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ABSTRACT The decision of stock selection relies on experts’ cognition and investors’ behavioral
characteristics. This requires the consideration of several conflicting, often fuzzy criteria with uncertainty
conditions, which can benefit from multiple attribute decision-making (MADM). Accordingly, an extended
regret theory (RT) decision-making method is developed in this study to identify and rank-order superior
stocks. First, by extracting the strengths of probabilistic linguistic term sets and cloud models, a novel
concept of probabilistic linguistic cloud sets (PLCSs) is proposed to effectively express and handle uncertain
preference information. Second, RT is extended to the PLCSs environment. Considering the behavior
characteristics of expectation dependence, dual (target and growth) expectations are shown. Third, a distance
measure algorithm of PLCSs is defined to calculate the distance between the attribute value and dual
expectations, which serves as the basis for the construction of a fuzzy pattern recognition model to determine
the optimal membership and attribute weights. Membership is used to modify the RT-based perceived utility,
the ranking of alternatives is determined by the modified comprehensive perceived utility. A case study is
conducted to demonstrate the proposed method, and its reliability and effectiveness are further verified by
comparing it with other methods.

INDEX TERMS Probabilistic linguistic cloud sets, regret theory, dual expectations, stock selection.

I. INTRODUCTION
Stock selection is a key problem in portfolio construction
and management [1], [2]. The financial market is a complex
and changeable system with many kinds of information. The
decision-making for stock selection is affected by various and
conflicting attributes and can be treated as a typical multiple
attribute decision-making (MADM) problem [3]. It requires a
wider perspective including the contribution of nonfinancial
parameters that account for behavioral issues such as experts’
cognition, investors’ behavioral characteristics, assessment
of alternatives, and expectations of future [4].

MADM techniques are common methods to construct
information and decision evaluation in problems with
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multiple conflicting goals [3]. These have been extensively
investigated in fields such as renewable power sources [5],
supply chain management [6], emergency response [7], and
electronic commerce [8]. MADM is also an effective tool
for financial decision-making. It has attracted increasingly
wide attention in the literature and has been applied in many
stock exchanges, such as the Taiwan Stock Exchange [9],
the Tehran Stock Exchange [10], the Kuala Lumpur Stock
Exchange [11], and the Athens Stock Exchange [12]. It is
noteworthy that crisp numerical values were often used in
early studies to express evaluation information. With the
uncertainty of the global investment climate and fierce com-
petition in financial markets, uncertainty has increased in the
development of listed companies, leading to greater vague-
ness and complexity in stock-selection decision-making [1].
Pang et al. [13] pointed out that in practical decision-making,
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decision-makers (DMs) may prefer to express their prefer-
ences with different degrees and/or distributions of impor-
tance, and this information is usually hard to obtain, so they
proposed the probabilistic linguistic term sets (PLTSs), which
exhibit great flexibility in capturing DMs’ hesitant qualitative
assessments [14]. Recently, researches have proposed the
probabilistic linguistic Choquet integral operator [15] and
probabilistic linguistic preference relations [16], these studies
have contributed significantly to the development of decision-
making with PLTSs.

Several computational methods have been extended to
deal with language information, and fuzzy sets theory is
frequently used. However, this inevitably leads to the loss
and distortion of original information during transformation
using a membership function [17]. This can be overcome by
the cloud model [18], which allows a stochastic disturbance
of the membership degree encircling a determined central
value rather than a fixed number [19]. The cloud model
utilizes three numerical characteristics to perfectly describe
the fuzziness and randomness of qualitative concepts. Based
on this, the objective and interchangeable transformation
between qualitative concepts and quantitative values become
available and clear [20]. Increasingly researchers are paying
attention to this model because it can handle uncertainty
and avoid information loss during the information gathering
process. Wang et al. [19] introduced a method to convert
linguistic sets of any odd labels to corresponding cloud
models. Wang et al. [20] converted interval linguistic values
to interval integrated clouds, for which they proposed a dis-
tance measure. Peng and Wang [21] presented a linguistic
intuitionistic cloud model. Li et al. [22] combined rough sets
and cloud models and applied a rough cloud theory-based
method to risk evaluation of failure modes.

