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ABSTRACT This paper considers the problem of scheduling a set of jobs on unrelated parallel machines
subject to several constraints which are non-zero arbitrary release dates, limited additional resources, and
non-anticipatory sequence-dependent setup times. The objective function is to minimize the maximum com-
pletion time. In order to find an optimal solution for this problem, a new mixed-integer linear programming
model (MILP) is presented. Moreover, a two-stage hybrid metaheuristic based on variable neighborhood
search hybrid and simulated annealing (TVNS_SA) is proposed. In the first stage, a developed heuristic is
used to find an initial solution with good quality. At the second stage, the obtained initial solution is used as
the first neighborhood structures in the proposed metaheuristic, for further progress different neighborhood
structures and effective resolution schemes are also presented. The computational results indicate that
the proposed metaheuristic is capable of obtaining optimal solutions for most of the instances when
compared to the solution obtained by the developed mixed-integer linear programming model. In addition,
themetaheuristic dominated theMILPwith respect to computing time. The overall evaluation of the proposed
algorithm shows its efficiency and effectiveness when compared with other algorithms. Finally, in order to
obtain rigorous and fair conclusions, a paired t-test has been conducted to test the significant differences
between the five variants of the TVNS_SA.

INDEX TERMS Scheduling, parallel machines, renewable resources, variable neighborhood search.

NOMENCLATURE
MILP Mixed integer linear programming

model
TSVNS-SA Two stage hybrid Variable Neighbor-

hood Search with Simulated Annealing
VNS Variable Neighborhood Search
PMSP Parallel machine problems
SPT Short Process Time first
LPT longest Process Time first
ERD Earlier release date first
ARPD Average relative percentage deviation
Rmax Maximum number of rejection
Vmax Maximum number of neighborhood

structures
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I. INTRODUCTION
Production scheduling problems are the most probably
related problem to the industrial world since it is a question
of reconciling, optimally, limited resources with activities in
time. In addition to the industrial field, there are other areas
that benefited from scheduling such as education, agriculture,
transportation or health research. The addressed schedul-
ing problem in this study is often found in manufacturing
processes such as painting, metalworking [1], shipyard [2],
and semiconductor manufacturing [3]. This study considers
a scheduling problem of unrelated parallel machines under
several constraints with the objective of minimizing the max-
imum completion time. The constraints considered listed are
as follow:

• The release time for some jobs or all jobs is a non-zero
unit of time.
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FIGURE 1. Difference between anticipatory and non-anticipatory setups.

• The setup time for any job depends on the job itself and
its immediately preceding job, that is, the setup time for
a job i after job j it should not equal the setup time for the
same job i after any other job. Furthermore, setup times
are non-anticipatory, that is the setup procedures for a
corresponding job cannot be started until the allocated
resources are available as shown in Figure.1.

• The machines are not the only restricted resource; there
also are other resources with limited capacity at any unit
of time. Moreover, the resources are renewable which
means it returned after its usage such as industrial robots,
machine operators, equipment, tools, . . . etc.

In this context, this study develops an exact methodology
and metaheuristic to solve different size problems, which
made the contribution of this paper different from the existing
work as it will be shown in the literature reviewed and to
the best of our knowledge. This work led to the development
of solving methods for the scheduling problem in the type
of workshop that is described previously. Also, it is clear
from the literature reviewed that just a few papers have been
reported on the problem addressed in this paper. The only
paper in the literature that addressed a similar problem to the
one considered [4].

The main difference to the addressed problems is:
• The nature of the setups: while anticipatory setups are
considered in their study, non-anticipatory setups are
considered in this study.

• The mathematical programming: while a nonlinear pure
integer model is provided in their study, a mixed-integer
linear programming model is presented in this study.

The rest of the paper is organized as follows: Section 2,
presents the considered problem background and literature
review. Section 3, defines the problem and introduces the for-
mulation of the developed mixed-integer linear programming
model (MILP); Section 4, presents the developed metaheuris-
tics; Section 5, provides experimental results and computa-
tional analysis, and finally, Section 6 draws conclusions.

