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ABSTRACT This paper proposes a convolutional neural network (CNN) method to estimate subsurface
temperature (ST) in the Pacific Ocean from a suite of satellite remote sensing measurements. These include
sea surface temperature(SST), sea surface height (SSH), and sea surface salinity (SSS).We propose using the
multisource sea surface parameters to establish a monthly CNN model to reconstruct the ocean subsurface
temperature (ST) and use Argo data for accurate validation. The results show that the CNN can accurately
estimate the ST of the Pacific Ocean by using the model. We trained the model for 12 months. The most
prominent months are January, April, July, and October with average mean square error (MSE) values of
0.2659, 0.3129, 0.5318, and 0.5160, and the average coefficients of determination (R2) were 0.968, 0.971,
0.949, and 0.967, respectively. This study improves the accuracy of ST estimation and the good results based
on reanalysis indicate that the model is promising to be applied to satellite observations.

INDEX TERMS Convolutional neural network, ocean data, satellite measurements, subsurface temperature.

I. INTRODUCTION
The roles of oceans as huge reservoirs of heat and water
are important in the global climate system [1]. The accurate
detection and description of the subsurface thermal structure
of the global ocean is an important aspect of ocean dynamics.
Subsurface data are critical for understanding the mecha-
nisms and processes in the ocean as a whole, as well as for
the entire Earth climate system [2]. According to research
evidence, the thermocline in the equatorial Pacificwill remain
abnormally deep for a long time [3]. This not only causes
the warming of the eastern equatorial Pacific to be greater
than that outside of the equatorial region but also causes the
sea surface temperature gradient to weaken, which is one of
the main mechanisms that leads to the frequent occurrence
of extreme El Niño events [4]. The Intergovernmental Panel
on Climate Change (IPCC) reported that the global aver-
age SST will increase by about approximately 0.20◦C per
decade [5]. Therefore, the determination of SST and ST
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is one of the most important issues in climate science for
studying El Niño events and how they respond to greenhouse
warming [6].

Satellite remote sensing technologies have collected multi-
ple sea surface observations at various spatiotemporal scales,
but these technologies are confined to ocean surface lay-
ers. Because significant dynamic processes and features are
located at much greater depths below the surface, and exist-
ing data cannot describe the internal structure of the ocean
completely and accurately, it is very necessary to construct a
complete three-dimensional thermohaline structure [7]. With
the continuous development of satellite remote sensing tech-
nology, especially SST and SSS data from satellite remote
sensing, a large amount of real time information of the sea
surface is produced with wide coverage, high precision and
spatial resolution, and strong time continuity. Determining
how to use the data obtained by satellite remote sensing to
predict the surface information of the ocean, and establish
a complete set of three-dimensional analysis and prediction
systems for the surface is an urgent problem to be solved in
the field of international marine research.
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Ali used an artificial neural network (ANN) approach to
estimate temperature structures from SST, SSH, wind stress,
net radiation, and net heat flux, all available from an Arabian
Seamooring. On average, 50% of the estimations were within
±0.50◦C error and 90% were within ±1.00◦C error [8]. For
a temperature field at a depth of 200 m in the North Atlantic,
S.Guinehut estimated oceanic three-dimensional temperature
fields using multiple linear regression combined with Argo
and remote sensing data, and used objective analysis meth-
ods. The root mean square error (RMSE) of themapping error
of large-scale and low-frequency temperature fields at 200 m
depth was largely reduced by combining both data sets com-
pared to the results obtained using only in situ profiles [9].

Takano proposed a new empirical method to estimate
mesoscale three-dimensional oceanic thermal structures from
near-real-time satellite altimetry data. Themethod uses a two-
layer model with a novel set of empirical parameters for
stratification [10]. Wu used a self organizing map (SOM)
neural network to estimate subsurface temperature anomalies
in the North Atlantic using SST, SSH, and SSS data from
the Argo monthly anomaly grid dataset. This method shows
good performance at depths of 30 to 700 m with a correlation
coefficient greater than 0.80 [2].