To preserve the advantages of the cloud model and
distinguish the importance degrees of possible preference
information, this study develops an extended cloud model,
called probabilistic linguistic cloud set (PLCS). PLCS has
the following advantages: (1) It extends the cloud model by
adding probabilities without loss of original linguistic evalu-
ation information from DMs. By manifesting the probability
distributions of linguistic information, incomplete probability
information is acceptable; (2) It improves on probabilistic
linguistic term sets by utilizing cloud models instead of
linguistic labels or fuzzy numbers. It ideally discloses the
uncertain fuzziness of qualitative concepts and effectively
handles information distortion that occurs during information
fusion. Hence, PLCS is desirable for the expression of DMs’
preference information with respect to various attributes,
which enables linguistic information to be processed more
accurately. How to obtain comprehensive evaluation values
for all alternatives through PLCS is a key part of this paper,
which can be regarded as the application of decision-making
methods.

In addition, it is hard to fairly evaluate alternatives con-
sidering only the current realities. For example, focusing
only on a stock’s current performance and ignoring historical

information and future expectations will inevitably affect
investment efficiency. Therefore, one should consider the
expectations of each alternative under different attributes.
This has a moderating effect to ensure fair and accurate
solutions to complex problems [23]. This paper considers
dual expectations, including target and growth expectations.
In decision-making, DMs usually choose a suitable target by
combining their experience, the decision environment, and
alternative resources. This target expectation is conductive to
the rationalization of resource allocations. Growth expecta-
tion mainly refers to the future development trend based on
historical data, comprehensive development conditions, and
the current environment. How to use the moderating effect of
dual expectations and make more scientific and reasonable
decisions warrant attention, and they are another key part of
this paper.

Numerous decision-making methods are mainly based on
the assumptions of people being completely rational [24],
such as TOPSIS [25] and VIKOR [26]. However, due
to the uncertainty and complexity of the decision-making
environment, humans’ limited cognitive powers, and time
pressure, DMs do not completely understand and grasp
all relevant information, hence they behave with bounded
rationality [27]. The traditional MADM methods based on
the expected utility theory where investors are assumed to be
fully rational cannot explain the inherent phenomena in the
practical application of the stock market. It is necessary to
shift the focus of financial studies toward behavioral finance
theory. Effective and realistic decision-support models are
needed to help investors make good judgments.

Some behavioral decision-making theories such as
prospect theory (PT) [28], cumulative prospect theory
(CPT) [29], and regret theory (RT) [30], [31] are proposed
to explain the behavior and judgment of the individual with-
out the assumption of rationality. However, Nwogugu [32]
pointed out that the natural mental processes of human beings
can result in decision-making patterns that differ from those
predicted by and implicit to PT and CPT. RT is a bounded
rationality model that compares outcomes of a given alterna-
tive with that of an optional alternative to quantify rejoice
and regret, by contrast, it can depict intuitive judgments
more consistently and is simpler in parameter setting and
calculation [33]. Feelings like rejoice and regret, which are
the pillars of RT, are a fact of life. In financial markets,
regret is the main driver behind the disposal effect. Moreover,
investors will experience regret when their investment yields
a lower performance than an obvious alternative investment
they could have chosen, so they try to anticipate regret
and take it into account in their investment decisions in a
consistent manner. Therefore, with the consideration of the
influence of regret on decision-making under uncertainty
as well as the axiomatic and normative appeal of RT for
investment choices [34], it is irrational to ignore RT.

RT has been widely researched and applied in various
fields [35]–[38]. To deal with uncertainty and imprecision
inherent in the process of decision-making, researchers have
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introduced RT into uncertain environments. Peng et al. [27]
developed a Z-number-based RT method to determine
the utility, rejoice, and regret values of Z-information.
Zhang et al. [33] defined a fuzzy regret/rejoice function
based on triangular fuzzy numbers and RT to solve fuzzy
multi-attribute group decision-making problems with incom-
plete weight information. Chen et al. [39] proposed a
MADM model based on fuzzy axiomatic design and RT to
model the logistics provider selection problem with uncer-
tain and incomplete information. Nevertheless, there are four
shortcomings for RT-based MADM methods: (1) RT-based
decision-making research usually focuses on only one kind of
decision-making information, but multiple expectation infor-
mation in actual decisions can moderate perceived utility
and ensure fair and accurate decisions. Expectation infor-
mation from multiple dimensions is necessary but hardly
accounted for at present. (2) Attribute evaluation values are
usually crisp numbers, Z-numbers, or triangular fuzzy num-
bers, but relevant work on how to calculate the regret/rejoice
of DMs in cloudmodels environment has not been adequately
addressed. (3) RT is rarely applied in investment decisions
in stock markets. In fact, an investor who compares stocks
pairwise usually feels regret when giving up a better stock.
Regret aversion is a typical psychological behavior in invest-
ment decision-making that should not be neglected. (4) How
to aggregate evaluation information with unknown attribute
weights warrants consideration.

