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ABSTRACT It is imperative for manufacturing systems to improve production quality not only to maintain
profitability, market share and competitiveness, but also to reduce energy waste resulted from defective
items. Although quality and energy saving have attracted extensive attention in the past few decades, there
is little research effort devoted to a systematic understanding of their intersection. Therefore, this paper
analyzes the energy usage of a multistage production system with quality control. The Geometric reliability
and Bernoulli quality models are assumed. A Markov process model is established to predict the dynamics
of the production system. The energy economics of the production system are analyzed to include both
production and energy cost. The optimal PWQ (Production with Quality Inspection) machine allocation
method and the cost-effectiveness analysis method are formulated to increase the profit. According to the
computational experiments, the proposed optimal PWQ machine allocation method can effectively reduce
energy consumption. In addition, pay-back period (PBP) is an effective indicator which helps production
managers make cost effective decisions for machine replacement. The research results in an in-depth
understanding of the energy economics of systems with quality control, which is necessary for manufacturers
to gain competitiveness with better product quality and higher energy efficiency.

INDEX TERMS Production quality, energy economics, performance improvement, Markov chain model.

I. INTRODUCTION
Sustainable manufacturing has become more prevalent for
manufacturing companies in response to dramatic climate
change, unsecured energy supply, and fluctuating energy
prices. In industrial sector, worldwide energy consumption
is expected to increase by more than 1.2% every year [1].
The number is even higher in developing economies, such as
China and India. It is important to improve production-energy
efficiency in order to reduce industrial energy usage, and
contribute to competitive advantage [2]. According to a report
of European Commission, an estimate of 25% energy usage
could be reduced just through boosting energy efficiency of
the industrial sector [3].
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Production quality plays a significant role to the success of
manufacturing systems not only to ensure high performance
of its products, but also to reduce energy waste resulted from
defective items. Newly developed production systems usually
suffer from high scrap rates. For instance, the observed scrap
rates can vary from 30 percent to as high as 60 percent in
large volume battery manufacturing systems [4]. There is a
clear opportunity to boost production energy efficiency with
better quality management practices.

Although extensive efforts have been devoted to the mod-
eling of quality flow and energy usage in production systems,
they are treated separately without an integrated understand-
ing of the complex intersection [5], [6]. The energy waste
resulted from a defective product is not a simple summation
of the energy consumption at each manufacturing stage [7].
It should also take into consideration of its impact on the
production of the entire system [8]. It is not uncommon
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that machines waste a significant amount of production time
on unidentified defective products. Without been properly
coordinated, the impact could propagate to the entire system
through starvation and blockage [9]. A significant energy
waste would be incurredwhenmachines are forced to become
idle (i.e. starved or blocked) because the machines still con-
sume energy, but cannot produce parts [10]. It is essential to
have a systematic understanding of the energy consumption
in multistage production systems with quality control, and
establish a method to reduce the energy waste.

Therefore, this work strives to tackle two important prob-
lems. The first problem is to establish an integrated model to
analyze the production and energy consumption in a multi-
stage production system with quality control. In response to
the problem, a Markov chain model is established to analyze
the production dynamics of systems consisting of machines
characterized by Geometric reliability model and Bernoulli
quality model. The energy economics are analyzed taking full
consideration of the energy consumption of the production
system. The second problem is to boost energy efficiency
through improving quality decision-makings. In response to
the problem, decision-making models are constructed based
on the energy economics analysis to optimize the quality
inspection strategies, as well as machine replacement plans.

This research helps people to understand the complex
interconnections among production, quality flow and energy
consumption in a multistage production system. It presents
the first step toward our objective to improve energy effi-
ciency through better quality management. The rest of the
paper is demonstrated as follows: literature review is inves-
tigated in Section II; Section III describes the assumptions
and background; a Markov chain model is presented in
Section IV; Section V proposes two joint quality and energy
decision-making algorithms; computational experiments are
performed in Section VI; Section VII summarizes the conclu-
sions and future work.