Patil predicted ocean temperature using a combination of
numerical and artificial network techniques. The error statis-
tics for daily forecasts are r (coefficient of correlation) =
0.37, RMSE = 0.47◦C and MAE (mean absolute error) =
0.38◦C. The weekly forecasted error statistics are r = 0.27,
RMSE = 0.78◦C and MAE = 0.64◦C, and the monthly
forecast error statistics are r = 0.11, RMSE = 0.58◦C and
MAE = 0.46◦C [11].
Su proposed a support vector machine method that can

accurately estimate the subsurface temperature anomaly
(STA) in the upper 1000 m of the Indian Ocean from satellite
measurements of sea surface parameters. The results were
reliable with reasonable accuracy as validated using Argo
STA data. The estimation accuracy gradually decreased as
depth increased to deeper than 500m [12]. Su proposed a new
approach based on random forest (RF) machine learning to
retrieve the STA in the global ocean frommultisource satellite
observations including SSH, SST, SSS, and SSW via in situ
Argo data for RF training and testing. The RF optimized R2

was 0.630 at 125 m. The RF R2 was 0.045 greater than that
of the SVR model [7]. Su et al. (2018) developed a new
satellite-based geographically weighted regression (GWR)
model for inversion of the Indian Ocean subsurface temper-
ature structure. The final experimental result was that the
RMSE range was approximately 0.10 to 0.18, and the R2

range was approximately 0.50 to 0.80 [13].
Lu et al proposed a new method that combines a

pre-clustering process and a neural network (NN) approached
to determine the STA using ocean surface temperature, sur-
face height, and surface wind observation data at the global
scale. Results show that the best estimation resulted in an
overall root-mean-squared error of 0.41 ◦C and a determina-
tion coefficient (R2) of 0.91 at the 50 m level for all months.

The R2 decreased to 0.51 at 300 m but was still better than
the calculation without pre-clustering [14].

Su et al proposed a new ensemble learning algorithm,
extreme gradient boosting (XGBoost), for retrieving subsur-
face thermohaline anomalies, including the subsurface tem-
perature anomaly (STA) and the subsurface salinity anomaly
(SSA), in the upper 2000m of the global ocean. TheXGBoost
model had good performance with average R2 value of 0.69,
and average normalized root-mean-square error (NRMSE)
value of 0.035, for STA estimations, respectively [15].

The large SST annual cycle in the eastern equatorial Pacific
is, to a large extent, controlled by the annually varying mixed
layer depth which, in turn, is mainly determined by the com-
peting effects of solar radiation [16] and wind forcing [17].
There is spring instability of SST anomalies both in the
tropical and extratropical Pacific. This instability is crucial
for the existence of a predictability barrier for an El Niño
event [18].

Under the influence of global warming, the mean cli-
mate of the Pacific region will probably undergo significant
changes. In the past, researchers built data prediction models
in annual units, which were affected by climate and seasonal
variations. These data prediction models usually needed to
subtract the climatic average to eliminate the impact on the
training model, but the results showed that the ST predictive
ability was insufficient. This study proposes to establish a
monthly data model to eliminate the impact of climate on
model training. The results show that the accuracy of STA
prediction is significantly improved. Researchers have used
single-point features to establish STA prediction models,
which did not consider the influence of seawater flow or
ocean currents on seawater heat transfer. In this research,
the characteristics of 624 data points closest to the predicted
point are selected to train the model, which makes full use of
the multi-source parameter data of the ocean surface.

In summary, ocean surface remote sensing observation data
are being used to estimate dynamic environmental informa-
tion about the ocean more frequently. Existing approaches
for retrieving subsurface thermal structures from sea surface
parameters are generally based on either dynamic models or
statistical models. Existent dynamic approaches rarely focus
on global-scale application and advanced machine learning
models and employ only a few surface parameters to derive
subsurface dynamic fields. Thus, the estimation methods
themselves and their global-scale accuracy still show much
room for improvement. The shortcomings of current statis-
tical methods are the inadequate use of ocean surface data
features, single features, large annual models affected by
climate, and no deep learning models. These factors all lead
to poor predictions by this method.