II. LITERATURE REVIEW
Parallel machine scheduling (PMSP) is an environment that
classified according to three categories of parallel machines
which are the identical parallel machines, the uniform paral-
lel machines, and the unrelated machines [5]. An unrelated
parallel machine problem is a generalization of the other par-
allel machine and it more general and complex to deal with.
The PMSP has been widely investigated in the past few

decades. Lenstra et al. [6] construct an approximationmethod
based on the rounding of a solution obtained by linear pro-
gramming. The authors show that when the unit of processing
times are in the set {1, 2}, the scheduling problems with
unrelated parallel machines to minimize the makespan is
polynomial. In any other case where the processing times
are in a set of {p, q} where p is an integer less than q and
2p 6= q the problem is NP-difficult. For general reviews
and applications of the unrelated parallel scheduling prob-
lems, the readers can refer to books such as Pinedo [7] and
Blazewicz et al. [8].

Generally, inmost of the existing parallel machine schedul-
ing studies considered the machines as the only restricted
resource. In practical manufacturing environments, some
resources are required with the assigned machine to per-
form a certain job. According to resources renewability,
the resources are classified into three major sections [9].
A renewable resource is limited and fixed at any unit
of time and could to be reused for another job such as
industrial robots, machine operators, equipment, or tools.
A non-renewable resource is consumed by jobs such as raw
material, energy, or money. A resource is both renewable and
non-renewable. A superior comprehensive survey present by
Edis et al. [9] to discuss scheduling problems. In which
an additional resource on five main categories which are
the machine environment, additional resource, objective
functions, complexity results, solution methods, and other
important issues. For the past few years, studying schedul-
ing problems with additional resources constraints have
received considerable attention. Studying the complexity of
the scheduling problem with non-renewable resources is
provided in [10]–[14]. Considering one common renewable
resource to minimize makespan in [5], and to minimize
makespan and total carbon emission (TCE) in [15]. A mod-
ified fruit fly optimization algorithm and a mixed-integer
linear programming model are presented in their works. The
MILP of the work [5] has some deficiencies which were dis-
cussed and corrected in [16]. Integer mathematical program-
ming model (ILP) and two genetic algorithms were proposed
in [17] to optimize makespan in unrelated parallel machine
scheduling problems with renewable resource-constrained
and machine eligibility restrictions. A uniform scheduling
problem is studied by Li et al. [18] with resource-dependent
release dates. A variable neighborhood search algorithm and
a simulated annealing algorithm Scheduling problems were
also proposed. Villa et al. [19] proposed several heuris-
tics based on resources and assignments to minimizing the
makespan on unrelated parallel machines with one renew-
able additional resource. Abdeljaoued et al. [20] provide
two new heuristics and a simulated annealing metaheuris-
tic for the parallel machine scheduling problem with a set
of renewable resources. A two mixed-integer programming
approach and tabu search algorithm were provided in [21] to
study the problem of scheduling the operations on parallel
machines with their required tools. For the same problem,
the study of Özpeynirci et al. [21] presented three constraint
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programming models. Multiprocessor scheduling with addi-
tional resources is studied by Furugyan [22] where the inter-
ruptions are allowed and the task execution may be switched
from one processor to another. Dosa et al. [23] studied the
parallel machine scheduling with job assignment restric-
tions and renewable constrained resource. Wang et al. [24]
presented A two-stage heuristic for the constrained parallel
machine scheduling. The authors addressed the problem of
selecting the proper cutting conditions for various jobs under
the condition that power consumption never exceeds the elec-
tricity load limit. Labbi et al. [25] provide some heuristic
algorithms to optimize two identical machines makspane
with preparation requires renewable resource constraints.
Li et al. [26] addressed the case steelmaking scheduling
problems with multiple constrained resources, a discrete arti-
ficial bee colony and several heuristics that developed for the
considered problem.