II. LITERATURE REVIEW
Over the past few decades, extensive research efforts have
been devoted to the modeling of production systems, which
can be divided into simulation methods and analytical meth-
ods [11]. Simulation methods, such as Petri net and discrete
event simulation, are flexible to precisely model complex
production systems [12]. However, it is difficult to apply the
simulation methods to investigate the fundamental properties
of the production systems. In analytical methods, Markov
chain models has been established for multistage produc-
tion systems [13]. Markov chain models have been applied
to investigate many theoretical and engineering problems.
Zhu et al. studied a filtering problem of discrete-timeMarkov
jump linear parameter varying systems subjected to packet
dropouts and channel noises [14]. A hidden Markov model
is established for the partial accessibility of system modes
with filters. Désir et al. established a Markov chain model for
constrained assortment optimization [15]. The model tackles
item substitutions as transitions of Markov chain models,

and can be applied to effectively approximate random utility
models. In production system modeling, Li and Meerkov
proposed an aggregation Markov chain model for serial
Bernoulli production lines [16]. Li et al. extended the
aggregation method to parallel Bernoulli lines and rework
Bernoulli lines with overlapping methods [17], [18]. Decom-
position Markov chain model is developed by Gershwin and
Burman for performance analysis in production systems with
exponential machines [19]. Colledani et al. utilized decom-
position method to analyze production systems consisting
of machines modelled with general Markovian fluid mod-
els [20]. Gershwin and Wermer applied the decomposition
method in closed loop production systems [21].

Production quality models can be categorized into
persistent-type and Bernoulli-type, depending on the char-
acteristics of quality failures [22]. Persistent-type quality
model is commonly seen in highly automated production
systems. It depicts the quality failures that only happen after
a change occurring in the machine. Therefore, in persistent-
type failure systems, once a defective product is identified,
all the following products are likely to be defective [23].
Bernoulli-type quality model, on the other hand, is proposed
for systems, where the quality of each product is independent
of the others [24], [25]. The model is appropriate for the
production system that is sensitive to external disturbances
(e.g. human mistakes and material flaw), and is subject to
inefficient management. Both quality models are extensively
considered in literature. For example, Kim and Gershwin
developed an integrated quality and quantity model to study
the quality rate and productivity in production systems with
persistent-type quality failures [26]. Meerkov and Zhang pro-
posed an aggregation method for performance analysis and
improvement in production systems consisting of machines
that obey Bernoulli reliability and quality models [27]. This
paper adopts Bernoulli-type quality model. The analysis
is helpful to improve the quality and energy efficiency of
newly designed systems consisting of automatic and manual
machines.

Most of the current research on quality management is
performed to improve product quality and productivity [28].
Ju, et al. introduced an analytical model to improve the prod-
uct quality in battery assembly lines [29]. The quality flow
model investigates the properties of the assembly line and is
integrated into a continuous improvement method. Shetwan,
et al. surveyed the existing quality control stations allocation
policies [30]. The review shows that heuristic methods can
reach a qualified solution much faster than complete enu-
meration methods. Van Volsem, et al. proposed an optimal
inspection method for a multistage production system [31].
The method utilizes a discrete event simulation to model the
system and an evolutionary algorithm (EA) to optimize the
inspection strategies. It is argued that the inspection method
results in the lowest inspection cost while maintaining desir-
able production quality. Although the aforementioned analy-
sis is very useful in improving productivity and quality, they
do not provide enough insight into the integrated modeling
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FIGURE 1. A multistage serial production line.

of quality and energy consumption. It is difficult to utilize
the methods to achieve energy efficiency in multistage pro-
duction systems.

Although many research efforts are spent on the energy
management of production systems, they mainly focus
on achieving energy saving goals with production con-
trol strategies without explicitly considering quality fac-
tors [32], [33]. For example, Dai, et al. investigated the energy
efficiency in flexible production system scheduling [34]. The
energy-oriented scheduling is constructed and solved as a
multi-objective optimization problem. Rager, et al. discussed
to minimize the final energy sources demand in parallel pro-
duction systems through optimizing resource leveling [35].
Tian et al. proposed to improve a flexible job shop with
energy efficient scheduling and real-time control [36]. The
control system architecture is formulated in IoT environment
to meliorate the resilience of the flexible job shop to dis-
ruption events. Chen et al. analyzed to reduce the energy
consumption of a production system through controlling of
machines’ startup and shutdown [37]. AMarkov chain model
is utilized to accurately estimate the productivity of the pro-
duction systems.