The inadequacies described above bring the motivation
of this study. The core focus of this paper is to propose
an extended RT decision-making method based on PLCSs
considering dual expectations to address stock selection prob-
lems. The main contributions are as follows. (1)We introduce
the concept of PLCS, which is an extension of traditional
cloud model to express DMs’ preferences by adding com-
plete or incomplete probabilistic distributions to linguistic
evaluation clouds.Wemeasure the target and growth expecta-
tions and establish corresponding dual expectation matrices.
(2) We develop an extended RT in the PLCS environment
and quantify the psychological behavior of DMs by the cloud
contribution value algorithm from the perspective of regret
aversion. (3) We calculate the distances between attribute
evaluation information and dual expectations using the pro-
posed distance measure algorithm. On this basis, a fuzzy pat-
tern recognition model is built based on weighted generalized
Euclidean distance between the alternative and fuzzy recogni-
tion center, and the optimal membership and attribute weights
are assigned by solving the model with the cross-iterative
algorithm. (4) To balance the perceived utility of each alterna-
tive based on the extended RT and the membership between
alternative solutions and dual expectations, membership is
utilized to modify the perceived utility, thereby obtaining the
comprehensive perceived utility of the alternative.

The rest of this paper is structured as follows.
Section 2 reviews the basic concepts of the cloud model,
proposes the concept of PLCSs, and introduces classical RT.
Section 3 presents the details of the proposed method and

its implementation. Section 4 demonstrates the applicability
and validity of the proposed method through a case study.
Section 5 concludes the paper.

II. PROBABILISTIC CLOUD SETS AND REGRET THEORY
A. CLOUD MODEL AND AGGREGATION METHOD
Definition 1 [18]: Let U be the universe of discourse and

T be a qualitative concept in U . If x ∈ U is a random instan-
tiation of T with x ∼ N (Ex,En′2) and En′ ∼ N (En,He2),
µ(x) ∈ [0, 1] is the certainty degree of x belonging to T ,
as follows,

µT (x) = exp
(
−
(x − Ex)2

2En′2

)
(1)

then the distribution of x in U is defined as a normal cloud
(abbreviated as cloud) C = (Ex,En,He). Each (x, u(x)) is
described as a cloud droplet.

The overall quantitative properties of a concept can be
described perfectly in a cloud using three numerical char-
acteristics, consisting of expectation Ex, entropy En, and
hyper entropyHe.Ex is themathematical expectation value of
cloud drops, which can best represent the qualitative concept.
En reflects the randomness and fuzziness of the qualitative
concept. He is the degree of uncertainty of En, i.e., the
second-order entropy of the entropy [19].

Given two normal cloud models C1 = (Ex1,En1,He1)
and C2 = (Ex2,En2,He2). The operation rules between two
clouds covered in this paper are listed as follows:

C1 + C2 = (Ex1 + Ex2,
√
En21 + En

2
2,

√
He21 + He

2
2) (2)

C1 − C2 = (Ex1 − Ex2,
√
En21 + En

2
2,

√
He21 + He

2
2) (3)

rC1 = (rEx1,
√
rEn1,

√
rHe1) (4)

Definition 2 [19]: Let Ci = (Exi,Eni,Hei), i ∈ n be n
clouds in the same universe U . Then the cloud arithmetic
average (CAA) operator is

CAA(C1,C2, . . . ,Cn) = (
1
n

n∑
i=1

Exi,

√√√√1
n

n∑
i=1

En2i ,√√√√1
n

n∑
i=1

He2i ) (5)

and the cloud is defined as the arithmetic average cloud.
Definition 3 [19]: Let Ci = (Exi,Eni,Hei), i ∈ n be

n clouds in the same universe U . Then the cloud weighted
arithmetic average (CWAA) operator is

CWAA(C1,C2, . . . ,Cn)

=

n∑
i=1

wiCi

= (
n∑
i=1

wiExi,

√√√√ n∑
i=1

wiEn2i ,

√√√√ n∑
i=1

wiHe2i ) (6)
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and the cloud is defined as the weighted arithmetic average
cloud. w = (w1,w2, . . . ,wn)T is the weight vector of Ci,

wi ≥ 0 and
n∑
i=1

wi = 1. Specifically, if wi = 1
n (i =

1, 2, . . . , n), then the CWAA operator reduces to the CAA
operator.

