54 % 11.00 % 10.77 % | 10.22 %
Middle Black Sea YTM 163.8 14.44 % 14.94 % 15.22 % 15.18 % 14.64 % 14.28 % 16.49 % 1533 % | 15.07 %
Southeastern Anatolia YTM 188.2 9.68 % 9.78 % 9.17 % 9.36 % 9.06 % 8.54 % 10.60 % 8.15 % 8.34 %
East Mediterranean YTM 804.1 7.55 % 7.61 % 8.10 % 7.39 % 7.16 % 713 % 10.82 % 8.98 % 8.71 %
National YTM (All WPPs) 6212 6.95 % 6.99 % 6.93 % 6.68 % 5.58 % 5.25% 8.06 % 641% | 512%

season. This situation is merely related with the weather
forecasts. Generally, the weather conditions in the winter
season are more volatile and the accuracy of the weather
forecasts are low compared to other seasons. On the other
hand, in summer or autumn, weather conditions are more
stable and this issue makes weather forecasts more accurate.
Since the weather forecasts are the main and indispensable
input to the power forecasts, the seasonal performances show
differences.

For all 6 models, the computational complexity for each
of 6 models is O(k x n), where k is the number of offline plants
in the system and n is the total number of reference online
plants used in the calculation of the individual offlineSHWIP
forecasts. In the first four models » is determined from a
specified region with the average number of reference plants
are 20-25 for these models. On the other hand, for Model-5
and Model-6, n is the number of all online plants in the system
(nearly 110 WPPs) and reference plants are selected among
them. Since the value for k is expected to be limited and much
lower than n, it brings negligible time cost and the growth
functions of the models can be formalized as O(n).

C. EXPERIMENT 2: ANALYSIS ON REGIONAL POWER
FORECASTING

In the second experiment, performance of the RegionalSH-
WIP for 9 regions, determined by TSO of Turkey is evaluated.
These regions are determined by the transmission system
operator according to distribution of the electricity transmis-
sion lines in the country. All of the regions have different
number of plant density and total installed capacity. In this
experiment, proposed models are also compared (in terms of
regional bases) with three different approaches described in
the literature, whose details are as follows:

« Base Model: In this method, for every region, 3 largest
(in terms of installed capacity) online plants are selected.
Then their total of power forecasts is upscaled as the
forecast of the whole region with the upscaling coeffi-
cient. This coefficient is the ratio of total installed capac-
ity of region to total installed capacity of the 3 largest
plants in the region.
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ANN based Model: In this approach, 1-year of train-
ing power forecasts data obtained by SHWIP model
(10 months for training, 2 months for validation) of
3 largest online plants in the region are given as input
to the Feed Forward Back Propagation based ANN [7]
with the real production data of the whole region in this
1-year period, which covers the whole 2016 year values.
While constructing the network, 3 layers (Input, Hidden,
Output) are used with 5 to 10 neurons. The model is
implemented in Matlab [32].

SVM based Model: Similar to the ANN based model,
for the same reference online plants’ 1-year of train-
ing data is used for constructing the SVM model with
the same inputs in ANN model. The model is imple-
mented by using libsvm library with the interfaces for
Matlab [32], [33]. For the kernel, Radial Bases Func-
tion (RBF) is used and optimum values are selected
for y (gamma) and c (penalty) parameters [7], [10].
(y =5,¢c=2)

Unlike geographical regions, TEIAS identified 9 regions
according to the distribution of electricity lines in the country
which they named these regions as load distribution cen-
ter. The results of the all models for these regions are pre-
sented in Table 4 and Table 5. Also, total number of plants
in the region and total installed capacities of the regions
are presented in the result tables. According to the results,
the lowest error rate in the regional bases is obtained for the
West Anatolia YTM and maximum error rates are obtained
for the Middle Black Sea YTM. For the total of all WPPs,
namely National YTM, NMAE error rate is calculated as
5.25 % for Model-6. There is a correlation between the
error rates and total installed capacities of the region and
generally lowest error rates are obtained in the largest regions.
The reason behind this result is that, if the number of wind
power plants in a region is high, than a forecast error in
one plant can be compensated with better performance of
another plant in the same region. Hence the error rate drops
on the total. In addition to this, SVM and ANN show different
performances for the different regions. The reason behind
this factor is that, for the regions where these two models
show better performance, the 3 largest WPPs in the region
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TABLE 5. Results of all regions (in terms of NRMSE %).

Region Name Capacity (MW) | Model-1 Error | Model-2 Error | Model-3 Error | Model-4 Error | Model-5 Error | Model-6 Error | Base Model ANN SVM
Trakya YTM 680.35 12.82 % 12.83 % 12.77 % 12.78 % 12.12 % 12.08 % 14.30 % 12.33 % | 12.00 %
North West Anatolia YTM 305 14.12 % 14.14 % 14.47 % 14.34 % 13.98 % 13.65 % 16.55 % 17.59 % | 14.62 %
West Anatolia YTM 3287 10.50 % 10.51 % 9.95 % 9.96 % 9.27 % 8.93 % 1335 % 10.94 % | 11.17 %
Middle Anatolia YTM 4425 13.37 % 1331 % 13.75 % 13.95 % 12.49 % 12.39 % 17.74 % 1533 % | 15.94 %
West Mediterranean YTM 341.5 1541 % 16.39 % 15.87 % 15.63 % 14.83 % 12.74 % 15.77 % 1531 % | 14.67 %
Middle Black Sea YTM 163.8 2251 % 23.44 % 24.05 % 24.57 % 22.90 % 23.35% 25.28 % 2472 % | 2471 %
Southeastern Anatolia YTM 188.2 13.76 % 13.76 % 12.88 % 13.22 % 12.49 % 11.08 % 14.99 % 10.89 % | 11.70 %
East Mediterranean YTM 804.1 9.94 % 10.02 % 10.61 % 9.76 % 9.35% 9.15 % 13.90 % 11.33% | 11.18 %
National YTM (All WPPs) 6212 8.65 % 8.69 % 9.61 % 835 % 733 % 6.85 % 10.54 % 8.44 % 6.79 %
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FIGURE 8. Model-6's results for national anatolia YTM.

may represent the whole region better in comparison to the
other regions where the models show lower performance.
For the West Anatolia YTM and National YTM, the forecast
graphics of Model-6 are presented in Figure 7 and Figure 8§,
respectively. In these graphics, red line represents the actual
measured power data in the test region and blue scatter line
represents the corresponding power forecasts for the same
period. As observed in the figures, the overlap between the
forecast and real production value is very high.

VI. CONCLUSION AND FUTURE WORK

Wind energy is an important alternative and clean energy
source with high potential. In order to benefit from this
renewable energy source effectively there is a need for good
planning. The aim of this work is constructing an upscaling
wind power forecast model to be integrated to the RITM
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system. The proposed model is based on statistical methods.
For the selection of the reference online plants and deter-
mination of the combination weights, 6 different models are
proposed and evaluated. According the experimental results,
performance of Model-6, which is based on historical wind
speed and wind direction data similarity performs better than
the other models both in plant basis and regional basis. With
this approach, by using the weather forecasts and output of
the online plants point forecasts, 48-hour power forecasts are
produced for all offline plants in the country. As the final step,
all of these power forecasts are accumulated as the forecasts
of the whole region. Therefore, by using this method it is
possible to generate power forecasts for all the plants in the
system and for all the regions at the same time.

For the future work, by using this method wind power
potential of all country may be investigated rather than
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individual forecasts and from that investigation a wind power
atlas may be constructed for the country. This atlas can be
used for initial investigation for the possible wind plant areas
before making investments on the plant site.
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