A basic method for estimating the thermal structure infor-
mation of the ocean subsurface is usually combined with a
dynamic model that uses in-situ observations or a statisti-
cal relationship model that is based solely on sea surface
and subsurface parameters. However, past statistical methods
have relied more on regression analysis for spatial modeling
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and on the application of simple traditional machine learning
algorithms. This is not sufficient for the application of ocean
surface data parameters and lacks the application of deep
learning models. In addition, the input characteristics of the
models are relatively few in number, the feature quantity
is insufficient, and the learning ability is poor. The models
based on annual data are greatly affected by the climate, and
the monthly positive and negative temperature difference is
large. Researchers must subtract the climatic average of their
respective characteristics to eliminate the impact of climate
variability on model training, but this still cannot eliminate
the impact of error, making the previous estimation models
lacking and warranting a need for improved accuracy.

This study is based on the Pacific Ocean and uses a CNN
method. Based on multisource satellite observation data, this
method uses the surrounding, most correlated data points to
predict the center point ST. An experiment was constructed
for 12 different months using the CNN model to estimate
the ST in the Pacific. This model improves the prediction
accuracy of ST and provides data support for the construction
of deeper ocean data sets in the Pacific Ocean and Pacific
warming analysis.

II. STUDY AREA AND DATA
A. RESEARCH AREA OVERVIEW
The Pacific Ocean is the largest of the four oceans on the
planet. It extends from the Arctic Ocean to the Southern
Ocean. It faces Asia andOceania to thewest and theAmericas
to the east. The heat and dynamics of the ocean and atmo-
sphere are complex and variable. This ocean is the engine and
regulator of the global climate system. Frequent occurrences
of the El Niño and La Niña events in the eastern and eastern
equatorial Pacific have caused extremeweather events around
the world, which have a tremendous impact on ecosystems
and agriculture [19].

Reconstructing the ocean subsurface temperature profile
from the Pacific sea surface information obtained by satellite
remote sensing is of great significance to the study of global
warming, El Niño and La Niña events. The area of the Pacific
Ocean studied in this paper is located between 60.50◦ S and
50.50◦ N, 64.50 ◦ W and 100.50◦ E.

B. DATA (1) GLORYS2V4 REANALYSIS (2) BOA-Argo
The GLORYS2V4 REANALYSIS data and Argo measured
data used in this study are as follows:

(1) The satellite sea surface temperature (SST) is from
Advance Very High Resolution Radiometer (AVHRR)
dataset with spatial resolution of 0.25◦ × 0.25◦ and monthly
temporal resolution (https://www.ncdc.noaa.gov/oisst/data-
access) [20].

The multi-satellites merged Sea Surface Height (SSH) data
is obtained from Archiving, Validation and Interpretation
of Satellite Oceanographic data (AVISO), which has spatial
resolution of 0.25◦ × 0.25◦ and monthly temporal resolution

(https://www.aviso.altimetry.fr/en/data/products/sea-surface-
height-products.html) [21].

The above data is used by COPERNICUS MARINE
ENVIRONMENT MONITORING SERVICE (CMEMS)
for quality control reanalysis using The Mercator Ocean
(Toulouse, FR) GLORYS2V4 reanalysis (http://
marine.copernicus.eu/services-portfolio/access-to-products/?
option=com_csw&view=details&product_id=GLOBAL_
REANALYSIS_PHY_001_025).

(2) Field observations of Argo data for labels in model
training and validation. The Argo hierarchical observation
dataset product is used in this study. There are 57 standard
layers from 5 m to 1975 m depth. Each layer includes obser-
vations such as temperature, and salinity. The time span is
from 2004 to 2015 [22].

We reanalyzed the observations that absorbed these satel-
lites. Good results based on reanalysis indicate that the model
is expected to be used for satellite observations. we try to
make use of the characteristics of remote sensing data sets,
such as easy access, large amount of data and high accuracy,
and combined the data with Argo measured dataset to estab-
lish a large-scale ocean subsurface temperature prediction
model.

