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ABSTRACT Vehicle re-identification is one of the core technologies of intelligent transportation systems,
and it is crucial for the construction of smart cities. With the rapid development of deep learning, vehicle
re-identification technologies have made significant progress in recent years. Therefore, making a compre-
hensive survey about the vehicle re-identification methods based on deep learning is quite indispensable.
There are mainly five types of deep learning-based methods designed for vehicle re-identification, i.e.
methods based on local features, methods based on representation learning, methods based on metric
learning, methods based on unsupervised learning, and methods based on attention mechanism. The major
contributions of our survey come from three aspects. First, we give a comprehensive review of the current
five types of deep learning-based methods for vehicle re-identification, and we further compare them from
characteristics, advantages, and disadvantages. Second, we sort out vehicle public datasets and compare
them from multiple dimensions. Third, we further discuss the challenges and possible research directions of
vehicle re-identification in the future based on our survey.

INDEX TERMS Deep learning, intelligent transportation system, vehicle re-identification, vehicle public

datasets.

I. INTRODUCTION
In recent years, the development of technology in the field
of computer vision and the breakthrough of technology in
the field of Internet of Things promote the realization of
smart city concept [1]. As important objects in smart city
applications, vehicles have attracted extensive attention, a lot
of researches about vehicles has been carried out, such as
vehicle detection [2], [3], vehicle tracking [4], [5], fine-
grained vehicle type recognition [6]-[8], etc. As a frontier and
important research topic, vehicle re-identification also caused
more and more attention in research area, the purpose of vehi-
cle re-identification is to identify the same vehicle through
multiple non-overlapping cameras [9], as shown in Fig. 1.
Vehicle re-identification is one of the core technologies in
the intelligent traffic system. Through the ubiquitous moni-
toring network, a vehicle re-identification system can quickly
get the location and time of the target vehicle in the city.
With the assistance of the vehicle re-identification system,
the target vehicle can be automatically detected, located and
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tracked across multiple cameras, which saves labor and cost.
Besides, vehicle re-identification systems have many possible
practical applications, such as intelligent parking, suspicious
vehicle tracking, vehicle event detection, vehicle counting,
and automatic charging [10]. Furthermore, it has a vital
role in applications such as live monitoring or multi-view
vehicle tracking for urban surveillance, therefore, vehicle re-
identification technology is crucial to the future development
of the Internet of things, as well as the construction of intel-
ligent transportation system and smart city.

Although both pedestrians and vehicles are common
objects in smart city applications, most attention has been
paid to person re-identification in recent years due to the
abundance of well-annotated pedestrian data, along with the
historical focus of computer vision research on human faces
and bodies [120]. Compared to person re-identification, vehi-
cle re-identification is more challenging because of the small
inter-class similarity and large intra-class difference. Small
inter-class similarity is in reflected images of different cars
may look very similar. Vehicles produced by the same or
different manufacturers can have similar colors and shapes,
so that visual differences between two vehicle images are
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FIGURE 1. Explanation of vehicle re-identification task. The query image
is compared with many vehicle images captured by multiple cameras (i.e.
gallery), and get a rank list which contains matching vehicle images
(images are selected from [92]).

often subtle, making it difficult to distinguish whether the
two images belong to the same vehicle. By contrast, people
are easier to distinguish because they have more distinct
features, including faces and clothes. Large intra-class dif-
ference is reflected in images of the same car look different
due to the diversity of resolutions, diversity of viewpoints,
diversity of illumination and other factors, e.g. visual patterns
of vehicle in different viewpoints changes much more than
that of people, the images of the same person usually have
a common appearance even if there is a large change of
viewpoints.

Traditionally, vehicle re-identification problems are solved
by combining sensor data with other clues, such as the passing
time of a vehicle [11] and wireless magnetic sensors [12].
However, these methods require additional hardware costs
and are very sensitive to environmental changes. Besides,
because the license plate number is a unique identity of the
vehicle, license plate recognition technologies are widely
used in vehicle re-identification work [13], [14], that is,
identifying license plate numbers of passing vehicles and
searching the target vehicle in mass vehicle images by use of
license plate numbers. Technologies of license plate recog-
nition is relatively mature at present. But in the real traffic
environment, multiple perspectives, lighting, resolution of
cameras has obvious influence on the accuracy of license
plate recognition, and the license cannot be clearly captured
in many cases, e.g. the license plate is blocked, decorated,
forged, removed. It is impossible to locate the target vehicle
accurately through the retrieval of license plate informa-
tion. Therefore, vehicle re-identification technologies based
on vehicle attributes and appearance characteristics, such
as shape, color, texture [15], [16] have received more and
more attention. However, these methods have low accuracy,
so effectively solve the difficulties and challenges faced by
the current research problems and improve the accuracy by
using efficient and accurate methods are the research focus
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in the field of vehicle re-identification. Traditional machine
learning adopts hand-crafted features, it is time-consuming
and has poor results. With the progress of neural networks
in computer vision tasks, methods based on deep learning
achieves higher accuracy than previous methods and perform
well in real scenes. Therefore, summarize the relevant papers
of vehicle re-identification methods based on deep learning
is quite necessary and timely.

To the best of our knowledge, there are few comprehensive
surveys on the vehicle re-identification are available. Khan
et al. [17] investigated methods of vehicle re-identification
for the first time, which fills the blank of a review paper about
vehicle re-identification. They introduced different vehicle
re-identification methods including sensor-based methods,
hybrid methods, and vision-based methods which are fur-
ther categorized into hand-crafted feature based methods and
deep feature based methods. However, the introduction of
vision-based methods is not enough in [17], only 12 papers
from 2016 to 2018 are compared. In this paper, vehicle re-
identification based on deep learning is divided into five
categories, including methods based on local feature, rep-
resentation learning, metric learning, unsupervised learning,
and attention mechanism. Many recent papers are introduced
in the introduction of these five categories. Therefore, this
paper gives a more comprehensive overview of the methods
based on deep learning.

The paper is organized as follows: Section II presents vehi-
cle re-identification methods based on traditional machine
learning and deep learning which are further categorized
into five categories and gives the comparison between dif-
ferent methods. Section III sorts and compares the current
vehicle public datasets and introduces the evaluation strat-
egy of vehicle re-identification, besides, we compare some
vehicle re-identification method’s accuracy in veri-776 and
VehicleID datasets. Section IV discusses the challenges and
possible future research directions. Section V, we conclude
our work.

Il. VEHICLE RE-IDENTIFICATION METHODS

Before the rise of deep learning, traditional machine learning
requires hand-crafted features, due to dependence on adjust-
ing parameter manually, only a few parameters are allowed
in the design of the feature. After the rise of deep learning,
hand-crafted features are no longer needed, instead, it learns
features automatically from a lot of training data and contains
thousands of parameters so that much time used for designing
features manually can be saved and better features can be
extracted. Whether hand-crafted features are required is the
most obvious difference between deep learning and tradi-
tional machine learning. In this chapter, firstly, some methods
based on traditional machine learning are introduced, then
focusing on methods based on deep learning which include
methods based on local features, methods based on represen-
tation learning, methods based on metric learning, methods
based on unsupervised learning, methods based on attention
mechanism and other vehicle re-identification methods.
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TABLE 1. Multi-dimensional comparison of vehicle re-identification algorithms based on traditional machine learning.

Method Characteristics Advantage Disadvantage
1. It is invariant to rotation, scale, and brightness .
1. Large amount of calculation
Focus on local key changes .
SIFT . . : . 2. Low real-time performance
information 2. Anti-blocking 3. Cannot extract features for smooth edges
3. Multi-volume, high speed, and expandable ’ g
1.1 he efft f lighti 1 h .. .
Focus on edge 1. lgnore the etlects of lighting and color on the 1. Sensitive to occlusion
HOG information 1mage 2. Sensitive to noise
2. Characterization dimensions are reduced ’
LBP Eocus on texture 1. Npt sensitive to light _ Sensitive to direction
information 2. Simple calculation, fast operation

A. VEHICLE RE-IDENTIFICATION METHODS BASED ON
TRADITIONAL MACHINE LEARNING

Traditional machine learning uses feature engineering to arti-
ficially refine and clean data. Generally, it includes three
steps which are feature extraction, feature coding, and feature
classification. There are three methods of feature extraction
are widely used, i.e. the scale-invariant feature transform [18]
(SIFT), the Histogram of Oriented Gradient [19] (HOG) and
the Local Binary Pattern [20] (LBP).

The scale-invariant feature transform (SIFT) feature is a
local feature of the images, which maintains the invariance
of rotation, scale scaling, and brightness variation. Besides,
it maintains a certain degree of stability to the viewing angle
change, affine transformation, and noise. SIFT can preserve
the uniqueness of the features, and have abundant informa-
tion. It can be quickly and accurately matched in the mas-
sive feature database. In terms of speed, the optimized SIFT
matching algorithm has good performance, and can achieve
real-time requirements. Besides, SIFT has good scalability
and can be conveniently jointed with other forms of feature
vectors.

The Histogram of Oriented Gradient (HOG) is a feature
descriptor used in the field of computer vision and image
processing for target detection. The large-area features are
constructed by calculating and counting the gradient direc-
tion histograms of the local regions of the image, and over-
lapping local contrast normalization techniques are used to
improve performance. Since the HOG operates on a local
grid unit of the image, it can maintain good invariance to
both geometric deformation and optical deformation of the
image, making both deformations work well for larger spatial
fields. That is, the small deformation and optical changes
generated in a large area are negligible. Therefore, HOG
is particularly suitable for target detection and recognition.
At the same time, HOG is not susceptible to noise. Com-
pared with SIFT, HOG is used to describe the entire area,
unlike the concept of key points like SIFT. Besides, HOG
has no rotation-invariant characteristics. Zapletal and Her-
out [21] employed the color histogram and the histogram of
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oriented gradients (HOG) features with linear regression to
perform vehicle re-identification. Chen et al. [22] proposed a
novel grid-based approach to re-identification vehicles grid-
by-grid by extracting their HOG features for coarse search
and refined the result by using their histograms of matching
pairs (HOMs).

The Local Binary Patterns (LBP) is a simple but very
efficient texture operator, which compares each pixel to its
neighboring pixels and saves the result as a binary number.
Its most important attribute is good robustness to grayscale
changes caused by factors such as illumination changes.
In addition, the calculation of LBP is simple, so that it
conducts real-time analysis to an image. Due to its strong
discriminating power and simple computational advantages,
the LBP is applied in different scenarios in combination with
other operators. In [23], Local Variance Measure (VaR) for
vehicle re-identification are implemented using Local Binary
Patterns (LBP) and joint descriptors. A comparison of the
three methods from multi-dimension is shown in Table 1.

In addition to SIFT, HOG, LBP, there are many
other well-known operators, e.g. shape context [24], spin
image [25], Speeded Up Robust Features [26] (SURF),
Space-Time Interest Points [27] (STIP), Histogram of ori-
ented optical flow [28] (HOF), and motion boundary his-
togram [29] (MBH).

The traditional hand-crafted image features have their
characteristics, but their common disadvantage is that the
generalization ability is poor, which is manifested in:

1) It is only effective for specific tasks, and cannot be
adjusted according to different application scenarios,
such as color histogram features. It is effective for
image classification tasks, but it does not help the
semantic segmentation of images.

2) The features based on hand-crafted only focus on cer-
tain aspects of the image, such as the SIFT focuses on
the local appearance of the image, the HOG focuses on
the image the edge information, the LBP focuses on the
texture of the image, etc., and thus the generalization
ability is poor.
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FIGURE 2. Examples of vehicles with similar appearance but different IDs.