In addition, there are numerous works have been
carried out for scheduling problems with setup time.
Allahverdi et al. [27] present a comprehensive survey
on scheduling problems with setup. The authors clas-
sify scheduling problems into sequence-independent and
sequence-dependent setup. In addition, they categorize the
literature according to the workshop environments (single
machine, parallel machines, flow shops, and job shops). This
survey is updated in [28] and [29], the authors introduced the
distinction between anticipatory and non-anticipatory setups.
A setup is anticipatory when the setup procedures for a
corresponding job can be started regardless the machine is
available or not; otherwise, the setup is said to be non-
anticipatory. Koulamas and Kyparisis [30] treat the case of
sequence-dependent setups time for single machine using
several objective functions, which are makespan (Cmax),
the total completion time (TC), the total absolute differences
in completion times (TADC), and a bi-criteria combination
(BC). The authors show that the problem can be solved in O
(n log n) time by a sorting procedure. Vélez-Gallego et al. [1]
studied the case of a single machine by considering two
constraints non-zero release dates and sequence-dependent
setup. They proposed mixed-integer linear programming
and beam search heuristic time to minimize the total com-
pletion time. Concerning problems with parallel machines,
Gendreau et al. [31], and Mendes et al. [32] treat the
case of identical parallel machines, with setups depending
on the sequence in which the makespan was minimized.
Gendreau et al. propose lower bounds and a merge heuristic.
Mendes et al. implement two metaheuristics, tabu search,
and memetic algorithm. Lin and Ying [33] proposed a meta-
heuristic based on a hybrid artificial bee colony to minimize
the makespan on unrelated parallel machines scheduling with
sequence-dependent setup times. Ezugwu and Akutsah [34]
deal with the same problem described above, they propose
a metaheuristic based on a firefly algorithm to minimize
the makespan. A part of the work of Meng et al. [35]
deals with the hybrid flow shop scheduling problem with
unrelated parallel machines and sequence-dependent setup

times. In addition, the work of Naderi et al. [36] pro-
vides three mathematical modeling and hybrid particle
swarm optimization algorithm with local search algorithm
to solve the problem of hybrid flow shop scheduling.
Afzalirad and Rezaeian [2] proposed two metaheuristics for
minimizing the total mean flow time on an unrelated parallel
machine scheduling problem with sequence-dependent setup
times, release dates, machine eligibility, and precedence con-
straints. Weng et al. [37] study the impact of seven heuris-
tics to minimize the weighted mean completion time with
sequence-dependent setup. Lin and Hsieh [38] proposed a
mixed integer programming model, a heuristic, and iterated
hybrid metaheuristic to minimize the total weighted tardi-
ness for an unrelated parallel scheduling problem with ready
times and sequence- and machine-dependent setup times.
They show that the iterated hybrid metaheuristic outperforms
tabu search and ant colony optimization in terms of total
weighted tardiness. Emami et al. [39] considered the schedul-
ing problem to maximize the profits of order processing on
a non-identical parallel machines with sequence-dependent
setup. The profits computed based on the revenue, and unit
tardiness penalty cost for each order. In their study they
present a MILP and a Benders decomposition approach for
solving the studied problem. Obeid et al. [40] proposed
two Mixed Integer Linear Programming models to solve a
problem with different parallel machines with setup time
dependent on a family of the preceding task. In this case,
the setup times do not depend on the sequence. Zeidi and
Mohammad Hosseini [41] formulate a new mathematical
model to minimize the total cost of tardiness and earliness
on unrelated parallel machines with considering sequence-
dependent setup times constraints. They also propose an
integrated metaheuristic and evaluated it under the relevant
existing benchmark test data. Rabadi et al. [42] propose a
metaheuristic for unrelated PMSP with machine-dependent
and sequence-dependent setup times to minimize the
makespan. The results obtained show the effectiveness for
the metaheuristic when compared to Partitioning Heuristic
outcomes. Hamzadayi and Yildiz [43] proposed a genetic
algorithm and a simulated annealing for solving the schedul-
ing problem of m identical parallel machines with sequence
dependent setup times. They assume that the setup is carried
out by a common server which does not belong to the set
of parallel machines The proposed algorithms evaluated by
the results of mixed integer linear programing model for
small sized problem and the results of basic dispatching
rules for all sized problem. A MILP, tabu Search, and sim-
ulated annealing algorithms were presented in the study of
Bektur and Saraç [44] to minimize the total weighted tardi-
ness of a scheduling problem of unrelated parallel machine
with a common server and sequence dependent setup times.