C. DATA PREPROCESSING
This study used data sets from 2004 to 2015 for model
training and evaluation, where the 2005 to 2014 data sets
were used for model building and the 2004 and 2015 data
sets were used for model evaluation. From 2005 to 2014,
the data set was divided into 12 different data sets by month,
and 12 sets of monthly CNN models were established. Each
group of model data has 140,000 samples, of which 78,400
(56%) were used to train the data model, 19,600 (14%) were
used to validate the model, and 42,000 (30%) were used to
test the model.

This study standardizes the ocean surface features, which
ensures that the dimensions and magnitudes of different fea-
tures have the same range of values. The features of a single
sample are subtracted from the average of all training sam-
ples (same features) and then divided by the variance of all
training samples. Thus, for each feature, all data are clustered
around 0 with a variance of 1. The specific calculations are
as follows:

X (normalization) =
x − µ
σ

(1)

where x is the training sample and the test set single sample
feature value, µ is the average of the training sample data, σ
is the standard deviation of the training sample data, and X is
the normalized feature value.

This study relates the temperature data of the center
point of Argo to the corresponding position of the GLO-
RYS2V4 REANALYSIS data according to the coordinates
of longitude and latitude, which eliminates the influence
of GLORYS2V4 REANALYSIS data and Argo resolution
mismatch (GLORYS2V4 REANALYSIS data resolution is
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FIGURE 1. The selected data characteristics of multisource sea surface
parameters obtained by satellite remote sensing observations. Point a is
at −60.50◦ S, 118.50◦ E; point b is at −28.50◦ S, 288.50◦ W; and the
spatial resolution is 0.25◦ × 0.25◦.

0.25◦ × 0.25◦, and Argo resolution is 1◦ × 1◦, unified to
0.25◦ × 0.25◦).
Figure 1 shows the range of data feature selections for

central point a (−60.50◦ S, 118.50◦ E) and coastal data
point b (−28.50◦ S, 288.50◦W). In this research, the selected
training feature was the center point and the 624 data points
closest to the center point. (625 data points, 1875 features).
The selected features that are far from the coastline can better
form a circular region, but near the coast, because of the
existence of land areas, a circular region cannot be formed.
Therefore, we used the distance formula (2) between two
points to calculate the 624 data points closest to the center
point as data features.

|di| =
√
(x0 − xi)2 − (y0 − yi)2 (1 < i ≤ 625) (2)

where i is the current data point (1 < i <= 625). x0 repre-
sents the longitude of the center point, and y0 represents the
dimension. di is the distance of the current i point from the
center point (x0, y0). Finally, we calculated and filtered out
the 624 data points closest to the center point (x0, y0).

III. METHODOLOGY
A. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) have more complex
network structures and more powerful feature learning and
feature representation capabilities than traditional machine
learning methods [25]. Each neuron is treated as a filter, its

FIGURE 2. A single training sample (57 × 33) performs a 2 × 3 partial
convolution operation. (SST1, SSH1, SSS1) – (SST625, SSH625, SSS625)
represent the characteristics of 1-625 grid points. 0 represents the value
0. x0-x5 represents the random number of the 2 × 3 convolution kernel.

receptive field is slid, and a filter is used to calculate local
data. A rectified linear unit (RELU) excitation layer performs
a nonlinear mapping operation on the result of the convolu-
tional layer output. The pooled layer is sandwiched between
successive convolutional layers and is used to compress the
amounts of data and parameters, reducing overfitting. Usually
the fully connected layer is at the end of the convolutional
neural network, which is the same as the connection for
traditional neural network neurons [23].

A disadvantage of CNN lies in the parameter update being
slow, which requires a great deal of time to adjust the param-
eters and network layer according to the experimental obser-
vations. To reduce the data dimension, the pooling layer is
often added, which leads to the loss of much very valuable
information. A CNN always activates a small range of data
for calculation, which ignores the relationship between the
whole and the part. The applicability of CNN lies in the ability
to share weights, so the network depth of a CNN is not limited
by the expansion of parameters.