Therefore, the current literature fails to provide adequate
references in an integrated modeling and improvement of
production quality and energy efficiency in multistage pro-
duction systems. The existing improvementmethods consider
the modeling and improvement separately. They describe
the production systems with simplified indicators or static
equations, and fail to take into consideration of the complex
dynamics. As a consequence, the methods cannot sufficiently
explore the improvement opportunities. The ever-growing
energy prices and customer expectations put an enormous
strain on production systems. A systematic understanding
of the energy economics of systems with quality control is
imperative for manufacturers to gain competitiveness with
better product quality and higher energy efficiency. This
paper is devoted to this end.

III. SYSTEM ASSUMPTIONS AND BACKGROUND
This paper considers a serial production system as shown
in Figure 1. Each machine is represented as a rectangle and
each buffer is represented with a circle. The system has M
machines and M − 1 buffers. The production system adopts
the following assumptions and definitions.

1) Buffer Bl, l = 1, . . . ,M − 1, has a finite capacity.
For ease of expression, the capacity is still denoted
as Bl . The instantaneous buffer level of Bl at time t is
represented as bl(t).

2) There are two types of machines, which are machines
with and without quality inspection. The machines
without quality inspection are denoted as PO (Produc-
tion Only) machines, and the machines with quality

FIGURE 2. State transition diagram of geometric machine.

inspection are denoted as PWQ (Production with Qual-
ity Inspection) machines. Defective parts are identified
and scrapped by PWQ machines. It is assumed that the
inspection machines can neither miss defective parts,
nor identify perfect parts as defective [16].

3) To ensure the quality of the finished products, the last
machine in a production system is a PWQ machine.

4) Each machine Ml, 1 ≤l ≤ M , has an identical cycle
time τ , that equals to a time step. The machine has one
up state, i.e. αl = 1, and one down state, i.e. αl = 0.

5) Each machine Ml, 1 ≤l ≤ M , follows the Geometric
reliability model. If the machine is up, it can be down
because of a non-quality related event with probabil-
ity pl , which is denoted as the failure probability ofMl .
If the machine is down, it can be brought back to up
state with probability rl , which is denoted as the repair
probability ofMl . The transition is depicted in Figure 2.
If the mean time to failure (MTTF) and mean time to
repair (MTTR) of machin Ml are MTTFl and MTTRl ,
then its failure probability and repair probability have
pl = 1/MTTFl and rl = 1/MTTRl , respectively.

6) EachmachineMl, 1 ≤l ≤ M , followsBernoulli quality
model. It means that the machine produces a good part
with probability gl , and produces a defective part with
probability 1− gl .

7) For each part inspected by a PWQ machine
Ml, 1 ≤l ≤ M , it is good with a probability of ql
and defective with a probability of 1 − ql . The
identified defective parts are removed from the pro-
duction system by PWQ machines. The probability
ql =

∏l
i=l−k gi is determined by the quality rates of

machinesMl−k , . . . ,Ml , whereMl−k−1 andMl are two
adjacent PWQ machines. ql is defined as the quality
buy rate of Ml .

8) Machine Ml, l = 2, . . . ,M , is starved at time t if
αl = 1, and bl−1 (t) = 0.

9) Machine Ml, l = 1, . . . ,M − 1, is blocked if αl = 1,
bl (t) = Bl , and Machine Ml+1 does not take a part
from buffer Bl .

10) The first machine will never be starved and the end-of-
line machine will never be blocked.