III. PROBLEM FORMULATION
A. PROBLEM DEFINITIONS
In this study, the considered problem can be summarized
as follows: there are n jobs (J1, J2, . . . , Jn) which are
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TABLE 1. MILP notations.

processed on m unrelated parallel machines (M1,M2, . . . ,

Mm) which are always available over the planning horizon.
Each machine Mk can process only one job Ji at a time by
(pik ) units of processing time. Each Jobs Ji has a known
release date (r1, r2, . . . , rn). Every job Ji has a setup time
sij depends on the job itself and its immediately preced-
ing job Ji. There are v types of resources (R1,R2, . . . ,Rv),
each resource has a limited number of units at any point of
time (AvR1,AvR2, . . . ,AvRv). Each job Ji requires a specific
amount (Resiv) of resource Rv per unit of time. Each job Ji
cannot be processed until all allocated resource beside the
assigned machine is available. The objective is to minimize
the maximum completion time of all jobs (the makespan).

B. MIXED INTEGER LINEAR PROGRAMMING
MODEL (MILP) FORMULATION
In order to find the optimal solution for the problem con-
sidered in this paper, a Mixed Integer Linear Programming
(MILP) model is developed. Table 1 present the notations of
the developed MILP.

The MILP model can be formulated as follows:

Min Cmax (1)

Subject to

fi − Cmax ≤ 0, i = 1, 2, . . . , n (2)
m∑
k=1

xik = 1, i = 1, 2, . . . , n (3)

n∑
(q=1,i6=j)

yqjk = xjk , j=1, 2, . . . , n; k=1, 2, . . . ,m (4)

n∑
(j=1,i6=j)

yijk ≤ xik , i=1, 2, . . . , n; k=1, 2, . . . ,m (5)

n∑
(j=1)

y0jk = 1, k = 1, 2, . . . ,m (6)

fi = ti +
m∑
k=1

pik xik +
n∑

q=0

m∑
k=1

sqikyqik ,

i = 1, 2, . . . , n (7)

f0 = 0 (8)

fq − tj +M

(
m∑
k=1

yqjk − 1

)
≤ 0, j = 1, 2, . . . , n;

q = 0, 1, . . . , n (9)

ri − ti ≤ 0, i = 1, 2, . . . , n (10)
m∑
k=1

Tmax∑
T=0

zikT = fi − ti, i=1, 2, . . . , n (11)

Tmax∑
T=0

zikT ≤Mxik , i=1, 2, . . . , n; k=1, 2, . . . ,m (12)

fi≥T
m∑
k=1

zikT , i=1, 2, . . . , n; T =1, 2, . . . ,Tmax (13)

ti≤T
m∑
k=1

zikT +M

(
1−

m∑
k=1

zikT

)
, i=1, 2, . . . , n;

T = 1, 2, . . . ,Tmax (14)
n∑
i=0

m∑
k=1

Resiv zikT ≤ AvResv, v = 1, 2, . . . ,R;

T = 1, 2, . . . ,Tmax (15)

xik ∈ {0, 1} , i = 1, 2, . . . , n; k = 1, 2, . . . ,m (16)

yijk ∈ {0, 1} , i = 1, 2, . . . , n; j = 0, 1, . . . , n;

k = 1, 2, . . . ,m (17)

zikT ∈ {0, 1} , i = 1, 2, . . . , n; k = 1, 2, . . . ,m;

T = 1, 2, . . . ,Tmax (18)

ti, fi ≥ 0, i = 1, 2, . . . , n(20) (19)

The objective function (1) is to minimize the maximum
completion time of all the jobs. Constraint set (2) calculates
the maximum completion time. Constraint set (3) ensures
that each job is assigned exactly to one machine. Constraint
sets (4) until (6) are to choose one binary variable for the
setup time for each job on one machine with considering
the immediate predecessor job. Constraint set (7) calculates
the completion time of each job. Constraint set (8) fix the
dummy job as the first job in the schedule. Constraint set
(9) guarantee the job cannot start before its predecessor job.
Constraint set (10) guarantee the job cannot start before
their release time. Constraint set (11) ensures that the total
number of units of decision variable ‘zikT ’ for each job are
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FIGURE 2. Optimal schedule for the numerical example.

TABLE 2. Data for the parallel machine scheduling.