An advantage of CNN lies in the shared convolution kernel,
which is efficient for processing high-dimensional data, and
can automatically extract some advanced features, reducing
the time of feature engineering [24], which can improve the
accuracy of predicting subsurface temperature. Therefore,
we propose to use a CNN to construct the model by using
the characteristics of 624 data points closest to the predicted
point, which significantly related to practical feasibility.

B. EXPERIMENTAL SETUP
The data point with the center point and the 624 data points
closest to the center point are treated as a two-dimensional
image, that performs a convolution operation for the local
field of view, and the three features (SST, SSH, and SSS)
of each data point are operated in one convolution unit. The
RELU activation and Adam optimization functions are used.

Figure 2 shows the set CNN network structure, which
consists of a 5 layer convolution operation, followed by a
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FIGURE 3. CNN structure, including 5 convolution operation layers and 4 fully connected layers.

FIGURE 4. Flow chart for determining the ST in the Pacific Ocean by the CNN model using the sea surface multisource
remote sensing observation data (100 m).

4 layer fully connected layer. The stride of the first layer of
the convolution layer is (3,1); that is, Figure 3 the horizontal
direction moves by 3 steps, the vertical direction moves by
1 step, and the size of the filter is 3 × 2. In other words,
the features (SST, SSH, and SSS) of the two data points are
multiplied by the corresponding elements of the filter, and
then a sum is obtained. After calculating one block area,
the specified stride (3, 1) is moved to other areas until a
two-dimensional matrix (57 × 33) is completely covered.
After the 5 layer convolution operation, the data dimension is
tiled into one-dimensional data, input to the fully connected
layer and then subjected to a 4 layer neural network operation.
Finally, 57 layers of predicted values are output.

Figure 4 shows the process of estimating the Pacific ST by
establishing a monthly CNN model from sea surface multi-
source remote sensing observation data (SST, SSH, and SSS)
(100 m).

First, a training dataset is built. The selected training
feature was the surrounding data points with the center
point and the 624 data points closest to the center point
(625 data points, 1875 features). Argo-measured ST are used
as training markers and test markers, and all datasets are
standardized.

Second, the CNN model is trained, and an optimal CNN
model is built. The model uses RELU as the activation func-
tion and Adam as the optimization function. We determined
the optimal combination of the convolutional layer, pooled
layer, and fully connected layer by analyzing each MSE, R2,
and convergence speed. We used the training data sets (SST,
SSH, and SSS) as input data for CNN training, and the Argo
ST was used as the training marker.

FIGURE 5. Comparison of temperatures at different depths (5 m-1975 m)
by the CNN single-point prediction and Argo measured at near-coast
point a (21.50◦ N, 122.50◦ E) and far-coast point b (14.50◦ N, 160.50◦ E).
CNN predicted value Argo measured value in October 2015.

Finally, we used the data sets (SST, SSH, SSS) as the input
parameters of the CNN model to predict the ST. We used the
ST measured by Argo to evaluate the prediction accuracy of
the CNN model at each level of the subsurface (57 layers).
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FIGURE 6. ST estimated by the CNN and the corresponding measured Argo ST in different depth horizons (100 m, 300 m, 600 m, and
1200 m) in different months (4(I)/10(II)) in 2015.
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FIGURE 6. (Continued.) ST estimated by the CNN and the corresponding measured Argo ST in different depth horizons (100 m, 300 m, 600 m,
and 1200 m) in different months (4(I)/10(II)) in 2015.
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FIGURE 7. Isotherm plots of the error values of the Argo measured values and the CNN predicted values in the Pacific region at different
depths(100 m(a, c),300 m(b, d)) in October 2015(a, b) and 2004(c, d).

IV. RESULTS AND DISCUSSION
A. OVERALL SPATIAL RESULT
Figure 5 shows a comparison of the true and predicted values
of the two different depth horizons of the near-coastal point
a (21.50◦ N, 122.50◦ E) and the far-shore point b (14.50◦ N,
160.50◦ E) in October 2015. The results show that the model
trained by the method of predicting the center point and the
624 data points closest to the center point not only has a good
prediction effect on the rule-associated data points at the far
coast but also has a good prediction effect for the data points
with irregular associations near the coast. The prediction
effect indicates that the model also has generalization ability
for irregular data points on the coast.