B. VEHICLE RE-IDENTIFICATION METHODS BASED ON
DEEP LEARNING

Unlike the traditional machine learning methods described
above, deep convolutional neural networks (CNNs) introduce
many hidden layers to learn high-level features to improve
its generalization ability, not only achieve good performance
on the target re-identification task, but also can be well
generalized to other computer vision tasks, such as image
classification, object detection, semantic segmentation, video
tracking, etc. As a result, vehicle re-identification methods
based on deep learning become a research hot spot in recent
years.

1) VEHICLE RE-IDENTIFICATION METHODS BASED ON
LOCAL FEATURES

Due to deep learning and the rapid development of
CNNs [30]-[32], significant progress has been made in tar-
get re-identification. Because early researches about vehicle
re-identification focused on the global feature, that is, using
the whole graph to obtain a feature vector for image retrieval.
It led to the accuracy bottleneck problem, so some researches
begin to pay attention to the local features because differ-
ences of similar vehicles are mainly in local areas, as shown
in Fig. 2, each column is two similar-looking but different
vehicles with different IDs, and the red circle highlights the
difference in local areas.

The commonly used methods of extracting local features
is to use key point location and region segmentation. The
method in [33] that used key point positioning and align-
ment to extract features of key parts of the object and made
detailed comparisons based on key points. Liu et al. [34]
introduced reinforcement learning to self-adaptive find dif-
ferentiated regions in fine-grained domains in a weakly
supervised manner. Deng er al. [35] presented Point Pair
Feature Network (PPFNet) for deeply learning a globally
informed three-dimensional (3D) local features descriptor
which learned local descriptors on pure geometry and was
highly aware of the global context.

Methods based on local features have been applied to
vehicle re-identification, Wang et al. [36] used the method
of locating key point and segmenting of different regions to
mark the vehicle image as twenty key points and obtained the
segmentation results of multiple regions of the target vehicle.
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They used a convolutional neural network to extract region
feature vectors for multiple region segmentation results, and
fused with global feature vectors to obtain appearance feature
vectors of the target vehicle. Finally, they used the fused fea-
ture vector to carry out vehicle re-identification and retrieval,
the obtained vehicle appearance features could directly be
compared the vehicle appearance features in different vehicle
images, and solved the problem that different regions between
different vehicle images cannot be compared. Although the
scheme considered the influence of attitude on vehicle re-
identification, the accuracy of the model was limited by the
diversity of the dataset, the dataset needs to include large-
scale vehicle images of various angles. In the real world,
it is difficult to collect a dataset which includes pictures
of the vehicle from different angles as well as the number
of pictures reaches hundreds of thousands. In addition, key
points need to be labeled for different angles of the vehicle
image on the collected dataset, so the number of key points
need to be labeled are large which results in a huge workload.
Therefore, the method was complicated in terms of feasibility
and workload.

More scholars studied methods based on local features.
Because it is hard to distinguish vehicles that share the
same model and maker only by global feature because they
are similar in global appearance, some methods combine
local features and global features for vehicle re-identification.
Liu et al. [37] proposed a Region-Aware deep Model (RAM),
which extracted features from local regions instead of only
extracting global features, RAM embed the detailed visual
cues in local regions as each local region conveyed more dis-
tinctive visual cues. Besides, they introduced a new algorithm
that jointly used vehicle IDs, types and colors to train the
model, which fused more cues for training, resulting in more
discriminative global feature sand regional features. There is
a similar approach, He et al. [38] developed a novel frame-
work which was trained end-to-end with combined local and
global constraints by introducing a detection branch. A local
module focused on the part features to distinguish the sub-
tle discrepancy in visual features, parts included front and
back lights, front and back windows, and vehicle brand.
A global module was regularized by the part attentions in
the local module. The part-regularized discriminative feature
preserving method enhanced the perceptive ability of subtle
discrepancies.

Local information is important in vehicle re-identification.
To localize local regions that contain more distinctive visual
cue, Peng et al. [39] proposed a Multi-Region Model (MRM)
to extract features from a series of local regions, for each local
region, a Spatial Transformer Network (STN) based localiza-
tion model was introduced. They presented a context-based
re-ranking method, the method generated the re-ranking list
by combing context and content to measure the similarity
between neighbors, and the method improved the accuracy of
vehicle re-identification. There are same similar approaches.
Chen et al. [40] proposed an end-to-end trainable two-branch
Partition and Reunion Network (PRN), which combined
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global and local features together to build more robust visual
signatures. Since salient local information is important in
vehicle re-identification, they adopted multiple partitions
along three dimensions (height, width, and channel) in feature
maps to extract more local features from each dimension
of images. But because height and width belong to spatial
dimensions, features extracted from the same location on the
feature map could be considered twice, so the network was
split into one height-channel branch and one width-channel
branch to avoid certain spatial features being considered
twice. Besides, Zhao ef al. [41] proposed a region of inter-
ests (ROIs)-based vehicle re-identification method, which
extracted deep features from the classification model and
used the results of the single shot multibox detector (SSD).
Local features of ROIs could be extracted according to the
detected location, these ROI features that were combined
into a structural feature could mark a vehicle uniquely. The
uniqueness of this method lies in the combination of a classi-
fication model and a detection model to solve the problem of
vehicle re-identification. Ma et al. [42] proposed a refined
part model to learn an efficient feature embedding. The
refined part model was formed through a Grid Spatial Trans-
former Network (GSTN), and it could automatically locate
the vehicle and perform division for local features. Besides,
residual attention was conducted to give an additional refine-
ment for a fine-grained identification, the refined part features
were fused to form an efficient feature embedding finally,
so that improved the accuracy of vehicle re-identification.

In summary, the advantages of methods based on local
features are reflected in it can capture unique visual clues con-
veyed by local areas and improve the perception of nuance,
which helps a lot to distinguish between different vehicles and
improve the accuracy of vehicle re-identification. Besides,
many researchers combine local features with global features
to improve the accuracy of vehicle re-identification. Hoverer,
the disadvantage of methods based on local features is the
extraction of local features will significantly increase the
computational burden.

2) VEHICLE RE-IDENTIFICATION METHODS BASED ON
REPRESENTATION LEARNING

In the real application scenario of vehicle re-identification,
the significant changes in camera shooting angle may lead
to significant differences in local key areas. It is difficult
to achieve high accuracy by vehicle re-identification only
by local features. Due to the rapid development of CNNS,
significant progress has been made in representation learning
(feature learning) [43], the representations are formed by the
composition of multiple non-linear transformations of the
input data to yield abstract and useful representations for
classification, prediction and other tasks [43]. Representation
learning aims to get a valid representation of the data by
training large amounts of data, making it easier to extract
useful information when building classifiers or other predic-
tors. Specifically, using CNNS to train a large amount of data,
feature extraction is automatically performed from the image
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according to different task requirements such as classification
and recognition. Representation learning is a very important
method in the field of re-identification, it has high robust-
ness and stable training, and has been applied to person re-
identification [44]. Therefore, some jobs applied representa-
tion learning to the solving of vehicle re-identification.

It is very important to learn more discriminative repre-
sentations from the vehicle appearance, Zheng et al. [45]
proposed DF-CVTC, a unified deep convolutional framework
to jointly learned deep feature representations guided by the
meaningful attributes, including camera views, vehicle types,
and colors for vehicle re-identification. These components
were collaborative to each other, and thus improved the dis-
crimination ability of the learned representations, besides,
VS-GAN, a vehicle generation model was developed to
enhance the diversity of view data. A Deep Feature Fusion
with Multiple Granularity (DFFMG) method for Vehicle
re-identification was proposed in [46], it used both global
feature and part feature fusion, partitioned vehicle images
along with two directions (i.e. vertically and horizontally)
and integrated discriminative information with various gran-
ularity. DFFMG consisted of one branch for global feature
representations, two for vertical local features representations
and other two for horizontal local features representations.

Some methods based on representation learning have novel
and unique ideas. Hou ez al. [47] proposed a random occlu-
sion assisted deep representation learning based vehicle re-
identification algorithm. What’s unique about this algorithm
was that it employed the random occlusion method to ran-
domly occlude the original training images, which simulated
some occlusion situations in the real world to a certain degree.
Moreover, it increased the number of training samples and
prevented the model from over-fitting, then, the joint iden-
tification and verification learning optimization were per-
formed on training the original images and occluded images
through the developed network. Krause ef al. [48] thought
modeling objects as two-dimensional representations of a
collection of unconnected views limited their ability to gen-
eralize across viewpoints, so they lifted two state-of-the-art
two-dimensional object representations to three-dimensional
on the level of appearance and location. Three-dimensional
object representations have been widely used in the context
of multi-view object class detection and scene understanding,
but have not yet widely used in fine-grained categorization,
they provided first experimental results on the challeng-
ing task of three-dimensional reconstruction of fine-grained
categories and showed their 3D object representations out-
perform their state-of-the-art two-dimensional counterparts
for fine-grained categorization. A framework based on deep
learning which could lead to an efficient representation of
vehicles was proposed in [49], the key of the framework
was that learning variational feature was employed to gen-
erate variational features which were more discriminating
and long short-term memory (LSTM) was used to learn the
relationship among different viewpoints of a vehicle. The
advantage of the framework was that it can be derived highly
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discriminating representations for vehicle images improved
the performance of vehicle re-identification. Besides, it is
believed that the idea of using variational feature learning
with Kullback-Leibler Divergence can not only improve the
performance of vehicle re-identification but also can improve
the quality of object representation on other similar scenes.

There are other methods based on representation learn-
ing. To address issues such as data labeling, visual domain
mismatch between datasets and diverse appearance of the
same vehicle, Wu et al. [50] proposed a CNN-based vehicle
re-identification system, the adaptive representation learning
technique based on the space-time prior was used to automat-
ically get positive and negative training samples from unla-
beled testing videos. They trained a vehicle feature extractor
in a multi-task learning manner and fine-tuned the feature
extractor on the target domain so that the deep network could
adapt to the visual domain of the testing videos. To accelerate
the procedure of representation learning, a new distance loss
was proposed in [51], it considered samples of the identical
vehicle as an image set, and it pulled samples in the same set
close to each other and pushed different sets away from each
other, using this way to guide the network training procedure
to optimize the distance between and within image sets,
advantage of the proposed loss lay in better efficiency than
the commonly used sample-wise triplet loss. Jiang et al. [52]
presented a multi-attribute driven vehicle re-identification
approach which consisted of a multi-branch architecture and
a re-ranking strategy to learn discriminative representations.
The multi-branch architecture explicitly leveraged the vehi-
cle attribute cues such as color, model to enhance the gen-
eralization ability. The re-ranking strategy introduced the
spatial-temporal relationship among vehicles from multiple
cameras to construct the similar appearance sets and utilized
Jaccard distance between these similar appearance sets.

At present, two types of work are mainly carried out for
re-identification tasks. One is to regard the re-identification
task as a classification problem, that is, according to the
labeled vehicle information as the supervision condition,
inputting a large amount of vehicle image data, and using
the classification loss function for classification learning. The
loss is calculated according to the predicted vehicle category
information, and the loss of the classification learning is
reduced by continuous forward propagation and backward
feedback, thereby realizing the fine-grain classification task
of the vehicle. However, the number of vehicle models that
appear in the traffic monitoring video is large, and the types
of models and the number of vehicles increased year by
year. Therefore, using classification learning, that is, regard
the re-identification as a fine-grained vehicle classification
task, will lead to over-fitting in the data domain. When there
are many samples, it will be difficult to classify learning
effectively, which leads to bottlenecks in accuracy.