TABLE 3. Setup times matrix on machine 1.

exactly equals its running time. Constraint set (12) ensures
that all units of decision variable ‘zikT ’ for each job are
allocated to their accurate machine. Constraints set (13) and
(14) ensure that all units of decision variable ‘zikT ’ for each
job are allocated between its starting time and completion
time. Constraint set (15) imposes the condition that the total
amount of resource assigned to a job at any point in the time
horizon is less than or equal to the available amount of that
resource. Constraint sets (16) until (18) are to force integrality
for binary decision variables. Constraint (20) imposes non-
negativity for real decision variables.

To evaluate the effectiveness of the proposed optimization
model. An example instance consists of six jobs (n = 6),
two machines (m = 2) and two additional resources
(R = 2). The input parameters related to the example of
each job on each machine are listed in Table 2, Table 3,
and Table 4. The optimal solution obtained by using CPLEX
solver under GAMS software version 24.1.2. The Gantt chart
for the optimal schedule is given in Figure 2.

To achieve the best performance with respect to the CPU
computation time for the GAMS software, the default lower
bound was changed from zero to the obtained value of lower
bound that will be discussed in the following section.

C. LOWER BOUND
To assess the performance and robustness of the proposed
algorithms, three efficient lower bounds are developed and
presented in this study. First, the problem is simplified to be

TABLE 4. Setup times matrix on machine 2.

similar to a machine’s problem by selecting the minimum
processing time and setup time for each job such that

Pi = min
k∈m

(pik) , ∀i ∈ n

Si = min
k∈m

(
min
j∈{0,n}

sjik

)
, ∀i ∈ n

The considered lower bounds are presented as follows:

1) FIRST LOWER BOUND
This lower bound is presented in the work of Afzalirad and
Rezaeian [4]. The property depends on the capacity of each
resource and given as follows.

LB1 = L̀B1 +
⌊
min
i∈n

ri + Si/m
⌋

Where L̀B1 = max
v∈R

 ∑
Resiv>

ARv
2

Pi +
1
2

∑
Resiv=

ARv
2

Pi


The L̀B1 is obtained the maximum expected time for each

type of additional resources with considering only the jobs
that occupy half of the resource capacity or more.

2) SECOND LOWER BOUND
This lower bound is presented in the work of
Qamhan et al. [45]. The property depends on the latest release
date and given as follows

For any feasible schedule s, max
i
(ri + Pi + Si) ≤ Cmax

Note: The lower bound of the problem is estimated by the
maximum value between these three properties.

IV. METAHEURISTICS
Metaheuristics algorithms represent an alternative way of
dealing with large-sized problems or combinatorial optimiza-
tion problems. Despite the currently available technologies,
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FIGURE 3. First representation for the example.

FIGURE 4. Second representation for the example.

the computation time for the exact methods for most of
large-size problems in the literature is very long and it is
unrealizable. As a result, exact methods become ineffective
for large-size problems. Metaheuristics approaches can sig-
nificantly reduce the computation time without necessarily
leading to the optimal solution. In this study, our main interest
in the hybrid variable neighborhood search with simulated
annealing. In the following sections a detailed description of
developed metaheuristics is given.

A. SOLUTION REPRESENTATION
A good representation of the solution should be simple, easy
to understanding, and also make the algorithm work effec-
tively. To assign a certain sequence of jobs in their proper
machine by considering the limited resources at any point
in time, it needs a suitable representation with two schemes.
The first representation shows in Figure 3 an example of a
feasible solution to the problem in Tables 2 to 4. The second
representation is for the priority of doing a certain job in the
timeline schedule horizon and it showed in Figure 4.

Because of the limited resources, it cannot perform the
job 5 on machine1 and job 2 on machine 2 in Figure 3 at the
same point of time, so the job with the higher priority will be
processed first, and the final result shows in Figure 2.

B. A HEURISTIC FOR AN INITIAL SOLUTION (FIRST STAGE)
According to the solution representation (Figures 3&4),
it needs two approaches to order the heuristic clearly. Firstly,
the heuristic determines the loading of the machine by assign
jobs to the candidates’ machines as in the first representation
in Figure 3, and then it obtains the job priority sequence like
the second representation in Figure 4. For the machine load-
ing, we used a very well-known dispatching rule by assigning
each job to the fastest machine, and to the second part of the
heuristic that concern with the job priority sequence, three
basic dispatching rule has been tested: - Short Process Time
(SPT), longest Process Time (LPT), and Earlier release date
first(ERD).