Figure 6 shows that the ST of the measured values from
Argo at different depths (100 m, 300 m, 600 m, and 1200 m)
in different months (4/10) show good agreement with the
ST estimated using the CNN, and the predicted anomalous
regions and the distribution patterns are more consistent.

Figure 7 shows that the measured values from Argo in the
El Niño area (5◦ S–5◦ N, 160◦ E-90◦W) at 100 m and 300 m
in October 2015 are much higher than the CNN predictions.
The contour plot error was higher than the values at 100m and
300m in October 2004. This was due to the extremely intense
El Niño phenomenon in 2015, which caused the sea tempera-
ture in the equatorial central and eastern Pacific Ocean to rise

substantially. This proves that the CNN model has a reduced
ability to predict abnormal years. Abnormal information can-
not be perceived due to the insufficient amount of data in
an abnormal year. We hope to further study abnormal year
information by collecting more data sets of abnormal years.

Low-temperature seawater in the tropical Pacific Ocean is
obviously at different depths, especially at depths of 100 m to
300m, which is related to La Niña events in the upper layer of
the tropical Pacific that occur in March and April. The ST at
different depths in the tropical Pacific Ocean are significantly
lower than in other oceans. As the depth increases, the seawa-
ter temperature tends to be stable overall, the magnitude of
ST change decreases, and the spatial heterogeneity gradually
declines, which is related to the difference between the ocean
interior and the surface dynamics.

B. OVERALL ERROR RESULT
Figure 8 shows at R2 and normalized root mean squared
error (NRMSE) comparison of the 12 different month
models from training at different depths in 2004. The
NRMSE evaluation indicator reflects that our predictions
have less residual variation. We select the months (1,4,7,10)
with significant changes in ocean climate as the analyti-
cal data. These are shown in Table 1 and 2 and Figure 9.
In January, April, July and October of 2004 and 2015,

VOLUME 7, 2019 172823



M. Han et al.: CNN Using Surface Data to Predict STs in the Pacific Ocean

FIGURE 8. An R2 and NRMSE comparison of the 12 different month
models from training at different depths in 2004.

FIGURE 9. Comparison of R2 values for different algorithm models.

the MSE is the highest when the depth horizon is 30 m
to 200 m (the highest MSE value is 0.8408/1.1034/1.8640/
2.8231/0.5961/0.6750/1.1856/0.4788), which may be related
to the complex dynamic process of the upper Pacific Ocean
and the disturbance of the mixed layer and thermocline [26].

Figure 9 shows a comparison of the R2 value of the CNN
method used in this experiment with that of other traditional
machine learning algorithms.

The proposed CNN method has higher prediction accu-
racy than other machine learning algorithms, such as support
vector regression (SVR), random forest (RF), geographically
weighted regression (GWR), ordinary least squares (OLS).

Figure 10 shows that the MSE slightly decreases below a
depth of 300 m, and the R2 values decreases steadily, which
reflects the model predictive power decline. This may be
because the stratification of the middle and deep seawater is
relatively stable, and a physical phenomenon inside the ocean
is harder to predict with surface features. From Table 1 and 2,
it can be concluded that the prediction accuracy of the model
is not similar in different years and months.

(1) In the same year, using the 100 m depth from
2015 as an example, the average MSE in January is 0.2821

TABLE 1. Comparison of MSE and R2 values corresponding to CNN
models at different depths (18 levels) in 2015.

TABLE 2. Comparison of MSE and R2 values corresponding to CNN
models at different depths (18 levels) in 2004.

TABLE 3. Comparison of RMSE values corresponding to CNN models at
different depths (18 levels) in 2004 and 2015.

(maximum/minimum is 0.8408/0.0062) and the average R2

value is 0.966 (maximum/minimum is 0.993/0.891). The
MSE (R2) in January is less (greater) than that in April,
July and October, indicating that the estimation accuracy
improved, which is related to seasonal influence. The tem-
perature of the seawater in the winter tends to be stable, and
the magnitude of ST changes is small. In July and Octo-
ber, due to the obvious change in seawater temperature in
summer and autumn, the Pacific Ocean is heavily affected
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FIGURE 10. Accuracy evaluation of 18 different depth horizon ST estimates in the Pacific Ocean in January, April, July and October of 2004 (a) and 2015
(b) based on the CNN model in 2004 and 2015 (evaluation indexes using MSE and R2).