Another type of work carried out for vehicle
re-identification tasks is the vehicle verification problem, that
is, inputting two vehicle pictures marked with the vehicle
ID information, and determining whether the two vehicles
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belong to the same ID. By using verification loss for veri-
fication learning, the loss is reduced gradually to meet the
requirements for the distinction between the two vehicles.
However, verification learning can only judge the similarity
of two pictures in pairs, but because it is a one-to-one
comparison, it takes a long time, so it is difficult to apply
to target clustering and retrieval. Besides, the generalization
ability and the representation ability of the verified verifi-
cation model are insufficient only by the ID information of
the vehicle. Therefore, it is necessary to introduce vehicle
attribute labels, such as model and color, and enhance the
learning ability and representation ability of the validation
model by “feeding” enough labeled information into the
neural network.

In summary, representation ability plays an important role
in vehicle re-identification, methods based on representation
learning can automatically extract target features according to
task requirements, besides, they are relatively robust, training
is more stable and the results are easily reproducible, how-
ever, methods based on representation have poor generaliza-
tion ability, they are easy to over-fitting on the dataset domain,
and they appears to be weak when the number of training
samples increases to a certain extent.

3) VEHICLE RE-IDENTIFICATION METHODS BASED ON
METRIC LEARNING

Metric learning [53], that is, distance metric learning or sim-
ilarity learning, is a method of mapping into feature space by
feature transformation and then forming clusters in feature
space. Methods based on metric learning are widely used
for face recognition, person re-identification, and vehicle
re-identification. Metric learning learns the similarity of two
images through the network so that the distance of similar
targets becomes closer, and the distance of different targets
becomes farther. Taking vehicle re-identification as an exam-
ple, the metric learning makes the distance between two
vehicles belonging to the same ID smaller than the different
IDs. (the similarity between vehicles belonging to the same
ID is high, and the similarity between vehicles belonging
to different IDs is low). Therefore, metric learning requires
certain key features of the learning objectives, that is, indi-
vidualized features. When distinguishing different vehicles,
the appearance characteristics of the vehicles are very similar,
these features belong to the common features between vehi-
cles. Distinguishing features like the paint, stickers, scratch
marks on the vehicle, the annual inspection position of the
vehicle on the front windshield, decoration, and tissue boxes
are used to distinguish the different characteristics of the
two cars. Metric learning distinguishes different identities by
learning key distinguishing features.

Commonly used methods of metric learning loss include
contrastive loss, triple loss, quaternion loss, etc. Enter two
pictures X _1 and X_2, and the feature vectors f_x1, f_x2 can
be extracted through the forward propagation of the network.
Using Euclidean distance to characterize similarity, define the
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FIGURE 3. Schematic diagram of the siamese network structure.

Euclidean distance formula as (1):

Dx1x2 = i1 = fr2ll2 (D

a: CONTRASTIVE LOSS

The contrastive loss is used to train the Siamese Network. The
Siamese Network is a “‘connected neural network’, and its
network structure is shown in Fig. 3. The “connected body”
of the neural network is realized by sharing the weight, that
is, the weights of the two neural networks are the same. The
Siamese Network is mainly used to measure the similarity
between two inputs, both sides can be CNN or LSTM. For
example, when two images are input, the two inputs are fed
into two neural networks, these two neural networks map the
inputs to the new space separately, allowing the input to be
represented in the new space. The similarity of the two inputs
is evaluated by calculating the loss value.

Taking the vehicle re-identification as an example,
the input of the Siamese Network is a pair of vehicle pictures
X_1 and X_2, which may be vehicles belonging to the same
ID or vehicles belonging to different IDs. Each pair of training
pictures has a label y, where y = 1 means that the two
pictures belong to the same ID, that is, positive sample pairs;
y = 0 means that two pictures belong to different IDs, that is,
negative sample pairs. Contrastive loss function is shown as

Q).

1 n . 5
L.= WZ yd)z(l X ~|—Z (1-y)max (0, margin—dy, ,Xz) 2)
i=1

where dx, x, = ||fs — fol |2 represents the calculation of
Euclidean distance after feature extraction of two inputs, i.e.
the similarity. As mentioned above, y is the label for which
two samples match or not, y = 1 means that the two samples
are similar or matched, y = 0 means the two samples are
dissimilar or not matched, margin is the set threshold. It can
be known from the expression of contrastive loss that the loss
function can be well expressed for matching between pairs of
samples, and can also be effectively used to train models for
extracting features.
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When y = 1, the loss function is Loss = ﬁ > yd;‘}l X
if the value of d is large, it means that the two samples have
a large distance in the feature space, if the two samples are
not similar, it is accordant with the require of model training.
However, if the two samples are similar, it should be a small
distance, but the Euclidean distance in the feature space is
large, indicating that the current model is not effective, so the
value of loss is larger. To reduce the loss value, the network
needs to continue learning.

When y = 0, the loss function is Loss =
> max (0, margin — dy, Xz)z, If the two samples are not sim-
ilar, the Euclidean distance under ideal conditions is large, but
if the Euclidean distance of the feature space is small, the loss
value will become larger, which also indicates that the model
is not effective and needs continue learning. Through the
continuous reduction of the loss value, the distance between
the similar sample pairs is continuously reduced, and the
distance between the dissimilar sample pairs is continuously
increased. In this way, vehicles of different IDs will be
distinguished.

Many vehicle re-identification methods are based on the
Siamese Network. Zakria et al. [10] proposed a novel vehicle
re-identification approach, first they chose the vehicle from a
gallery set according to appearance, and then verified the cho-
sen vehicle’s license plates with a query image to identify the
targeted vehicle. In the model, the global channel extracted
the feature vector from the whole vehicle image, and the
local region channel extracted more discriminative and salient
features from different regions. In addition to this, they
jointly incorporated attributes like model, type, and color, and
Siamese neural network was used to verify the accuracy of re-
identification. Liu et al. [54] proposed PROVID which used
a step-by-step method to search for vehicles (from coarse
to fine, from near to far). The appearance properties (color,
texture, shape, type) model learned by deep neural network
is used as a coarse classifier. The license plate image was
matched according to the license plate based on the Siamese
Network, and the search process was assisted according to
the relationship of time and space, they reordered the vehicles
and got the result.

Some jobs combined Siamese Network and other meth-
ods to realize vehicle re-identification. Shen et al. [55] pro-
posed a two-level framework that contained Siamese-CNN
network and Path-LSTM model, one branch network used
Siamese Network to calculate visual similarity, and another
branch network calculated space-time similarity, which
would merge spatio-temporal information converged into the
re-identification results. More specifically, firstly, a series of
candidate visual-spatio-temporal paths with the query images
as the starting and ending states were found. Then, the pro-
posed framework was utilized to determine whether each
query pair has the same identity with the spatio-temporal
regularization from the candidate path, all the visual-spatio-
temporal states were incorporated to estimate the validness
confidence of the path. Cui et al. [56] proposed a vehicle
re-identification method based on deep learning which
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exploited a two-branch Multi-DNN Fusion Siamese Neural
Network (MFSNN), the MFSNN fused the classification out-
puts of color, model and pasted marks on the windshield and
mapped them into a Euclidean space where distance could
be directly used to measure the similarity of arbitrary two
vehicles.

Besides, Zhu et al. [57] proposed a joint feature and sim-
ilarity deep learning (JFSDL) method which applied a
Siamese deep network learned under the joint identification
and verification supervision to extract deep learning features
for an input vehicle image pair simultaneously. The joint
identification and verification supervision were realized by
linearly combining two softmax functions and one hybrid
similarity learning function that provide a stronger similarity
measurement ability. The advantage of this method was to
better explore the identification and verification supervision
for training a deep learning-based vehicle re-identification
model. Liu et al. [58] proposed PROVID, a PROgressive
vehicle re-identification framework based on deep neural
networks, their framework not only utilized the multimodality
data in large-scale video surveillance, such as visual fea-
tures and contextual information, but also considered vehicle
re-identification in two progressive procedures: coarse-to-
fine search in the feature domain, and near-to-distant search
in the physical space, they adopted a Siamese neural net-
work to verify license number plates for precise vehicle
search. Zhu et al. [59] proposed a shortly and densely con-
nected convolutional neural network (SDC-CNN) for vehicle
re-identification, the SDC-CNN applied a siamese architec-
ture, which included two parameters shared deep feature
learning branches and effectively improved the ability of
feature learning.

b: TRIPLET LOSS

Compared to the contrastive loss, the input of the triplet loss
is changed from two inputs to three inputs, and the network
structure is as shown in Fig. 4. The three inputs are an anchor
(abbreviated as a), a positive sample belonging to the same
ID as the anchor (abbreviated to as p), and a negative sample
belonging to different IDs as the anchor (abbreviated to as n).
Where a and p are positive sample pairs, a and n are negative
sample pairs, and the triplet loss function formula is shown
as (3):

L = (da,p +o— da,n)+ 3)

Inter-class similarity and intra-class differences are the two
basic problems of re-identification tasks. To solve these prob-
lems, many frontier methods [60]-[62] use deep networks
to learn feature embedding spaces to maximize inter-class
distances while minimizing the distance within the class.
Schroff et al. [60] explored the topic of metric learning to
perform k-nearest neighbor classification and proposed the
Large Margin Nearest Neighbor loss (LMNN). FaceNet [61]
used a modified triplet loss to improve the LMNN loss,
the modified triplet loss was used to learn feature embedding
based on the principle that “samples belonging to the same
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FIGURE 4. Schematic diagram of triplet network structure.

vehicle ID are closer than samples belonging to different
IDs”, the final distance metric was directly optimized due
to the modified triplet loss, and this triple loss had been
widely used for person re-identification and face recognition
tasks. Based on the triples, Chen et al. [63] also proposed a
quadruple network to improve the generalization ability of
feature representation. Yang et al. [64] used privileged infor-
mation and unlabeled samples as auxiliary data to construct
discriminant metrics. In [65], Zhang et al. proposed using
multiple labels to inject inter-class relationships (different
models, brands, manufacturing years, etc.) as prior knowl-
edge into learning feature representations, without studying
the effects of intra-class differences in feature distribution.
Wen et al. [66] proposed to learn the best center of the deep
features of each class and punish the distance between the
deep features and their corresponding class centers. Some
related work is devoted to introducing semantic knowledge
into metric learning, Cui et al. [67] designed a general knowl-
edge map to capture the conceptual relationships in the image
representation, and then used the regular regression model to
jointly optimize image representation learning and graphics
embedding. Besides, Li and Tang [68] explored how to use
user-provided tags to learn distance metrics, which could
reflect semantic information and improve the performance of
tag-based image retrieval.

When using triplet loss for metric learning, the goal is to
get samples that belong to the same tag (vehicles belonging
to the same ID) as close together as possible in the feature
space, and other samples that do not belong to the same tag
(vehicles belonging to the different IDs) as far as possible,
as shown in Fig. 5, images are selected from [92]. Through
continuous learning, the vehicle samples of the same ID are
finally clustered in the feature space, thereby completing the
task of vehicle re-identification.