To evaluate the performance of the initial heuristic based on
the three dispatching rules, a set of computational instances
was generated by the parameters in Table 5 where: number of
jobs n= {5, 6}, number ofmachinesm= {2, 3, 4} and number
of additional resources R= {1, 2, 3, 4}. The three algorithms
were tested on 96 problem instances (4 instances for each

TABLE 5. The generating conditions of test problems.

FIGURE 5. Box Plot ARPD values versus a number of jobs.

FIGURE 6. Box Plot ARPD values versus a number of machines.

combination n∗m∗R) and evaluated by using the Average
relative percentage deviation (ARPD) of each combination,
where the RPD is calculated as follows:

RPD =
|Method sol − Bestsol |

Bestsol
x100 (20)

where ‘Method sol’ is the maximum completion time obtained
from the different algorithms and Bestsol is the optimal com-
pletion time obtained by CPLEX solver.

The three algorithms are coded in C and run on a PC
including Intel(R) Core(TM) i3 CPU with 2.53 GHz speed
and 3GB of RAM.

Figures 5–7 show the Box Plot of the ARPD values versus
the number of jobs (n), number of machines(m) and the num-
ber of resources (R), respectively. It seems from Figures 5–7
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FIGURE 7. Box Plot ARPD values versus a number of resources.

that the initial heuristic based on the Earliest Release Date has
a better performance than the other candidates.

C. HYBRID VARIABLE NEIGHBORHOOD SEARCH WITH
SIMULATED ANNEALING (SECOND STAGE)
Our attention has focused more particularly on a very
well-known and used metaheuristic Variable neighborhood
search that firstly developed by [46] for solving hard com-
binatorial problems. This method has two main phases:
A local search phase in which the method consists of
exploring the current neighborhood to find a local optimum,
and a shaking phase put in place to refresh and reiterat-
ing to avoid being trapped in local optimum by consider-
ing more than one neighborhood starting from an initial
solution.

A variable neighborhood search has been used to solve
many optimization problems in various domains. For unre-
lated parallel machine scheduling problems, we can cite the
works of Charalambous et al. [47] which they proposed
a variable neighborhood descent hybrid with mathematical
programming for the unrelated parallel machines schedul-
ing with the objective of minimizing the complication time.
They extend their problem to consider setup times con-
straints in [48] and used the same algorithm as a solution
method. VNS approaches improve decomposition schemes
is presented in [49] and an investigation of the relationship
between the shaking step and the local search phase in a
basic VNS approach was provided. Cruz-Chávez et al. [50]
present a comparative review of different neighborhood struc-
tures that consider the variable neighborhood search to opti-
mize well-known benchmarks Unrelated Parallel Machines
Problems. Yazdani et al. [51] proposed a modified variable
neighborhood search for the problem of a single machine
scheduling problem with multiple unavailability constraints.
Sevkli and Sevilgen [52] proposed a hybrid method combin-
ing Reduced Variable Neighborhood Search (RVNS) edited
with a particle swarm algorithm. In the following subsections
is a brief description of the components of VNS in the pro-
posed algorithm.

FIGURE 8. Local search structure I.

FIGURE 9. Local search structure II.

FIGURE 10. Local search structure III.

1) NEIGHBORHOOD STRUCTURES
The main function of the neighborhood structure is to gener-
ate a new solution from the neighbors of the current solution.
We have used six neighborhood structures. LNI to LNV is
used for the local search and SNI is used for the shaking
procedure by considering a different swapping and insertion.

These structures will be defined in the following
a. Local search structure I

The procedure of this method consists in swap two jobs
selected randomly in the same machine for a possible
improvement of the objective function. The steps of this
method are as follows (see Figure 8):

b. Local search structure II
The procedure of this method consists of swap two jobs
selected randomly in the different machines for a possible
improvement of objective function The steps for this method
are as follows (see Figure 9):

c. Local search structure III
The steps of this method are as follows (see Figure 10):

Step 1: Select two machines at random.
Step 2: Swap the machines loading of jobs between the

selected machines.
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TABLE 6. Comparisons TVNS-SA with CPLEX and initial heuristic.

FIGURE 11. Local search structure IV.