FIGURE 11. Central and eastern equatorial Pacific (5◦ S–5◦ N, 160◦ E–90◦

W) CNN predictions at 70 m in October 2015 and Argo-measured ST area
distribution thermal map (a) (b). (Due to the sparse density between the
data points, we extend the thermal range of each data point by 4◦).

by ocean currents. The MSE increases and R2 decreases.
The average MSE in July is 0.6207 (maximum/minimum
is 1.8640/0.009 5 and the average R2 is 0.942(maxi-
mum/minimum is 0.993/0.84 2 The average MSE in Octo-
ber is 0.8027 (maximum/minimum is 2.8232/0.0034) and the
average R2 is 0.956 (maximum/minimum is 0.983/0.939).
This indicates that the forecasting ability of the CNN model
is reduced in July and October is. This is mainly because
the temperature of the Pacific Ocean in October fluctuates
abnormally and is difficult to predict.

(2) In different years, the MSE of different depths in dif-
ferent months in 2004 is lower (2004 MSE average is 0.2859,
2015 MSE average is 0.5117) and R2 is higher (2004 R2

average is 0.969, 2015 R2 average is 0.958) than those in
2015. The models in January, April, July and October are

FIGURE 12. Central and eastern equatorial Pacific (5◦ S–5◦ N, 160◦ E–90◦

W) CNN predictions at 70 m in October 2015 and related Argo-measured
ST area scatter plot.

more reliable for the 2004 forecast but declined than those
in 2015. This is mainly due to obvious climatic fluctuations
and the abnormal temperature of the Pacific Ocean in recent
years [27], resulting in a significant decline in the prediction
accuracy of the model.

C. PARTIAL RESULT
Figure 11 and Figure 12 show the 2015 middle-eastern
equatorial Pacific (5◦ S–5◦ N, 160◦ E–150◦ W, 5◦S-5◦ N,
150◦-90◦ W) in the area affected by El Niño events, where
spatial heterogeneity is not obvious. The coefficient of deter-
mination (R2) at 70 m is 0.588. The Argo-measured and CNN
predicted thermograms behave differently in the equatorial
central Pacific and eastern Pacific. The CNN model is sen-
sitive to the new anomalies in 2015, which leads to a low
prediction accuracy of the model. Table 1 and Table 2 show
that in October 2015, the prediction accuracy is abnormally
low, and the average mean square error (MSE) is too large.
This result occurred for the following two reasons:

First, this study uses themonthly CNNmodel, without sub-
tracting the climatic average of the corresponding features.
Therefore, the subsurface temperature (ST) value range is
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FIGURE 13. ST correlation between CNN model estimate and Argo
measured values at different depths (100 m, 300 m, 600 m, and 1200 m)
in different months (4(I)/10(II)).

FIGURE 13. (Continued.) ST correlation between CNN model estimate and
Argo measured values at different depths (100 m, 300 m, 600 m, and
1200 m) in different months (4(I)/10(II)).
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large, resulting in a large overall MSE. However, as shown
in Tables 1 and 2, the coefficient of determination (R2) is
highly accurate; that is, the model prediction accuracy is high.

Second, the strong El Niño events in 2015 caused the sea-
water temperature to expand westward, which led to warming
of the sea surface at the equator and in the eastern Pacific
Ocean. The ocean subsurface, especially the thermocline,
was greatly affected by sea surface temperature. Especially
for the October El Niño events, the accuracy of the CNN
predictions reached the lowest point (MSE maximum value
was 2.8232 at 70 m), which caused the surface temperature
of the local Pacific Ocean to be abnormal. The thermocline
remained abnormally deep for a long period of time [28],
and the MSE was greatly affected by the fluctuation of the
thermocline between 30 m and 300 m.