In terms of vehicle re-identification, inspired by the pro-
posed triplet loss, Liu et al. [69] proposed a Deep Rela-
tive Distance Learning (DRDL) method which exploited a
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FIGURE 5. Schematic diagram of triplet mapping to feature space
learning process.

two-branch deep convolutional network to project raw vehi-
cle images into an Euclidean space where distance could
be directly used to measure the similarity of arbitrary two
vehicles, the distance could be directly used to measure the
similarity of arbitrary two vehicles. Bai et al. [70] proposed a
deep metric learning method, group-sensitive-triplet embed-
ding (GS-TRE), group sensitive triples were embedded in
GSTE, and each ID car was regarded as a category, vehi-
cles with the same ID were divided into the same group,
thus, intra-class differences could be better solved for vehi-
cle reidentification and retrieval. Kumar et al. [71] solved
the problem of vehicle reidentification with utilizing triplet
embeddings, and they proposed a detailed evaluation of the
contrastive loss function and the triple loss function used
in metric learning and proposed a baseline for embedding
in the triples for vehicle re-identification under the camera.
Zhang et al. [72] studied Triplet-wise training which adopted
triplets of query, positive example, negative example to cap-
ture the relative similarity between them, they proposed a
classification-oriented loss that was augmented with the orig-
inal triplet loss, which essentially improved the traditional
triplet loss in enabling stronger classification constraint.
Besides, Li et al. [73] proposed a deep joint discrim-
inative learning (DJDL) method to train a convolutional
neural network which was aimed to extract discriminative
feature representations of vehicle images. DJDL incorpo-
rated four different subnetworks in a framework, identi-
fication and attribute recognition was to exploit specific
properties the individual samples, verification task was to
constrain relationship between two samples, and triplet task
is responsible for constraining the relative distance among
three samples. Finally, an efficient batch composition design
was proposed to jointly optimize the four objective functions.
Chu et al. [74] thought extremely viewpoint variation for
vehicles (i.e. 180 degrees) was still very challenging although
deep metric learning was useful in getting viewpoint invariant
features, they found vehicles with same ID and different
views had larger distances than vehicles with different IDs
and the same view by experiment, which severely deterio-
rated the accuracy. Inspired by the human’s behavior that
a human adopted different strategies when confronted with
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vehicle images from a similar viewpoint and different view-
point, they propose a novel viewpoint-aware metric learn-
ing approach, named Viewpoint-Aware Network (VANet),
learned two metrics for similar viewpoints and different view-
points in two feature spaces respectively.

For supervised learning, the category is usually fixed,
so that the softmax cross-entropy loss function can be used to
train to meet the classification requirements. But sometimes,
the category is a variable, especially for vehicles, the variety
of models is different and will be updated or the quantity
will change at any time. The trained classification model
has poor generalization ability or is prone to over-fitting,
so vehicle re-identification tasks are not well done with only
use classification learning, using triplet loss can solve such
problems.

In summary, the advantage of triplet loss lies in detail
differentiation, that is, when two inputs are similar sam-
ples, triplet loss can better model the details and complete
the measurement of the different characteristics between the
input samples. When distinguishing vehicles, the appearance
characteristics of very similar vehicles are regarded as the
common features between vehicles and not regarded as the
focus of triplet loss, instead, learning differentiated features
such as painting, scratch marks on the vehicle, on the front
windshield, the vehicle’s annual inspection location, deco-
rative objects, tissue boxes, that is, learning a better repre-
sentation of the input, resulting in a higher accuracy when
completing the re-identification work.

4) VEHICLE RE-IDENTIFICATION METHODS BASED ON
UNSUPERVISED LEARNING

Most approaches dealing with the re-identification issues are
under supervision which affect generalization ability, e.g.
training requires a lot of labeled data. While unsupervised
learning techniques can potentially cope with such issues by
drawing inference directly from the unlabeled input data [75],
and have been effectively employed in the context of per-
son re-identification [76]-[78]. Deng et al. [77] presented an
unsupervised approach for image to image cross domain
adaption using the self-similarity and domain-dissimilarity
in the training, they used the similarity preserving GANs
consisting of the Siamese Neural Networks using the con-
trastive loss for the re-identification purpose. Wang et al. [78]
presented a joint attribute-identity learning based approach
to simultaneously learned both semantic and attributes in
the source domain and transferred it to the target domain to
realize unsupervised learning.

Some researchers have applied unsupervised methods to
vehicle re-identification. A progressive two step cascaded
framework was presented in [75], which essentially formu-
lated the whole vehicle re-identification problem into an
unsupervised learning paradigm, it combined a CNN archi-
tecture for feature extraction and an unsupervised technique
to enable self-paced progressive learning, it also incorpo-
rated the contextual information into the proposed progres-
sive framework that significantly improved the convergence
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FIGURE 6. Simulative figure of GAN's framework.

of the learned algorithm. Marin-Reyes ef al. [79] applied the
method in [80] to the vehicle re-identification task to create
an annotation in an unsupervised manner, along with exploit-
ing visual tracking to produce a weakly labeled training
set. Bashir et al. [81] presented an unsupervised approach
to solve the vehicle re-identification problem by training
a base network architecture with a self-paced progressive
unsupervised learning architecture, the technique enabled the
transfer of deeply learned representation towards unlabeled
dataset.

The generative adversarial network (GAN) [82] is an
emerging technique for unsupervised learning. It includes a
generator and a discriminator. The generator obtains random
variable from the prior distribution and obtains synthetic data
through the transformation of generator. The discriminator
receives both synthetic data from the generator and real data,
and it needs to determine the source of data. The generator
confuses the discriminator with synthetic samples that are
as close to the real data as possible while the discriminator
identifies the synthetic data generated by the generator as pos-
sible. Ideally, the generator and discriminator finally reach a
balance, and both sides tend to be perfect. Simulative figure of
GAN’s framework is shown in Fig. 6.

GANSs have achieved great success on many visual tasks,
such as image generation [83], [84] and image translation [85]
In essence, the design of confrontational learning led to the
success of GANs, mainly because it forced the generated
samples to be indistinguishable from the actual data. Besides,
many efforts extend GANs to conditional GANs such as
InfoGAN [86], AC-GAN [87], and CycleGAN [88] to study
generation models with better performance.

The breakthrough of GANs in image generation inspires
people to generate vehicles from different viewpoints. In the
vehicle re-identification problem, to solve the vehicle re-
identification task under multiple viewing angles, a multi-
view feature could be generated for each image by GANs
given a query vehicle image and a set of gallery images, which
can be regarded as containing the descriptive representation
of all perspective information [89]. Firstly, extracting features
of an input image containing only single-view visual content.
Then, obtaining the correlation between the input perspective
and other hidden perspectives by modeling, the transforma-
tion model was learned to infer features from other perspec-
tives. Finally, all the features in different perspectives were
merged, and the feature was used to embed the feature into
the distance space on the end-to-end network. The biggest
difference of this method is that it was inspired by the GAN
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to transform the single-view feature into multi-view feature
in the form of generation/confrontation, two generators were
used in the way, the input of G_f was the attention feature of
the single-view image, and the input of G_r was the feature
of the real picture of different views with the same ID as G_f .
The goal of the generator G_f was not to maximize the
output of the discriminator, but to have the same statistical
distribution of the single-view data in the fourth layer of
the discriminator D having the same layer characteristics as
the multi-view data and completing a multi-view feature for
a single-view image. Similar to this approach, to augment
the training data for robust training, Wu et al. [90] adopted a
Generative Adversarial Network to generate unlabeled sam-
ples and enlarge the training set, besides, a semi-supervised
learning scheme with the CNNs was proposed to improve the
performance of the vehicle re-identification system, which
assigned a uniform label distribution to the unlabeled images
to regularize the supervised model. In [91], a generative
adversarial network was used to synthesize vehicle images
with diverse orientation and appearance variations to obtain
more vehicle images and augment the training set.

Many GAN-based methods have been proposed to improve
the robustness and accuracy of vehicle re-identification.
Lou et al. [92] proposed a Feature Distance Adversarial
Network (FDA-Net) which aimed to explore generating hard
negatives in the feature space to improve the discriminative
capability of the re-identification model. It contained a novel
adversary scheme on feature distance between the genera-
tor G and the embedding discriminator D. The G tried to
generate a hard-negative sample under similarity constraint
and attention regularization while the D tried to discrimi-
nate them, the generator and discriminator were alternatively
optimized. An end-to-end embedding adversarial learning
network (EALN) was proposed in [93], it could generate sam-
ples localized in the embedding space, with its embedding
adversarial learning scheme instead of selecting abundant
hard negatives from the training set. The automatically gener-
ated hard negative samples in the specified embedding space
could improve the capability of the network for discriminat-
ing similar vehicles. Besides, the model was able to gener-
ate desired vehicle images from same-view and cross-view,
which facilitated re-identification model training as well as
improved the discriminative capability and robustness of the
re-identification algorithm. Zhou and Shao [94] proposed
Cross-View Generative Adversarial Network (XVGAN) to
learn the features of vehicle images captured by cameras with
disjoint views. They took the features as conditional variables
to effectively infer cross-view images. They combined the
features of the original images and the features of generated
images in other views to learn distance metrics for vehicle re-
identification. The proposed model could successfully gen-
erate realistic images in different views of the same vehicle,
and improved the accuracy of vehicle re-identification.

There was a method note the inconsistency in the dis-
tribution of different data sources. When deploying the
well-trained model to a new dataset directly, there is a severe
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performance drop because of differences among datasets
named domain bias, Peng et al. [95] proposed a domain
adaptation framework to address this problem, which con-
tained an image-to-image translation network named vehi-
cle transfer generative adversarial network (VTGAN) and
an attention-based feature learning network (ATTNet). The
advantage of VTGAN is that the source domain (well-
marked) image can have the style of the target domain
(unmarked) and the source domain identity information can
be retained.

In summary, unsupervised learning technology can make
use of unmarked input data to improve generalization abil-
ity. Among the vehicle re-identification methods based on
unsupervised technology, GAN-based methods are widely
used. GANs can generate multiple perspective features for
a single perspective image and using the feature to solve
the vehicle re-identification problem under multiple viewing
angles, in addition, GAN can be used for image to image
translation to better solve the problem of inconsistent distri-
bution of different data domains. But using GANs for image
generation needs to overcome the problem of difficulty in
convergence, and balance the two models in training, thereby
avoid unstable training situations

5) VEHICLE RE-IDENTIFICATION METHODS BASED ON
ATTENTION MECHANISM

In recent years, most researches on the combination of deep
learning and visual attention mechanism focused on using
masks to form the attention mechanism. The mask works
by identifying key features in the image data with another
layer of new weight, attention is formed by training deep
neural networks to learn what areas need to be focused on
in each new image, this idea evolved into two different types
of attention, soft attention and hard attention. The key point
of soft attention is that it pays more attention to areas [96]
or channels [97], and soft attention is deterministic attention,
which can be generated directly through the network after
learning. The most critical place is that soft attention is
differentiable, which is a very important place, differential
attention can be used to calculate the gradient through neural
network and forward propagation and backward feedback to
learn the weight of attention [98]. The difference between
strong attention [99] and soft attention lies in that, strong
attention is more focused on points, that is, every point in
the image is likely to extend the attention. Meanwhile, strong
attention is a random prediction process, with more emphasis
on dynamic changes.