Remark 1. It is noted that POmachines can neither identify
nor remove defective products from the system. All the PO
machines have quality buy rates that equal to one.
Remark 2. The geometric reliability model can be applied

to machines, whose average downtimes are significantly
greater thanmachine cycle time. This can be found inmachin-
ing production lines and heat treatment production lines,
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where the failures are primarily because of the breakdown of
a key component, power outage, etc. [38]

IV. MARKOV CHAIN MODEL
The production system defined in Section III is characterized
by an ergodic Markov chain with states defined with machine
states and buffer levels, i.e. ϕ = (α1, . . . , αM , b1, . . . , bM−1).
In a 2-machine 1-buffer production system, system state is
(α1, α2, b1).Prob(α1, α2, b1) denotes the probability that sys-
tem state is (α1, α2,b1). When 1 <b1 < B1 − 1, the balance
equation for Prob(1, 0,b1) can be expressed as:

Prob (1, 0,b1) = q1r1 (1− r2)Prob (0, 0,b1 − 1)

+ q1r1p2Prob (0, 1,b1 − 1)+ q1 (1− p1)

(1− r2)Prob (1, 0,b1 − 1)

+ q1 (1− p1) p2Prob (1, 1,b1 − 1)

+ (1− q1) r1 (1− r2)Prob (0, 0,b1)

+ (1− q1) r1p2Prob (0, 1,b1)

+ (1− q1) (1− p1) (1− r2)Prob (1, 0,b1)

+ (1− q1) (1− p1) p2Prob(1, 1,b1).

The first term on the right-hand side of the equation measures
the probability of transition from (0, 0,b1 − 1) to (1, 0,b1).
The system can make the transition if machineM1 is repaired
and successfully produces a part with good quality to its
downstream buffer B1, and machine M2 is not repaired.
Therefore, the probability of the transition is q1r1 (1− r2).
Similarly, the other seven terms measure the probabilities
of transitions from (0, 1,b1 − 1),(1, 0,b1 − 1), (1, 1,b1 −
1), (0, 0,b1), (0, 1,b1), (1, 0,b1), (1, 1,b1) to (1, 0,b1). There
are no other possible transitions.

In the similar way, the balance equations can be
derived for all other probabilities, i.e. Prob(1, 1,b1),
Prob(0, 0,b1),Prob(0, 1,b1),Prob(1, 0,b1),0 ≤ b1 ≤ B1. The
steady-state probability distribution of the 2-machine 1-buffer
system can be obtained by solving the equations. The solution
technique is similar to that is discussed in literature [39] and
is not included in the paper.

The analytical Markov chain model merely exists for
2-machine 1-buffer systems because the size of system state
space grows exponentially in the numbers of machines and
buffers. Approximation methods are essential to estimate the
dynamics of long production systems. Therefore, the decom-
position method is extended to study multistage production
systems characterized by Geometric reliability model and
Bernoulli quality model.

The decomposition method models a M -machine M − 1-
buffer system into a sequence of M − 1 subsystems, which
is shown in Figure 3. Each subsystem Sl, 1 ≤l≤M − 1,
consists of buffer Bl , and two pseudo machines Mu

l and Md
l ,

which locate in the upstream and downstream of buffer Bl ,
respectively.Mu

l approximates the upstream system ofBl . It is
characterized by two geometrically distributed variables with
parameters: failure probability pul and repair probability rul ,
as well as a Bernoulli distributed variable with parameter:

FIGURE 3. Decomposition of the production system.

quality buy rate ql . Similarly, Md
l approximates the down-

stream system of Bl . It is characterized by two geometrically
distributed variables with parameters: failure probability pdl
and repair probability rdl , as well as a Bernoulli distributed
variable with parameter: quality buy rate ql+1. The principle
of the decomposition method is to closely match the material
flow of buffer Bl in subsystem Sl and the original production
system. An accurate estimation of parameters pul ,p

d
l , r

u
l and

rdl is the key.
The parameters of pseudo machines can be estimated

with decomposition equations. Decomposition equations are
proved in literature [19] assuming all themachines have equal
input and output rates. However, in this paper, the input and
output rates of a PWQ machine are different because they
need to reject defective items out from the production system.
It is necessary to modify the decomposition equations in
production systems with PWQ machines.