Step 3: Test and update if there is any improvement in the
objective function.

Step 4: If the new adjustments reject ‘‘i+1’’.
Step 5: Go to step 1 until i > Rmax.

d. Local search structure IV

Thismethod consists in swap the priority for two jobs selected
randomly for a possible improvement of the objective func-
tion, and if the selected jobs load in the same machine the
swapping will be also in the job sequence on the machine
(see Figure 11).

e. Local search structure V

This method consists in to remove any job selected randomly
and then relocated to another randomly selected position.

f. Neighborhood shaking structure

This method consists of creating randomly a new neighbor-
hood structure for all machines with keeping the same job
priority sequence for the current best solution.

FIGURE 12. Local search structure V.

2) STOPPING CRITERIA
The stopping condition for the most algorithms depends on
the application like correspond to a maximum number of iter-
ations or an algorithmic time allocated . . . etc. For our study,
the proposed algorithm takes two parameters as stopping
condition: the maximum number of rejection (Rmax) for the
local search phase, and the maximum number of neighbor-
hood structures (Vmax) for the shaking phase. The algorithm
will explore each neighborhood closely, starting with the first
whenever a better solution can be found and is stopped for
exploring the neighborhood when the number of rejection
reaches the maximum number of non-improvement in local
search (Rmax), and the algorithm stopped after exploring all
the neighborhood structures (Vmax).
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FIGURE 13. Flowchart of the TVNS-SA.

D. REPRESENTATION AND DECODING SCHEME
The structure of the proposed algorithm ’Two-stage hybrid
Variable Neighborhood Search with Simulated Annealing
(TVNS-SA)’ is shown in Figure 13.

V. COMPUTATIONAL RESULTS AND PERFORMANCE
EVALUATION
The TVNS-SA algorithm is coded in C and run on a PC
including Intel(R) Core(TM) i3 CPU with 2.53 GHz speed
and 3GB of RAM.

A. DATA GENERATION
As a wide set of benchmark instances is not available for the
addressed problem, a set of test instances are produced ran-
domly. About 288 test instances are generated using integer
uniform distribution which had been used from the literature
and adopted from the study of Afzalirad and Rezaeian [4].
Table 5 demonstrates the minimum and maximum values
of the random integer uniform distribution generator for the
instance input parameter such as processing time, release
dates, . . . etc.

Four instances for each combination n∗m∗R was gener-
ated where: n number of jobs = {5, 6} for small size and

n= {40, 50, 60} for large size, m number of machines = {2,
3, 4} for small size and n= {2, 4, 6, 8} for large size, and
R number of additional resources = {2, 4, 6, 8}.

B. EXPERIMENTAL RESULTS
The computational results are closely explored in this section.
At first, the proposed MILP model is validated through
the small-scaled test instances. Then, the obtained results
from the MILP are compared with the obtained results
from the TVNS-SA algorithm. The computational results for
the small-scaled instances are summarized in Table 6 and
Table 7. Where: ‘Average RPD ‘is the average relative per-
centage deviation of the solution from the optimal solutions,
‘Min RPD’ is the minimum RPD, and ‘Max RPD’ is the
maximum RPD.

The RPD is calculated based on the formula (20).
As Table 7 indicates, the proposed TVNS-SA is able to
obtain exact solutions in reasonable CPU times for all
instances while CPLEX solver has solved the problems
in extremely longer CPU times. Therefore, it can be con-
cluded that TVNS-SA is effective and efficient for solving
most of the problem instances. To assess the algorithm’s
most important and significant neighborhoods under different
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FIGURE 14. Interaction between ARPD values versus number of Jobs.

TABLE 7. Comparisons CPU Time of TVNS-SA with CPLEX.

circumstances, Figure 14 to Figure 16 demonstrates the inter-
action between ARPD values for the large-scaled instances
versus the number of jobs (n), number of machines (m)
and number of resources (R). Where: ‘TVNS-SA (All),
TVNS-SA (I), TVNS-SA (II), TVNS-SA (III), TVNS-
SA (IV) and TVNS-SA (V)’ is the proposed algorithm
with using all, first, second, Third, Fourth and Fifth
neighborhoods structures for the local search, respectively.
The TVNS-SA(IV) has better performance than the other
Algorithms.