Attention mechanism has explored in many applications,
such as image classification [100], [101], fine-grained image
recognition [102], [103], image captioning [104], [105], and
VQA [106], a growing number of researchers are using atten-
tional mechanisms in vehicle re-identification. Guo et al. [9]
proposed a Two-level Attention network supervised by a
Multi-grain Ranking loss (TAMR) to learn an efficient feature
embedding for vehicle re-identification task, the two-level
attention network included hard part-level attention and soft
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pixel-level attention. Hard part-level attention was designed
to localize the salient vehicle parts. Soft pixel-level atten-
tion gave an additional attention refinement at pixel level
to focus on the distinctive characteristics within each part.
Therefore, the two-level attention network could adaptively
extract discriminative features from the visual appearance
of vehicles. Based on the Region-Aware deep Model [37],
Chang et al. [107] proposed a Pyramid Granularity Atten-
tive Model (PGAM) such that both coarse and fine-grained
features could be effectively extracted, and fine-grained dis-
criminability could be retained by adopting many improved
model training approaches.

There are methods based on hard attention. Khor-
ramshahi et al. [108] found that the contribution of each key
point was different depending on the direction, while most
re-identification methods were designed to focus attention
at key-point locations, so they presented a dual path adap-
tive attention model for vehicle re-identification (AAVER),
the global appearance path captured macroscopic vehicle
features while the orientation conditioned part appearance
path learned to capture localized discriminative features
by focusing attention to the most informative key-points.
Khorramshah et al. [109] presented an attention-based model
which learned to focus on different parts by conditioning
the feature maps on visible key-points. They used different
datasets to train networks, and used triplet embedding to
reduce the dimensionality of the features obtained from the
ensemble of networks.

There is a method based on soft attention. Teng et al. [110]
proposed a Spatial and Channel Attention Network (SCAN)
based on DCNN, the attention model contained a spatial
attention branch and a channel attention branch, the two
branches adjusted the weights of outputs in different posi-
tions and different channels to highlight the outputs in dis-
criminative regions and channels respectively. Feature maps
were refined by the attention model and more discriminative
features can be extracted automatically.

There are many other methods. When humans identify
different vehicles, humans always firstly determined one
vehicle’s coarse-grained category such as the car type, and
then identified specific vehicles by relying on subtle visual
cues, such as windshield stickers at the fine-grained level.
Inspired by this, Wei et al. [111] proposed an end-to-end
RNN-based Hierarchical Attention (RNN-HA) classification
model for vehicle re-identification. The RNN- HA consisted
of three models, the first generated image representations, the
second modeled the hierarchical dependent relationship, and
the last focused on capturing the subtle visual information
to distinguish specific vehicles from each other. Besides,
Zhang et al. [112] introduced a Part-Guided Attention Net-
work (PGAN), the PGAN combined art-guided bottom-up
and top-down attention, global and part visual features in
an end-to-end framework. PGAN first detected the loca-
tions of different part components and salient regions, which
served as the bottom-up attention to narrow down the possi-
ble searching regions, a Part Attention Module (PAM) were
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FIGURE 7. Attention maps.

proposed to adaptively locate the most discriminative regions
with high-attention weights and suppressed the distraction of
irrelevant parts with relatively low weights. The PAM was
guided by the re-identification loss and therefore provides
top-down attention. Finally, global appearance and part fea-
tures were aggregated to improve the feature performance
further.

In summary, the attention mechanism mimics the pro-
cess of re-identification of humans, deep neural networks
can learn what areas need to be focused on by training.
Fig. 7 (from [111]) shows the learned attention maps of some
vehicle images, the attended regions accurately correspond
to these subtle and discriminative image regions, such as
windshield stickers, and customized paintings. The attention
mechanism automatically extracts the features of the distin-
guishing regions, resulting in the improvement of accuracy
in the vehicle re-identification task. However, it can be found
that most attention-based models focus their attention on
regions and pay less attention to the differences of finer pixel
level, when the datasets are less labeled and the background
is more complex, the method based on attention mechanism
is less effective.

6) OTHER VEHICLE RE-IDENTIFICATION METHODS

Apart from the five major types of deep learning-based
methods mentioned above, there have been some other deep
learning-based researches on vehicle re-identification.

For better handling viewpoint variations, Zhou and
Shao [113] proposed the adversarial bidirectional long
short-term memory network (ABLN), ABLN used long
short-term memory network (LSTM) to model transfor-
mations across continuous view variations of a vehicle
and adopted the adversarial architecture to enhance train-
ing. Zhou et al. [114] proposed two end-to-end deep
architectures: a spatially Concatenated ConvNet and a
CNN-LSTM bi-directional loop, which exploited the great
advantages of the CNN and LSTM to learn transforma-
tions across different viewpoints of vehicles. To model a
view-invariant similarity between vehicle images from dif-
ferent views, Zheng et al. [115] proposed a Ranked Seman-
tic Sampling (RSS) guided binary embedding method
for fast cross-view vehicle Re-identification. Vehicle re-
identification problem was modeled as two sub tasks in [116],
including the same view and across different views, a fine-
grain ranking loss and a relative coarse-grain ranking loss
were proposed to each task respectively. Xu et al. [117]
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presented a multi-scale vehicle re-identification framework
using self-adapting label smoothing regularization (SLSR),
it integrated the appearance information from multi-scale
images to alleviate the influence of scale changes caused by
perspectives, besides, self-adapting label smoothing regula-
tion was designed in the semi-supervised training process to
enhance the generalization ability. Zhu et al. [118] proposed
a quadruple directional deep learning which utilized different
directional pooling layers to compress the basic feature maps
into horizontal, vertical, diagonal and anti-diagonal direc-
tional feature maps, respectively, and then spatially normal-
ized these directional feature maps and concatenated together
as a quadruple directional deep learning feature for vehicle
re-identification which improved the robustness of viewpoint
variations. Zhu et al. [119] proposed the joint horizontal
and vertical deep learning feature (JHV-DLF), it aimed to
describe vehicle images in both horizontal and vertical direc-
tions and makes re-identification robust toward view-point
variations. Tang et al. [120] proposed a Pose-Aware Multi-
Task Re-Identification (PAMTRI) framework, which over-
came viewpoint-dependency by explicitly reasoning about
vehicle pose and shape via keypoints, heatmaps, and seg-
ments from pose estimation, it jointly classified seman-
tic vehicle attributes (colors and types) while performing
re-identification, through multi-task learning with the
embedded pose representations. Since manually marking
images with detailed attitude and attribute information is
time-consuming and labor-intensive, they create a large-
scale highly randomized synthetic dataset with automatically
annotated vehicle attributes for training.

There are other methods, Liang ef al. [121] proposed a
new supervised deep hashing method to deal with large-
scale instance-level vehicle search, which utilized sigmoid
or tanh as the activation function of the hash layer, rectified
linear unit and showed better performance. To fully explore
the complementary correlation between learning-based deep
features and hand-crafted features, Tang et al. [122] pro-
posed a multi-modal metric learning architecture, which
fused deep features and handcrafted ones in an end-
to-end optimization network, which achieved a more
robust and discriminative feature representation for vehicle
re-identification. Hou et al. [123] proposed a deep quadru-
plet appearance learning (DQAL), which lied on the consid-
eration of the special difficulty in vehicle re-identification
that the vehicles with the same model and color but differ-
ent IDs are highly similar to each other, each quadruplet
in DQAL was composed of the anchor, positive, negative,
and the specially considered high-similar vehicle samples,
quadruplet loss and softmax loss was developed to learn a
more discriminative feature. Besides, Huang et al. [124] pro-
posed a viewpoint-aware temporal attention model for vehi-
cle re-identification utilizing deep learning features extracted
from consecutive frames with vehicle orientation and meta-
data attributes (i.e., brand, color) being taken into con-
sideration. Kanaci et al. [125] proposed a novel Multi-Task
Mutual Learning (MTML) deep model to learn discriminative
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TABLE 2. Multi-dimensional comparison of vehicle re-identification algorithms based on deep learning.

Method Characteristics Advantages Disadvantages
Local Ke}_/ point locatlo_n and 1. Capture unique v1su_al clues Increase the computational burden
Feature region segmentation 2. Improve the perception of nuance

Focus on vehicle attribute
characteristics

Representation
Learning

1. Easy to train
2. Training is stable
3. Relatively robust

1. Poor generalization ability
2. Easy to over-fitting on the dataset
domain

Metric Learning Focus on details of vehicle

High accuracy

Training is unstable and difficult to
converg

Unsupervised No need of labeled information

1. Solve the effect of perspective change
2. Improve generalization ability

Unstable training

Learning 3. Solve the problem of inconsistent
distribution of different data domains
1. Learn what areas need to be focused
Attention Self-adaptive extract features on by training Poor effect when few labeled data and
Mechanism P 2. Extracts the features of the complex background
distinguishing regions
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FIGURE 8. Number of vehicle re-identification papers based on deep learning for each category from 2013 to 2019.

features simultaneously from multiple branches, specifically,
they designed a consensus learning loss function by fus-
ing features from the final convolutional feature maps from
all branches. Kanaci and Gong [126] proposed Cross-Level
Vehicle Recognition (CLVR), they transferred the vehicle
model discriminative representation for more fine-grained re-
identification tasks by fully leveraging the strong capacity
of existing deep models in learning cross-level representa-
tions. Vehicle re-identification suffers from varying image
quality and challenging visual appearance characteristics,
training CNN's on multiple datasets simultaneously is a solu-
tion to enhance the feature robustness, however, due to mis-
aligned feature distribution between domains, the larger set of
training data does not guarantee performance improvement,
Liu et al. [127] proposed a Joint Domain Re-Identification
Network (JDRN) to mitigate the domain gap, which improved
the feature by disentangling domain-invariant information
and encouraged a shared feature space between domains.
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C. SUMMARY

In order to further develop the vehicle re-identification meth-
ods based on deep learning, this paper compares the vehi-
cle re-identification method from characteristics, advantages
and disadvantages, as shown in Table 2; The papers about
vehicle re-identification method based on deep learning in
2013-2019 were classified, and we summarize the charac-
teristics of each method, as shown in Table 3. We count
the number of vehicle re-identification papers based on deep
learning for each category from 2013 to 2019, as shown
in Fig. 8. There were few vehicle re-identification methods
based on deep learning from 2013 to 2016, and more meth-
ods are based on sensors and traditional machine learning.
From 2017 to 2019, the number of vehicle re-identification
methods based on deep learning gradually increased, indi-
cating that with the development of deep learning, meth-
ods deep learning could be better used to solve vehicle
re-identification problems. In terms of the number of
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TABLE 3. Classified statistics of papers about vehicle re-identification methods based on deep learning in 2013-2019.