First, let’s analyze the material flow equation in each sub-
system. The input rate sinl and output rate soutl of machine
Ml, 1 ≤l ≤ M , are related with quality buy rate as soutl =

qlsinl . Each buffer has the same input and output rates in
steady state. Let E(l) denote the input or output rate of buffer
Bl, 1 ≤l≤M − 1, i.e. E (l) = soutl = sinl+1. Then for any two
adjacent subsystems Sl and Sl+1, the following equation is
satisfied:

E (l + 1) = ql+1E(l). (1)

E (l) is estimated as

E (l) = qleul (1−Prob(bl = Bl)) (2)

E (l) = edl (1−Prob(bl = 0)) (3)

where eul =
rul

rul +p
u
l
and edl =

rdl
rdl +p

d
l
are the standalone effi-

ciencies ofMu
l andMd

l , respectively. Prob (bl = Bl) denotes
the probability that buffer Bl is full. Prob (bl = 0) is the
probability that buffer Bl is empty. E(l) can also be estimated
as

E (l) = qlel(1−Prob (bl−1 = 0)− Prob(bl = Bl)) (4)

where el =
rl

rl+pl
is the standalone efficiency of machineMl .

With some math manipulations, the following equation can
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be obtained as

pdl−1
rdl−1
+
pul−1
rul−1
=

1
E (l − 1)

+
1
el
− 2. (5)

Secondly, the repair probability equation of each pseudo
machine can be derived. The breakdown of pseudo machine
Mu
l , 1 ≤l ≤ M − 1, is resulted from the breakdown of

machineMl or the empty of buffer Bl−1. To repairMu
l , it is to

either repair machine Ml or make buffer level bl−1become
non-empty, i.e. bl> 0. Therefore, the repair probability of
pseudo machine Mu

l can be expressed with

rul = φl−1Zl + ψlZ
′

l (6)

where φl−1 = ql−1eul−1 refers to the probability that
buffer Bl−1 transfers from empty to non-empty. Zl =
ql
rul Prob(bl−1=0)

pul E(l)
is the condition probability of buffer Bl−1

being empty if pseudo machine Mu
l is down. ψl = rl is the

repair probability of machineMl . Z
′

l = 1−Zl is the condition
probability that machine Ml is down if pseudo machine Mu

l
is down. Similarly, the repair probability of pseudo machine
Md
l can be expressed with

rdl = ηl+1Hl+1 + ωl+1H
′

l+1 (7)

where ηl+1 = rdl+1 is the repair probability of pseudo

machine Md
l+1. Hl+1 =

rdl Prob(bl+1=Bl+1)
pdl E(l)

is the condition

probability of buffer Bl+1 being full if pseudo machineMd
l is

down. ωl+1 = rl+1 is the repair probability of machineMl+1.
H
′

l+1 = 1−Hl+1 is the condition probability that machine
Ml+1 is down if pseudo machine Md

l is down.
With the twomodifications, the failure and repair probabil-

ities ofMu
l andMd

l , 1 ≤l≤M − 1, can be estimated by itera-
tively solving equations 5 to 7 in each subsystem Sl, 1 ≤ l ≤
M−1. The solution procedure is based on the decomposition
algorithm in literature [19], and is summarized as follows:

Algorithm 1 Decomposition Iterative Solution Algorithm
Initialize pul = pl , rul = rl ,
pdl = pl+1, and rdl+1 = rl+1, 1 ≤ l ≤ M − 1.
Then the algorithm iterates between Steps
1 and 2 until convergence.
1. For l = 2, . . . ,M − 1, calculate

pul
rul

with equation
5, rul with equation 6. Approximate E(l) according
to E (l) = qlE(l − 1)

2. For l = M − 2, . . . , 1, calculate
pdl
rdl

with equation

5, rdl with equation 7. Approximate E(m) according
to E (l) = E(l+1)

ql+1
.

V. DECISION MODELS FOR QUALITY INSPECTION
A. OPTIMAL PWQ MACHINE ALLOCATION ANALYSIS
In a production system, more and tighter inspection helps to
reduce the energy waste resulted from unidentified defective

products that are processed unnecessarily during produc-
tion. However, intensive inspection efforts also require higher
cost of equipment investment and production. Therefore, this
section establishes an optimization method to determine the
number and locations of PWQmachines to balance the energy
cost saving and the expense.