The RPD for the large-scaled instances is calculated as
follows:

RPD =
|Method sol − Lower bound |

Lower bound
x100

where ‘Method sol’ is the maximum completion time obtained
from the different algorithms and lower bound is the maxi-
mum value between the two priorities in section 4.3.

From, Figure 14 to Figure 16 the following conclusions can
be drawn:
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TABLE 8. Comparisons TVNS-SA (IV) with VNS (IV) for large-scaled instances.
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TABLE 9. Paired t tests with 95% confidence on the makespan for all problem instances.
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FIGURE 15. Interaction between ARPD values versus number of Resources.

FIGURE 16. Interaction between ARPD values versus number of Machines.

• TVNS-SA(IV) significantly outperforms the other
methods with respect to solution quality (ARPD).

• An increasing number of resources have a clearer impact
on the solution quality than other parameters which are
number of jobs and number of machines.

In addition, to demonstrate the effectiveness of using the
first stage, the obtained results from the most significant
neighborhood structure algorithm TVNS_SA(IV) were com-
pared with the obtained results from the same algorithm after
eliminate the first stage VNS_SA(IV). In Table 8 we report
the average, maximum, minimum, and stander deviation of
the RPD (avg, max, min, and std respectively) as well as
CPU times in seconds consumed by certain methods to solve
certain test instances. As Table 8 indicates, the TVNS-SA(IV)
outperforms the VNS(IV) regarding both solution quality
and average CPU time for almost all the instances that have
been tested. That is when starting the algorithm with a good
initial solution it helps to identify promising areas in the

large solution space. Thus, it can be concluded that the initial
heuristic improves the algorithm performance.

C. STATISTICAL ANALYSIS
Once the experimentation results have been presented, a sta-
tistical test has been made to test rigorously and fairness
of the performances of the five variants of the TVNS-SA.
The significant differences between the five variants of the
TVNS_SA can be detected using paired t-tests.

The results of the paired t-tests with the individual error
rate (0.05) were summarized in Table 9.

In summary, paired t-tests results reveal a significant differ-
ence with p < 0.00001 for all the comparisons made among
the performance of the fife variants of the TVNS-SA.

VI. CONCLUSION
This paper addressed the unrelated parallel machines
scheduling problem subject to multiple limited renewable
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resources, sequence-dependent setup times and release date
constraints. This study presents a new MILP to minimize the
maximum completion time (makespan). Despite the currently
available technologies, the computation time for the MILP
for most of the small-scaled instances is long and it is unac-
ceptable. As a result, MILP becomes ineffective for large-
size problems. Approximation approaches can significantly
reduce the computation time without necessarily leading to
the optimal solution. This paper introduced a different variant
of TVNS-SA metaheuristic approach to achieve that goal.
At the first stage, an initial solution was obtained based on
two basic dispatching rules start with assigning each job
to the fastest machine then arrange the sequence for each
machine according to the earliest release date. At the second
stage, hybrid variable neighborhood search with simulated
annealing are designed.

To generate diverse solutions in the quickest and easiest
way possible, five types of local search techniques were con-
structed and used in the TVNS-SA. Random instances were
generated to test the efficiency and effectiveness of TVNS-
SA. The performances of TVNS-SA algorithm compared
with CPLEX andVariable Neighborhood Search (VNS) algo-
rithms. The results revealed that the proposed algorithm
obtained the optimal solution for most of the small-scaled
instances and it’s outperformed CPLEX on all small-scaled
instances with regard to CPU time. Regarding the most effec-
tive local search technique for the addressed problem, it was
found that the developed TVNS-SA (IV) outperformed other
variants of TVNS-SA with respect to the conducted ARPD
and CPU time. Finally, paired t-tests with individual error rate
(0.05) were applied to test the rigorous and the fairness of the
five variants of the TVNS-SA performances.

Although the results presented in this work have demon-
strated the effectiveness of TVNS-SA. However, there remain
several research directions worth a thorough investigation.
Despite the good results achieved by the TVNS-SA, it is still
possible to improve results by using optimization methods
with adopting some useful knowledge in the algorithms.
It is interesting to study the addressed problem by taking
maintenance intervention dates or machine unavailability
constraints into consideration. Consider green manufacturing
constraints will be challenging.
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