Category

Local Features

Method and Paper The characteristics of the method
OIFE [36] Compared different regions between different vehicle images
RAM [37] Embed the detailed visual cues in local regions

Part-regularized Near-duplicate [38]

Enhanced the perceptive ability of subtle discrepancies

MRM [39]

Localize local regions that contain more distinctive visual cue

PRN [40]

Extracted more local features from height, width and channel

ROIs-based vehicle re-identification [41]

Local features of ROIs could be extracted by the location of SSD detector

Representation
Learning

A refined part model[42] Automatically locate the vehicle and perform division for local features
DF-CVTC [45] Jointly learn deep feature representations (views, types, colors)
DFFMG [46] Integrated discriminative information with various granularity

Random occlusion assisted deep
representation learning [47]

Simulated some occlusion situations in real world

3D-OR[48]

Lifted two-dimensional object representations to three-dimensional representations

Mob.VFL[49]

Generate variational features which were more discriminating

Space-Time Prior [50]

Address issues like visual domain mismatch between datasets

A new distance loss [51]

Accelerate the procedure of feature learning

Multi-attribute driven vehicle re-
identification [52]

Explicitly leveraged the vehicle attribute cues such as color, model

Metric Learning

Multi-Level Feature Extraction [10]

Jointly incorporated attributes like model, type, and color

PROVID [54]

Search for vehicles from coarse to fine, from near to far

Path-LSTM [55]

Merge spatio-temporal information

MFSNN [56] Fused the classification outputs of color, model, pasted marks on the windshield
JFSDL [57] Extract deep learning features for an input vehicle image pair simultaneously
PROVID [58] Utilized the multimodality data in large-scale video surveillance

SDC-CNN [59] Effectively improved the feature learning ability

DRDL[69] Directly used to measure the similarity of arbitrary two vehicles

GSTE [70] Intra-class differences could be better solved for vehicle reidentification

Batch sample [71]

Proposed a baseline for embedding in the triples for vehicle re-identification

ITWT-CNN [72]

Improved the traditional triplet loss in enabling stronger classification constraint

DJDL [73] Extract discriminative feature representations of vehicle images

VANet[74] Learned two metrics for similar viewpoints and different viewpoints
VR-PROUD [75] A CNN and an unsupervised technique to enable self-paced progressive learning
UVRTN [79] Create an annotation in an unsupervised manner

Deep Unsupervised Progressive Learning
[81]

Training a base network with a self-paced progressive unsupervised learning.

VAMI [89] A multi-view feature could be generated for each image by GANs

Unsupervised GANJ90] Generate unlabeled samples and enlarge the training set

Learning Semi-supervised learning and re-ranking [91] | Synthesize vehicle images with diverse orientation and appearance variations
FDA-Net [92] Explore generating hard negatives in the feature space
EALN [93] Generate desired vehicle images from same-view and cross-view
XVGAN[94] Effectively infer cross-view images by learning the features of vehicle images
VTGAN [95] Make images from the source domain have the style of target domain
TAMR [9] Learn an efficient feature embedding for vehicle re-identification
PGAM [107] Both coarse and fine-grained features could be effectively extracted
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TABLE 3. (Continued.) Classified statistics of papers about vehicle re-identification methods based on deep learning in 2013-2019.

AAVER [108]

Global appearance path and part appearance path for adaptive attention model

PAMTRI [120]

ﬁ%i?gﬁ?sm I[Alt(t)zr;tion driven vehicle re-identification Focused on different parts by conditioning the feature maps on visible key points
SCAN [110] More discriminative features can be extracted automatically
RNN-HA [111] Use three models from coarse-grained category to subtle visual cues
PGAN [112] Combing part-guided bottom-up and top-down attention
ABLN [113] Use LSTM to model transformations across continuous view variations
Two end-to-end deep architectures[114] aEcerz)lsosit(;ti(; ftehrz ngtrieil; ;]ci\é?rr:::%?svz; }lglez3 SNN and LSTM to learn transformations
RSS[115] Fast cross-view vehicle re-identification
MRL+Softmax Loss [116] Two sub tasks including the same view and across different views
SLSR [117] Using self-adapting label smoothing regularization
A quadruple directional deep learning [118] Utilized different directional pooling layers to compress the basic feature map
JHV-DLF [119] Describe vehicle images in both horizontal and vertical directions
Others

Overcame viewpoint-dependency

A new supervised deep hashing method [121]

Utilized sigmoid or tanh as the activation function of the hash layer

A multi-modal metric learning architecture
[122]

Fused deep features and handcrafted features

DQAL [123] Learn a more discriminative feature especially for difficult high-similar cases
ﬁ;iEWp oint-aware temporal attention model Use features extracted from vehicle orientation and metadata attributes
MTML [125] Learn discriminative features simultaneously from multiple branches

CLVR [126] Leverage the capacity of deep models in learning cross-level representations
JDRN [127] Improved the problem of misaligned feature distribution between domains

methods, there are few methods based on local features and
representation learning, while there are many methods based
on metric learning. In the last two years, the methods based on
unsupervised learning and attention mechanism have devel-
oped rapidly, and most of methods based on unsupervised
learning are based on GANs. Methods based on unsupervised
learning can make use of unmarked input data to improve
generalization ability, and GANs can be used to generate
multi-perspective features, which is conducive to solving the
problem of vehicle re-identification under multi-perspective.
Methods based on the attention mechanism can automatically
extract the distinguishing features and improve the accuracy
of re-identification. Due to these advantages, these two kinds
of methods develop rapidly in recent years.

IIl. DATASET AND EVALUATION STRATEGY

Through the above review of the vehicle re-identification
method, the research work in the field of vehicle
re-identification mainly focuses on two aspects, one is the
classification model and the other is the re-identification
algorithm. Datasets are an important prerequisite for clas-
sification and re-identification tasks in the field of com-
puter vision. To some extent, the size and characteristics of
datasets limit the advancement of research work in this field,
and restrict the performance of the classification model or
re-identification in some aspects, such as limiting the
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accuracy or generalization ability. In theory, more training
data results in better re-identification effect. Therefore, this
chapter will introduce vehicle public datasets and comparing
them from multiple dimensions.

A. DATASET

With the increasing demand for accurate identification of
vehicle retrieval, vehicle re-identification, vehicle position-
ing, vehicle tracking, and the deep maturity of deep learning
related technologies, the accuracy of vehicle re-identification
is increasing. In addition to the fact that today’s technol-
ogy breaks the shackles of hardware performance on re-
identification, it also benefits from the expansion of the vehi-
cle public datasets. The most commonly used public datasets
for verifying the performance of vehicle re-identification
algorithms are VeRi-776 [54], PKU-VD [130], etc. More
details about vehicle public datasets will be presented
separately.

The BoxCars dataset, including BoxCars21k [128] and
BoxCars116K [129] is collected by the Bruno Univer-
sity of Technology in the Czech Republic. BoxCars21K
contains 21,250 cars, 63,750 pictures, 27 different brands
and 148 models. BoxCars116K contains 27,496 cars,
116,826 pictures, 45 different brands and 693 models. The
dataset contains vehicle images captured from arbitrary view-
points, front, side, and roof. Compared to other fine-grained
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FIGURE 10. Example of the VehiclelD dataset.

surveillance datasets, the dataset provides data with a high
variation of viewpoints. All images are labeled with the
3D bounding box, make, model, and type. The dataset is
designed for fine-grained vehicle model, make classification,
and re-identification, it can be also be used for vehicle re-
identification problem. Sample images from the Boxcars
dataset are shown in Fig. 9.

The VehicleID [69] dataset is built by the National Engi-
neering Laboratory for Video Technology of Peking Univer-
sity (NELVT) and sponsored by the China National Basic
Research Program and the National Natural Science Foun-
dation of China. The VehicleID dataset contains data cap-
tured during the day by multiple real surveillance cameras
distributed in a small city in China. There are 26,267 vehi-
cles in the entire dataset (221,763 images in total). Each
image is accompanied by an ID tag that corresponds to
its identity in the real world. Besides, 10,319 vehicles
(90,196 images in total) marked with vehicle model informa-
tion. Sample images from the VehicleID dataset are shown
in Fig. 10.

The PKU-Vehicle [70] dataset is a vehicle dataset for
a large-scale real-world scenario proposed by the Peking
University team to meet the needs of large-scale vehi-
cle re-identification. It contains images of tens of millions
of vehicles taken by real surveillance cameras in several
Chinese cities. There are ten million vehicle images which
is primarily used as an interference dataset for simulat-
ing real-world retrieval. The dataset contains various loca-
tions, weather conditions (e.g. sunny, rainy, foggy), lighting
(e.g. day and evening), shooting angle and hundreds of
vehicle brands and other information. Collecting images
of the PKU-Vehicle dataset from different cameras makes
the original resolution of the vehicle image vary greatly,
which brings more difficulties to the vehicle re-identification.
Sample images from the PKU-Vehicle dataset are shown
in Fig. 11.
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FIGURE 12. Sample images from the PKU-VD dataset.

The PKU-VD [130] dataset, including VD1 and VD2,
is constructed by the National Video Technology Engineering
Laboratory (NELVT) of Peking University. Two large vehi-
cle datasets (VD1 and VD2) are constructed based on real-
world unconstrained scenes from two cities. The images in
VD1 are from high-resolution traffic cameras, and the images
in VD2 are captured from surveillance video. Performing
vehicle detection from raw data to ensure that each image
contains only one vehicle. Each image in both datasets pro-
vides different attribute annotations, including identity num-
bers, precise vehicle models, and vehicle colors. Particularly,
the ID is unique and images contain the same vehicle have
the same ID. The dataset has the most accurate model of
vehicle and vehicles in different production years. As for
color information, the dataset is labeled with 11 common
colors. To ensure the consistency of the labels, all images
belonging to the same vehicle ID are marked with the same
model and color. With 1,097,649 and 807,260 images being
collected and carefully annotated, the datasets contain almost
all popular vehicle models and colors which makes the dataset
expandable enough for vehicle re-identification and other
related research. Sample images from the PKU-VD dataset
are shown in Fig. 12.

VeRi-776 [54] is a public vehicle dataset published by
the Beijing University of Posts and Telecommunications on
ECCYV, it is built from the VeRi dataset [131]. It uses images
captured in a real-world unconstrained surveillance scene and
labeled images with different attributes, for example, license
plate bounding box, models, colors and brands, and it can
be used to do vehicle re-identification work. Each car is
photographed by 2 to 18 cameras at different viewpoints,
illumination, resolution, and occlusion conditions, providing
a high recurrence rate for the real situation of the vehicle’s
re-identification. Besides, it is labeled with enough license
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FIGURE 14. Sample images from the CompCars dataset.

plates and time-space information, such as the bounding
box of the license plate, the time stamp of the vehicle and
the distance between adjacent cameras. Sample images from
VeRi-776 dataset are shown in Fig. 13.

The CompCars [132] dataset is presented in the CVPR
2015 paper by the Tang’s team, it is a large-scale automotive
dataset for fine-grained classification and validation which
contains data from two scenarios, images from the network
and monitoring. The network’s data includes 163 cars and
1,716 models, a total of 136,726 images captured the entire
car and 27,618 images captured the car parts. The complete
car image is marked with a bounding box and a viewpoint.
Each model is marked with five attributes including maxi-
mum speed, displacement, number of doors, number of seats
and type of car. The monitoring data contains 50,000 car
images captured in the front view. This dataset can be used
for a variety of computer vision tasks: fine-grained clas-
sification, attribute prediction, and vehicle model valida-
tion. Sample images from the CompCars dataset are shown
in Fig. 14.

The Vehicle-1M [133] dataset is constructed by the
National Pattern Recognition Laboratory (NLPR, CASIA) of
the Institute of Automation, University of Chinese Academy
of Sciences. The dataset relates to images of vehicles cap-
tured from the head or the back of the night through multi-
ple surveillance cameras installed in several cities in China.
There are 936,051 images in 55,527 vehicles and 400 models
in the dataset, and they extract a small, medium and large test
set from the original test set. Each image is accompanied by
a vehicle ID tag indicating its identity in the real world and
a vehicle model tag indicating the brand, model and year of
the vehicle (e.g. “Audi-A6-2013”"). The difference between
vehicle models can be quite small, just like the real-world
vehicle re-identification situation, thus this dataset is very
suitable for vehicle re-identification. Sample images from the
Vehicle-1M dataset are shown in Fig. 15.
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FIGURE 16. Type and color distribution of the CityFlow.