1) CONTROL DECISIONS
The PWQ machine allocation problem can be formulated to
determine for each machineMl , whether it is a PWQmachine
or a PO machine. Let’s use πl = 1 to denote machine Ml
being a PWQ machine, and πl = 0 to denote machine Ml
being a PO machine. It is noted that when πl = 1, machine
Ml has greater average cost of investment C̄I l and the unit
production cost cf ,l . The decision variable can be expressed
as (π1, . . . ,πM ) . The objective of the analysis is to find the
optimal (π∗1 , . . . ,π

∗
M ) such that the average system profit SP

is maximized:

max
(x1,·,πm)

SP. (8)

2) OPTIMAL CONTROL FORMULATION
The objective of the analysis is to improve the overall energy
efficiencies as well as profit of the multistage production
system [6]. The expected system profit during each time unit
can be estimated as the difference between system income
and expense:

SP = income− expense = cpmin
(
THsys,CR

)
−Ecf ·ESin − cEFsys − comax

(
THsys

−CR, 0)− cumax
(
CR− THsys, 0

)
− C̄I (9)

where cp represents the income for selling each product.
Ecf = (cf ,1, . . . ,cf ,M ) is the production cost per part of each
machine, which includes material cost, labor cost, quality
inspection cost, etc. cE denotes the cost of an unit energy
consumption. co refers to the unit overage cost and cu rep-
resents the unit underage cost. C̄I is the average cost of
investment (CI), which equals to the summation of the CI
in each machine, i.e. C̄I =

∑M
l=1 C̄I l . THsys is the average

system production rate, which is estimated with [40]:

THsys = qM
∑BM

bM=1

∑1

αuM−1=0
Prob(αuM−1, 1,bM ).

(10)

CR is the customer demand rate, which is determined based
on real customer orders. ESin = (sin1 , . . . ,s

in
M ) records the num-

ber of parts processed by each machine. Fsys is the average
energy consumption rate of the production system. It can be
determined by analyzing the dynamics of each machine.

At each time step, machine Ml, 1 ≤l≤M , can be in pro-
duction state, idle state or breakdown state. Let Pp,l and Pi,l
denote the probabilities that machine Ml are in production
state and idle state. The probabilities are estimated as

Pp,l = el(1−Prob (bl−1 = 0)− Prob(bl = Bl)) (11)
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Pi,l = Prob (bl−1 = 0)+ Prob(bl = Bl). (12)

It is assumed that the power consumption rates of machine
Ml in production state and idle state are dp,l and di,l .
Machines do not consume energy when they are breakdown.
The average energy consumption rate of machine Ml is esti-
mated as

Fl = di,lPi,l + dp,lPp,l . (13)

The average energy consumption rate of the whole system is
the summation of that of all the machines:

Fsys =
∑M

l=1
Fl . (14)

3) SOLUTION METHODOLOGY
It is observed that the formulated problem is a complex
nonlinear optimization problem, which usually cannot be
solved using analytical algorithms in a useful time frame.
Therefore, the genetic algorithm is presented to solve the
problem. The genetic algorithm (GA) has been considered
as a very useful method, which is widely accepted to solve
nonlinear optimization problems [41], [42]. The algorithm is
an iterative process. A population of candidate solutions are
continuously improved and updated in each iteration until the
ending criteria is satisfied. The optimal solution is the best
candidate in the final population [6]. The main steps of the
GA algorithm are briefly depicted in the following Optimal
PWQ Machine Allocation Algorithm.

B. COST-EFFECTIVE ANALYSIS
It is sometimes necessary to replace old equipment that has
low energy efficiency [43], [44]. The key is to find the
replacement investment option that is the most cost-effective.
Currently, there is a lack of quantitative indicator to assist the
decision making. Based on the energy economics analysis,
the pay-back periods (PBPs) of different machine replace-
ment investment options can be estimated to compare their
efficiencies. The investment option that has the shortest PBP
is the one selected.