In general, the CNN prediction models of different months
constructed using the highest-correlated data points are rel-
atively stable (the average MSE for January, April, July,
and October of 2004 and 2015 are 0.2659, 0.3129,0.5318,
and 0.5160, respectively), and the estimated results for the
different years of 2004 and 2015 are more reliable (average
MSE is 0.4066 in 2004 and 2015, and the average R2 is
0.964). However, as the depth increases, the accuracy of the
prediction also decreases.

Figure 13 shows a correlation scatter plot between the ST
estimated by using the CNN model and the ST measured
by Argo in April and October 2015. If the data points in
the graph are more evenly and densely distributed on the
contours, then the correlation between the two is higher.
This again proves that as depth increases, the coefficient of
determination decreases. This also proves that the monthly
CNN model can better predict the Pacific Ocean ST, and the
estimation results are highly reliable (the average R2 values
for January, April, July and October of 2004 and 2015 are
0.968,0.971,0.0.949, and 0.967, respectively).

V. CONCLUSION
This paper focuses on the Pacific Ocean and makes full
use of surface multisource satellite observation data (SST,
SSH, and SSS). Using convolutional neural network (CNN)
method, the selected training feature was the surrounding
data points with the center point and the 624 data points
closest to the center point (625 data points, 1875 features) and
12 monthly sets of remote sensing observation models were
constructed to estimate Pacific Ocean parameters. Subsur-
face temperature (ST above 1975 m) is verified by the mea-
sured ST from Argo, and the accuracy is evaluated by mean
square error (MSE) and the coefficient of determination (R2).
The results show that the CNN-based ST estimation model
constructed in this paper is stable and reliable with high
precision.

This study proposes amethod for predicting the underwater
temperature of the central point by using data points with
the center point and the 624 data points closest to the center
point. The results show that the sea surface parameters SST,
SSH and SSS with the 624 data points closest to the center

point have a significant effect on the subsurface temperature
of the central point. This also helps to improve the estimation
accuracy of ST in the Pacific region.

This study builds CNN models for different months, and
uses test datasets that have no relationship with the train-
ing dataset (from 2004 and 2015). The results show that
the thermal anomaly fluctuation in the model is large at
0 m-300 m, which is mainly affected by ocean currents and
seasonal climate, and the internal thermal anomalies of the
ocean are significantly captured. By comparing the errors in
each layer (18 levels) in 2004 and 2015, it is obvious that
in the context of global warming and mitigation, the thermal
structure of the Pacific Ocean increases abnormally each
year. In addition, under the same yearly and monthly con-
ditions, the accuracy of ST estimation at different depths also
differs.

The model has a decreasing prediction accuracy from
below 500 m, which is mainly due to the global ocean ST
becoming increasingly small. As the seabed thermal state
tends to be stable, the spatial heterogeneity of ST is not
obvious.

In summary, this paper proposes a technical method based
on sea surface multisource remote sensing observation data to
predict the global ocean subsurface thermal anomaly, which
is conducive to the development of deep-sea remote sensing
technology based on deep learning. Ultimately, this method
can provide remote sensing technical support for the con-
struction ofmiddle and deep ocean observation datasets. Such
data can be used to comprehensively understand information
about the internal dynamic environment of the ocean and
optimize the analysis of middle-depth to deep-sea variation
during current global warming.

However, our CNN model did not reach an optimal state.
We speculate that by further increasing the depth of the
network, the CNN will be able to more deeply explore the
characteristics of ocean remote sensing surface features and
subsurface temperature. In the future, we hope to further
improve the prediction accuracy by continuously tuning the
parameters and network layer depth.

The convolutional neural network (CNN) is limited to local
field of view convolution operations, although we have added
a fully connected network to try to perceive the global view
but the effect is not obvious. Since the current subsurface
temperature is significantly affected by the historical temper-
ature, CNN cannot utilize the correlation before and after the
feature sequence time, so there is a deficiency in processing
the time series problem. In the future, we can model by
combining other time series sensitive models (such as Long-
short timememory), combinedwith local field of view, global
view, and time series.
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