CityFlow [134], the world’s first large dataset to sup-
port cross-camera car tracking and re-identification, includes
3.25 hours of synchronized HD video collected from 10
intersections and 40 cameras, the longest distance between
two sync cameras is 2.5 kilometers. The dataset is collected
in a medium-sized US city with a variety of scenarios,
including residential areas and highways. The dataset has
229,680 bounding boxes of 666 vehicle identities labeled,
each car passes through at least 2 cameras, providing raw
video, camera distribution, and multi-view analysis. Type
and color distribution of the CityFlow dataset are shown
in Fig. 16.

VERI-Wild [92], which is currently the most challenging
dataset for vehicle re-identification in real scenarios and the
first vehicle re-identification dataset that is collected from
unconstrained conditions. It is captured via a large Closed
Circuit Television (CCTV) system. It contains 174 surveil-
lance cameras and covers a large urban district of more
than 200km?2, the 174 cameras capture for 24 hours for
30 days so that various weather and illumination conditions
are considered, such as rainy, foggy, etc. The dataset contains
416,314 images of 40,671 IDs after cleaning from 12 mil-
lion vehicle images. The dataset poses many more practi-
cal challenges for vehicle re-identification, such as differ-
ent viewpoints, illumination, and background variations, and
severe occlusion. Sample images from VERI-Wild dataset
are shown in Fig. 17. Type and color distribution of the
VERI-Wild dataset are shown in Fig. 18.

VRID-1 [135] contains 10,000 images captured in the
daytime of 1,000 individual vehicles of the ten most com-
mon vehicle models. For each vehicle model, there are
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FIGURE 18. Type and color distribution of the VERI-Wild.

100 individual vehicles, and for each of these, there are ten
images captured at different locations. The images in VRID-1
were captured by 326 surveillance cameras, and thus there
are various vehicle poses and levels of illumination, it pro-
vides images of good enough quality for the evaluation of
vehicle re-identification in a practical surveillance environ-
ment. Sample images from the VRID-1 dataset are shown
in Fig. 19.

Toy Car [114] is the first synthetic vehicle dataset collected
in an indoor environment using multiple cameras. It is a toy
car dataset that contains many common vehicle types such
as sedan, SUV, van, and pickup, it consists of 200 different
models of toy cars. To reduce the gap in appearance between
toy cars and real cars, metal toy cars as real as possible
to construct the dataset were selected, lighting is provided
to simulate illumination by the sun. collecting sequences of
vehicles as they rotated by 360 degrees using a rotation stage,
setting cameras at three angles: 30, 60 and 90 to capture data
with different altitudes, averagely sampled 50 viewpoints and
cropped all the vehicles to generate the raw dataset containing
30,000 images in total, then replacing the green background
with random road patterns to synthesize the final toy car
dataset. Sample images from the Toy Car dataset are shown
in Fig. 20.

VRIC (Vehicle Re-Identification in Context) [136] is
a more realistic and challenging vehicle re-identification
benchmark, in contrast to other vehicle re-identification
datasets, VRIC is uniquely characterized by vehicle images
subject to more realistic and unconstrained variations in reso-
lution (scale), motion blur, illumination, occlusion, and view-
point. It contains 60,430 images of 5,622 vehicle identities
captured by 60 different cameras at heterogeneous road traffic
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FIGURE 20. Sample images from the Toy Car dataset.

FIGURE 21. Sample images from the VRIC dataset.
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FIGURE 22. Vehicle instance scale distributions in VRIC.

scenes in both day-time and night-time. Sample images from
the VRIC dataset are shown in Fig. 21. Vehicle instance scale
distributions in VRIC is shown in Fig. 22.

Wang et al. [137] construct a large-scale dataset for vehicle
re-identification named Vehicle Re-identification for Aerial
Image (VRAI), which contains 137,613 images of 13,022
vehicles captured by UAV-mounted cameras. The images
of each vehicle instance are captured by cameras of two
DIJI consumer UAVs at different locations, with a variety
of view-angles and flight-altitudes. To increase intra-class
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TABLE 4. Multi-dimensional comparison table of vehicle public datasets.

Name Scale Number of Number of Number of Characteristics Application
vehicles models colors
BoxCars21k[128] 63,750 21,250 148 / Monitor Fine-grained vehicle
. identification,
BoxCars116K[129] 116,826 27,496 693 / Monitor vehicle re-identification
VehiclelD [69] 221,763 26,267 250 7 Monitor Vehicle re-identification
PKU-Vehicle[70] 10,000,000 / / / Monitor Vehicle retrieval,
vehicle re-identification
PKU-VDI [130] 1,097,649 / 1,232 11 Monitor Fine-grained vehicle
. identification,
PKU-VD2 [130] 807,260 / 1,112 11 Monitor vehicle re-identification
VeRi-776[54] 50,000 776 / 10 Monitor Vehicle re-identification
CompCars[132] 136,726+27,618 | / 1,716 11 Internet Vehicle identification
Monitor
Vehicle model categorization,
Vehicle-1M[133] 936,051 55,527 400 / Monitor vehicle model verification,
vehicle re-identification
CityFlow[134] 229,680 / / / Monitor Vehicle re-identification,
cross-camera vehicle tracking
VERI-Wild[92] 416,314 40,671 / 1 Monitor Vehicle re-identification,
cross-camera vehicle tracking
VRID-1 [135] 10,000 1,000 10 / Monitor Vehicle re-identification
Toy Car [114] 30,000 150 200 / Synthetic Vehicle re-identification
dataset
VRIC[136] 60,430 5,622 / / Monitor Vehicle re-identification
VRA[137] 137, 613 13,022 J J Unmanned Vehicle re-identification
Aerial Vehicles
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FIGURE 23. Sample images from the VRAI dataset.

variation, each vehicle is captured by at least two UAVs at dif-
ferent locations, with diverse view-angles and flight-altitudes.
There are many well-labeled vehicle attributes, including
vehicle type, color, skylight, bumper, spare tire, and luggage
rack. Besides, the annotators mark the discriminative parts
which is helpful to distinguish a vehicle from others for each
vehicle image. The VRAI datasets bring more challenges for
vehicle re-identification as vehicles in VRAI are featured in
larger pose variation and wider range of resolution. Sample
images from the VRAI dataset are shown in Fig. 23. The sta-
tistical information about color, vehicle type, discriminative
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FIGURE 24. Statistical information of the VRAI dataset.

part number per image, and image number per vehicle VRAI
are shown in Fig. 24.

The emergence of many datasets used for vehicle
re-identification is conducive to the development of
re-identification methods, as well as bringing challenges.
Through the above detailed description of the data related to
the vehicle open dataset, this paper summarizes the vehicle
datasets in the field of vehicle re-identification in recent
years, and give a list of the scale, number of vehicles, number
of models, number of colors, characteristics, and application
for each dataset, as shown in Table 4.
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B. EVALUATION STRATEGY

To measure the performance of the vehicle re-identification
model, the researchers proposed some measurement indexes.
In this section, some common strategies used to evaluate the
performance of the vehicle re-identification algorithm will be
introduced.

1) RANK

Rank measures the similarity of a test to its owned class [75].
The value of rank-m is the probability of correct results in
images with the highest confidence in the search results,
a higher Rank indicates better performance of the model. For
example, a car labeled cl is searched through 100 samples.
If the result is c1, c2, c3, c4, ¢5..., the accuracy rate of rank-
1 is 100%, because c1 ranks in the first position of the result
sequence. The accuracy rate of rank-2 is 100%, because c1 is
in the first two positions of the result sequence. The accuracy
rate of rank-5 is 100% because cl is in the first five positions
of the result sequence. Similarly, if the identification results
are c2, cl, c3, c4, c5..., the accuracy rate of rank-1 is 0%.
Rank —2 has 100% accuracy; The accuracy rate of rank-5 is
also 100%. When there are multiple vehicles to be inquired,
the average value is the value of rank-m.

2) CMC CURVE

Cumulative Match Characteristic curve is a classical evalua-
tion index in the problem of vehicle re-identification, which is
a measure of the performance of the system’s ranking ability
from 1 to m. The horizontal coordinate of this curve is rank,
and the vertical coordinate is the percentage of recognition
rate, and it is formed by calculating the hit rate of rank-k,
an example like Fig. 25.

3) MAP

Average precision (AP) measures how well the model judges
the results on a single query image, while Mean average
precision(mAP) measures how well the model judges the
results on all query images. mAP is the average of all the AP,
AP and mAP can be calculated as follows [75].

_ Y psh)

AP “4)
Ng
2 AP

mAP = w 5)
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where n is the number of test images and Ng is the number
of ground truth images, p(k) is the precision at the k-th
position. g(k) represents the indicator function where the
value is 1 if match is found at k-th else 0. The mean average
precision (mAP) is calculated as follows where Q is number
of images queried.

To evaluate the performance of vehicle re-identification
methods, this paper classifies the accuracy of these meth-
ods on veri-776 and VehicleID datasets, because these two
datasets are composed of vehicles with multiple views, More-
over, many vehicle re-identification methods reflect their
performance through mAP and Rank values on these two
datasets. The accuracy of vehicle re-identification algorithm
on veri-776 datasets is shown in Table 5. The vehicle re-
identification algorithm is accurate on the VehicleID dataset,
as shown in Table 6. The highest values are shown in bold.

IV. CHALLENGES AND POSSIBLE RESEARCH DIRECTIONS
A. CHALLENGES

Although the research work on vehicle re-identification has
been carried out for many years, due to limitations by the
scale of vehicle datasets and diverse monitoring of the shoot-
ing environment, the research work is still challenged. When
vehicle re-identification is carried out in traffic surveillance
video scene, the resolution of images is different with dif-
ferent cameras, besides, cameras are mounted at different
angles, and lighting conditions are different, resulting in
difference in angle, scale, and color of the same vehicle in
different cameras, which bring great difficulty for vehicle
re-identification. Summarize the difficulties and challenges
faced in vehicle re-identification work, including:

1) Limited number of public datasets: Due to factors
such as privacy of vehicle and driver and social security,
the scale of publicly available vehicle datasets is not big
enough. and the number of vehicles in the same dataset,
vehicle type, color, and other attributes are relatively
simple.

2) Small inter-class similarity and large intra-class dif-
ference: Small inter-class similarity is reflected in the
similar appearance of vehicles produced by the same
automobile brand or different manufacturers. Large
intra-class difference is reflected in the fact that the
same car looks different due to camera angles, sunshine
in the day, lights at night and other factors.

3) Perspective difference: Due to the different positions
of the cameras in the traffic video monitoring system,
the height and angle of the cameras are different, result-
ing in different perspectives of the same vehicle in
different cameras’ video frames.

4) Influence of sunshine in the day, lights at night: Due
to the different lighting conditions of the cameras in the
traffic video monitoring system within a day, the color
features of the same vehicle photographed by different
cameras vary greatly due to the change of lighting
conditions. Besides, the vehicle pictures captured at
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TABLE 5. The accuracy of vehicle reidentification algorithm on veri-776 dataset.