PBP is defined as the period for which discounted benefit
income will cover the total cost of the investment. The indi-
cator is widely utilized in financial analysis to measure the
time it takes for the investment to lead to a profit [45] . The
mathematical expression of PBP is:

PBP = inf{n ≥ 0 : OCR =
∑n

τ=1

BI (τ )

(1+ i)τ−1
}, (15)

where OCR is the overall cost of replacement (OCR).
It includes the investment cost of replacing the machine,
installation cost, testing cost, etc. BI (t) is the benefit income
(BI) at time unit t . i is the discount rate. The benefit income
from the investment is measured as the energy cost saving.
Suppose that the power consumption rate of machine Ml is
reduced by δdp,l and δd i,l in its production state and idle state,
respectively. The expected energy savings δFsys in a time unit
is estimated as

δFsys = δdi,lPi, l + δdp,lPp,l . (16)

Algorithm 2 Optimal PWQ Machine Allocation Algorithm
1. Specify input parameters: population size n, rate

of elitism r , rate of mutation µ, and
number of iterations ζ

2. Set initialize population: randomly generate n
solutions (i.e. decision variable (π1, . . . , πM ))

3. Calculate the fitness: calculate the fitness
(i.e. system profit SP) of each solution

4. For i = 1 to ζ

5. Select the best k = n ∗ r individuals in the
solution population for reproduction and save them
into the candidate population

6. //Improvement procedures with genetic operators
7. Forj = 1to(n− k)/2 //Crossover operator
8. Select two individuals S1 and S2 from the

solution population with the Roulette
Wheel method

9. Generate two new solutions S ′1 and S
′

2
with single point crossover method

10. Save S ′1 and S
′

2 to the candidate population
11. Endfor
12. For j = 1 to n //Mutation operator
13. Randomly select an individual solution S

from the candidate population
14. Mutate S with rate µ and generate a new

solution S ′

15. Update S with S ′ in the candidate population
16. Endfor
17. Replace the current population with the

candidate population and calculate the fitness
18. Set candidate population to empty
19. Endfor
20. Return the best solution in the current population

The expected BI (t) at each time t can be calculated as

BI (t) = cEδFsys. (17)

It is noted that in each time unit, the expected BI (k) remains
the same. With some math manipulation, the expected PBP
of replacing machine Mm, i.e. PBPm, can be estimated as

PBPm =


ln
[

(1+i)cE δFsys
(1+i)cE δFsys−iCORm

]
ln (1+ i)

 . (18)

Therefore, the investment option of replacing machine
Ml, 1 ≤l ≤ M , is the most cost-effective if:

PBPl < PBPk , ∀l 6= k. (19)

VI. COMPUTATIONAL EXPERIMENTS
The study considers a multistage manufacturing system with
10 machines and 9 buffers. The system is a line segment from
an automotive production line, which is shown in Figure 4.
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FIGURE 4. Production system consisting of 10 machines and 9 buffers.

TABLE 1. Parameters of the production system.

TABLE 2. Cost rate of upgrading each machine.

TABLE 3. OCR of each machine.

TABLE 4. Energy consumption rate of each machine after replacement.

The cycle time of each machine is 1 minute. Table 1 records
the production parameters. The table also shows the produc-
tion cost cf ,l of each machine Ml, 1 ≤ l ≤ 10, when it is a
POmachine. The production cost of eachmachine is assumed
to increase by 30% when it is upgraded to a PWQ machine.
The investment cost CI l for upgrading each machine from
PO machine to PWQ machine is shown in Table 2. The
OCR of each machine is presented in Table 3. The energy
consumption rates of each machine when it is replaced are
demonstrated in Table 4. The unit income cp is $50 per
product and the unit energy cost cE is $0.15/kWh. The unit
overage cost ch is $10 per product and the unit underage
cost cu is $15 per product. The average market requirement
rate is 442 parts per day. The computational experiments
are performed on a laptop with Intel(R) Core(TM) i5-8250U
CPU (1.60GHz 1.80GHz) and 8.0 GB memory.

A. VALIDATION OF OPTIMAL PWQ
MACHINE ALLOCATION METHOD
First of all, the optimal PWQ machine allocation algorithm
is run in the system for 50 times. The control parameters
of the optimal PWQ machine allocation method are demon-
strated as follows: number of iterations ζ is 90; rate of
mutation µ is 0.05; and size of population n is 40. The

FIGURE 5. Learning curve of optimal PWQ machine allocation method.

discount rate is assumed as i = 1%. Each run takes approx-
imately 28 seconds. All the 50 runs make the same decision,
that machines M3,M7,M9 and M10 are upgraded to PWQ
machines. One run is randomly selected to show the learn-
ing curve in Figure 5. The optimal algorithm finds the best
allocation policy in the 18th iteration.

The optimal PWQmachine allocation method is then com-
pared with other two quality inspection methods to demon-
strate its effectiveness. Method 1 is denoted as the least
inspection effort (LIE) method, where only the end-of-line
machine M10 is PWQ machine. Method 2 is denoted as the
most inspection effort (MIE) method, where all the machines
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TABLE 5. Four PWQ machine allocation methods.

FIGURE 6. Throughput, energy consumption and control benefit of each
quality inspection method.

are PWQ machines. Table 5 summarizes the three PWQ
machine allocation methods. The production line is simulated
for 16 hours every day for 1000 days with the three PWQ
machine allocation methods.

The comparison of the methods is demonstrated in
Figure 6. It can be observed that:

1) According to Figure 6(a), MIE method leads to the
greatest throughput and LIE method results in the
smallest throughput. It indicates that system throughput
slightly decreases as the number of PWQ machines
decreases. This is because more intensive inspection
efforts help machines to focus on good quality parts,
which naturally increases system throughput.

2) In Figure 6(b), MIE method consumes the least energy
while LIE method results in the greatest energy con-
sumption. It is because MIE can most timely identify
and remove defective parts. However, in LIE method,
all the defective parts are not identified until they reach
the last machineM10. A significant amount of energy is
wasted on the unidentified defective parts. In addition,
the optimal PWQ allocation method has a very close
energy consumption as MIE method. This indicates
that system should only maintain appropriate number
of PWQ machines since excessive PWQ machines do
not further reduce energy consumption. they merely

FIGURE 7. Estimation results of PBP.

cause unnecessary production cost (e.g., inventory cost,
inspection cost, etc.).

3) Figure 6(c) shows the average system profit obtained
using the three allocation methods. The optimal PWQ
machine allocation method outperforms the other
methods in the simulation case. The result presents a
good validation of the optimal PWQ machine alloca-
tion method.

B. VALIDATION OF PBP ESTIMATION METHOD
Then the PBP estimation method is validated in conjunc-
tion with the optimal PWQ machine allocation method as
demonstrated in the previous part. Equation 19 is utilized to
compute the expected PBP of eachmachine and then compare
it with the simulation PBP. The result is depicted in Figure 7.
The triangles represent the expected PBPs computed with
equation 19, which is denoted as theoretical PBPs. The error
bars show the PBPs computed from the simulation with 10%
errors. The circles are the average PBPs computed from the
simulation.

It can be observed that the theoretical PBPs are within the
10% errors for all the machines. The most efficient option is
to replace Machine M1, that has an expected PBP of 36 days
from theoretical computation and 39 days from simulation.

VII. CONCLUSION AND FUTURE WORK
This research studies the energy economics of multistage
production systems with quality control. A Markov process
method is established to study production dynamics. The
energy usage is analyzed and integrated into the economics
analysis. Based on the analysis, the optimal PWQ machine
allocation method and the cost-effectiveness analysis method
are established. The simulation results demonstrate that the
methods can effectively improve the energy performance.

The research depicts the complex interconnection among
production, quality flow and energy consumption in multi-
stage production systems. It presents the first step toward
the objective to improve energy efficiency with quality man-
agement. In the future, the energy economics analysis will
be extended to more complex production systems, such as
flexible production systems, production systems with qual-
ity rework, etc. In addition, the current energy economics
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analysis methods are developed based on steady state pro-
duction system assumptions. However, it is not uncommon
that modern production systems need to respond to frequent
changes resulted from technology insertions, engineering
modifications, etc. The systems usually stay in transient states
rather than steady states. The future work will be performed
to investigate the energy economics of transient production
systems, and explore the improvement opportunities. In par-
ticular, switched system theory can be very useful to model
and control the transient production systems. The production
and energy consumption can be modelled with nonlinear
approximation models, such as piecewise affine models and
polynomial models. State-feedback control algorithms, that
are investigated by Zhu and Zhang [46], can be applied
to improve productivity, reduce energy waste, and boost
production quality rate through controlling the operation of
machines.
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