Method && Reference Year mAP (%) Rank-1(%) Rank-5 (%)

FACT [131] 2016 19.92 59.65 75.27

FACT + Plate-SNN + STR [54] 2016 27.77 61.44 78.78

XVGAN [94] 2017 24.65 60.20 77.03

Multi-modal metric learning [122] 2017 33.78 60.19 77.40

OIFE+ST [36] 2017 51.42 - -

Siamese-CNN-Path-LSTM [55] 2017 58.27 83.49 90.04

VGG+classification-oriented loss+triplet loss [72] 2017 58.78 86.41 92.91

ABLN-Ft-16 [113] 2018 24.92 60.49 77.33

SCNN+Ft+CLBL-8-Ft [114] 2018 25.12 60.83 78.55

MSVR [136] 2018 49.30 88.56 -

Space-Time Prior [50] 2018 53.35 82.06 92.31

PROVID [58] 2018 53.42 81.56 95.11

SDC-CNN [59] 2018 53.45 83.49 92.55

JFSDL [57] 2018 53.53 82.90 91.60

RNN-HA [111] 2018 56.80 74.79 87.31

GS-TRE loss W/ mean VGGM [70] 2018 59.47 96.24 98.97

Appearance+Color+Model+Re-Ranking [52] 2018 61.11 89.27 94.76

VAMIHSTR [89] 2018 61.32 85.92 91.84

RAM [37] 2018 61.50 88.60 94.00

GAN+LSRO+ re-ranking [91] 2018 64.78 88.62 94.52

SCAN [110] 2019 49.87 82.24 90.76

FDA-Net [92] 2019 55.49 84.27 92.43

Hard-View-EALN [93] 2019 57.44 84.39 94.05

Mob.VFL [49] 2019 58.08 87.18 94.63

DF-CVTC [45] 2019 61.06 91.36 95.77

AAVER [108] 2019 61.18 88.97 94.70

Proposed QD-DLF [118] 2019 61.83 88.50 94.46

SLSR [117] 2019 65.13 91.24 -

VANet [74] 2019 66.34 89.78 95.99

Batch sample [71] 2019 67.55 90.23 96.42

MTML-0OSG [125] 2019 68.30 92.00 94.20

MRM [39] 2019 68.55 91.77 95.82

JDRN + re-ranking [127] 2019 73.10 - -

Part-regularized Near-duplicate [38] 2019 74.30 94.30 98.70

MRL+Softmax Loss [116] 2019 78.50 94.30 99.00

PGAN [112] 2019 79.30 96.50 98.30

SSL+re-ranking [90] 2019 89.69 95.41 69.90

PRN+RR [40] 2019 90.48 97.38 98.87
night are quite different from those taken by the day often has such conditions as road banner obscuration,
because of street lamps and other lights at night. wire obscuration, and tree branch obstruction.

5) Obscuration: Due to the uncontrollability of the vehi- 6) Scale change: Because traffic monitoring camera

cle’s driving route and the diversity of road conditions, shoot vehicles at different heights or distances, the scale
the vehicle image under the traffic surveillance camera of the vehicle under different monitoring cameras
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TABLE 6. The accuracy of vehicle reidentification algorithm on VehiclelD dataset.

Rank-1 Rank-5
Method && Reference Year Small Medium Large Small Medium Large

) | (%) % | ) | o
Mixed Diff+CCL [69] 2016 49.00 42.80 38.20 73.50 66.80 61.60
XVGAN [%4] 2017 52.87 49.55 44.89 80.83 71.39 66.65
VGG+C+T+S [72] 2017 69.90 66.20 63.20 87.30 82.30 79.40
DJDL [73] 2017 72.30 70.80 68.00 85.70 81.80 78.90
SDC-CNN [59] 2018 56.98 50.57 42.92 86.90 80.05 73.44
NuFACT [58] 2018 48.90 43.64 38.63 69.51 65.34 60.72
JFSDL [57] 2018 54.80 48.29 41.29 85.26 78.79 70.63
RAM [37] 2018 75.20 72.30 67.70 91.50 87.00 84.50
VAMI [89] 2018 63.12 52.87 47.34 83.25 75.12 70.29
A new distance loss [51] 2018 77.10 72.70 70.00 92.80 89.20 87.10
GAN+LSRO+re-ranking [91] 2018 86.50 83.44 81.25 87.38 86.88 84.63
RNN-HA (ResNet+672) [111] 2018 83.80 81.90 81.10 88.10 87.00 87.40
FDA-Net [92] 2019 - 59.84 55.53 - 77.09 74.65
VTGAN [95] 2019 49.48 45.18 40.71 68.66 63.99 59.02
Proposed QD-DLF [118] 2019 72.32 70.66 64.14 92.48 88.90 83.37
Mob.VFL [49] 2019 73.37 69.52 67.41 85.52 81.00 78.48
AAVER [108] 2019 74.69 68.62 63.54 93.82 89.95 85.64
SLSR [117] 2019 75.10 71.80 68.70 89.70 86.10 83.10
DF-CVTC [45] 2019 75.23 72.15 70.46 88.11 84.37 82.13
XG-6-sub-multi [41] 2019 76.10 73.10 71.20 91.20 87.50 84.70
MRM [39] 2019 76.64 74.20 70.86 92.34 88.54 84.82
Part-regularized Near-duplicate [38] 2019 78.40 75.00 74.20 92.30 88.30 86.40
Batch sample [71] 2019 78.80 73.41 69.33 96.17 92.57 89.45
PRN (Single Height-channel Branch) [40] 2019 78.92 74.94 71.58 94.81 92.02 88.46
MRL+Softmax Loss [116] 2019 84.80 80.90 78.40 96.90 94.10 92.10
VANet [74] 2019 88.12 83.17 80.35 97.29 95.14 92.97
GAN+LSRO+re-ranking [90] 2019 88.67 88.31 86.67 91.92 91.81 90.83

7)

8)
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is different, which will bring problems like the
vehicle is too big to be photographed completely
and the vehicle is too small, to cause difficulty in

identification.

Resolutions variation: The standard of traffic surveil-
lance cameras and other factors cause the resolu-
tion of the same car to vary greatly, Older cameras

tend to have lower resolution and newer ones have
higher resolution. Images from earlier cameras have
a lower resolution, making it difficult for vehicle
re-identification.

Deformation: The vehicle is deformed by the traffic
accident or the shape of the vehicle changes a lot due
to different loads.

9) Background interference:
color of the picture is close to the color of the vehicle,

When the background

the vehicle re-identification will be disturbed.

B. POSSIBLE RESEARCH DIRECTIONS

As one of the core technologies of intelligent transportation
and monitoring, vehicle re-identification technologies play

a key role in maintaining social public safety and building
smart cities. In recent years, with the in-depth development
of deep learning, vehicle re-identification methods based
on deep learning have received more and more attention.
Combined with existing methods and open vehicle datasets,
we present several future research directions from personal
opinions based on our survey above, including:
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1) Assistance of spatiotemporal information: Most of
the existing vehicle re-identification methods do not
consider the assistance of spatiotemporal information.
The search range is from the near time to the far time on
the time scale, the search scope extends from the nearby
camera to the distant camera on the spatial scale, using
the near to far principle to deal with the search process
can provide a great help for the vehicle re-identification
task. However, in real monitoring scenario, traffic con-
ditions, road map and the weather will affect the vehicle
driving route, how to effectively use spatiotemporal
clue is still challenging.

2) Datasets with more information: The existing vehi-
cle re-identification datasets (VeRi-776 from Beijing
University of Posts and Telecommunications, Vehi-
cleID in Peking University, and PKU-VD from Peking
University) do not provide original video and cam-
era correction information, so they cannot be used
for video-based cross-camera vehicle tracking, lack-
ing the ability to track vehicles over a wide area.
With the introduction of the CityFlow dataset, it is
possible to provide a large-scale tracking of vehicles
for future multi-target vehicle tracking. Besides, many
datasets do not provide spatio-temporal information,
which limits the implementation of the auxiliary vehi-
cle re-identification method by using spatio-temporal
information.

3) Multi-view re-identification: Compared with person
re-identification which is a hot research spot recently,
vehicle re-identification mainly faces two major chal-
lenges: one is the high variability within the class
(Because change of vehicle image caused by change
of perspectives is larger than that of person), and
the other is the high similarity between the classes.
(Because vehicle’s appearance produced by different
car manufacturers are very similar). In future research
work, to solve the first type of challenges and improve
the accuracy of vehicle re-identification in different
perspectives, firstly, we need to organize large-scale
vehicle datasets with multiple perspectives. On this
basis, we can consider using the GANs method to
learn the correlation between input perspectives and
other hidden perspectives through modeling, and learn
the transformation model to infer features from other
perspectives, that is, a given single-view feature can
synthesize multi-view features, and combines metric
learning to embed the synthesized multi-view features
into the distance space, thereby improving the problem
of low vehicle re-identification accuracy under multiple
viewing perspectives.

4) Combine the detection task with the re-identification
task: Current vehicle re-identification missions are
based on cropped images of vehicles, in other words,
the assumption of the re-identification task is that the
boundary box detected by the vehicle is accurate, How-
ever, existing testing tasks do not ensure that complete
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testing is correct, the quality of vehicle detection is
likely to affect the accuracy of vehicle re-identification
tasks. Therefore, in the future, the detection task and
re-identification task can be combined and integrated
into an end-to-end framework to analyze and solve
the impact of the deviation of detection task on the
accuracy of the vehicle re-identification task, it is still
a challenge.

5) Integrate multiple approaches to improve the accu-
racy of vehicle re-identification: Many researchers
consider vehicle re-identification as a classification
task for fine-grained vehicle identification, but it cannot
be accurately matched. Considering the characteristics
of classification learning and metric learning, classifi-
cation task training is easy, and metric learning is good
at detail subdivision. Combining the characteristics of
different methods and effectively integrate them can
realize the complementary advantages of the methods
and improve the accuracy of vehicle re-identification.

6) Effectively applied the vehicle re-identification
technology to real traffic scenes by the assistant of
methods such as transfer learning: Features learned
from one dataset may not apply to another due to dif-
ferences in data distribution, trained models on existing
vehicle datasets may not be fully applicable to real
traffic scenarios. Besides, the types of cars in differ-
ent cities may be different, it is still a challenge to
apply the vehicle re-identification model to real traffic
scenes through the training of existing datasets, and
further research is needed. Transfer Learning allows
the domain of training to be different from the domain
data distribution of testing, by using methods such as
transfer learning, the vehicle re-identification technol-
ogy can be applied to real traffic scenes effectively.

V. CONCLUSION

With the improvement of social public infrastructure,
the number of vehicles on the roads has increased year by
year, which has led to higher requirements for the ability to
analyze vehicles shot at surveillance cameras. The emergence
of vehicle re-identification technology meets the demand for
public safety and construction of smart cities, as well as pro-
vide guarantees for the comprehensive improvement of traffic
management and service levels. Vehicle re-identification has
been widely concerned in recent years. In this paper, we focus
on vehicle re-identification methods based on deep learning,
and categorize these methods into five categories, i.e. meth-
ods based on local features, methods based on representation
learning, methods based on metric learning, methods based
on unsupervised learning, and methods based on attention
mechanism. Furthermore, we compare these methods from
characteristics, advantages, and disadvantages. The vehicle
public datasets have a great influence on the accuracy of
vehicle re-identification, therefore, this paper summarizes the
vehicle datasets for vehicle re-identification in recent years,
and give a list of the scale, number of vehicles, number
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of models, number of colors, characteristics, and applica-
tion for each dataset. Besides, some common strategies used
to evaluate the performance of the vehicle re-identification
algorithm are introduced, and we compare some vehicle
re-identification method’s accuracy in veri-776 and Vehi-
cleID datasets. At last, we summarize the difficulties and
challenges faced by vehicle re-identification and discuss pos-
sible research directions in the future. Through the survey
of vehicle re-identification methods based on deep learn-
ing, hoping to provide a guideline and assistances for future
research.
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