B. THE CONCEPT OF PROBABILISTIC
LINGUISTIC CLOUD SETS
Given the linguistic term set S = {Si|i = −τ, . . . , 0, . . . , τ ,
τ ∈ N ∗} [40] and the effective universe U = [Xmin,Xmax],
then the linguistic information of a (2τ + 1)-label lin-
guistic term set can be converted to adjacent clouds [19].
The collection of these transformed clouds is called a lin-
guistic cloud scale (LCS), denoted by S(U ) = {Ci|i =
−τ, . . . , 0, . . . , τ, τ ∈ N ∗}, where Ci is the cloud corre-
sponding to the linguistic variable Si. In addition, as analyzed
by Pang et al. [13], DMs may hesitate to express a preference
among several possible linguistic variables, moreover, the
complete probability distribution on these linguistic variables
is usually not so easily obtained. Given these realities, the
probabilistic linguistic cloud set (PLCS) is proposed.
Definition 4: Let U be a quantitative universe and S(U ) =
{Ci|i = −τ, . . . , 0, . . . , τ, τ ∈ N ∗} be a linguistic cloud
scale (LCS).Ci is a cloud representing the qualitative concept
in U ; C0(Ex0,En0,He0)is described as the center cloud;
(C−τ (Ex−τ ,En−τ ,He−τ ), . . . ,C−1(Ex−1,En−1,He−1)) on
the left are described as semi-fall clouds reflecting poor
qualitative concepts of the clouds; (C1(Ex1,En1,He1), . . .,
Cτ (Exτ ,Enτ ,Heτ )) on the right as semi-rise clouds reflecting
better qualitative concepts. Then a PLCS can be defined as

C̃(p) = {C (k)(p(k))|C (k)
∈ S(U ), p(k) ≥ 0,

k = 1, 2, . . . , #C(p),
#C(p)∑
k=1

p(k) ≤ 1} (7)

where C (k)(p(k)) is the cloud model C (k) associated with the
probability p(k), and #C(p) is the number of all different cloud
models in C̃(p).

Note that if
∑#C(p)

k=1 p(k) = 1, then the complete infor-
mation of probability distribution of all possible cloud mod-
els is obtained; if

∑#C(p)
k=1 p(k) < 1, then partial ignorance

exists because current knowledge cannot provide complete
evaluation information, which is not rare in actual MADM
problems, in such case, one must consider how to estimate
the ignorance of probabilistic information (1−

∑#C(p)
k=1 p(k)).

Following [13], the normalization of probabilistic informa-
tion in the PLCS is as follows.
Definition 5: Given a PLCS C̃(p) =

{
C (k)(p(k))| k =

1, 2, . . . , #C(p)} with
∑#C(p)

k=1 p(k) < 1, the normalization of
probabilistic information in C̃(p) is

p̂(k) = p(k)
/∑#C(p)

k=1
p(k), k ∈ #C(p) (8)

Then C̃(p) is transformed to Ĉ(p) =
{
C (k)(p̂(k)) | k =

1, 2, . . . , #C(p)}, which satisfies
∑#C(p)

k=1 p̂(k) = 1.

FIGURE 1. Flowchart of the cloud contribution value algorithm.

C. THE SCORE OF PROBABILISTIC LINGUISTIC
CLOUD SET
Measurement of the cloud contribution value [19] can
be regarded as a mathematical model that transform
qualitative concepts into quantitative values by filtering
the cloud droplets generated based on the forward cloud
generator and calculating the mean of their contribu-
tion values. The cloud contribution value algorithm is as
follows.
Definition 6: Let C̃(p) =

{
C (k)(p(k))|k=1, 2, . . . , #C(p)

}
be a PLCS. Then the score E(C̃(p)) of C̃(p) is

E(C̃(p)) = S̄(C̃syn), (9)

where C̃syn is the integrated cloud, and S̄(C̃syn) is the
contribution value of C̃syn. The three-numerical-tuple
characteristics of C̃syn are:

Exsyn
= p̂(1)Ex(1) + p̂(2)Ex(2) + · · · + p(#C(p))Ex(#C(p))

Ensyn
=
√
p̂(1)(En(1))2+p̂(2)(En(2))2+· · ·+p(#C(p))(En(#C(p)))2

Hesyn
=
√
p̂(1)(He(1))2+p̂(2)(He(2))2+· · ·+p(#C(p))(He(#C(p)))2

(10)

where p̂(k) = p(k)
/∑#C(p)

k=1 p(k), for all k = 1, 2, . . . , #C(p).

With regard to two PLCSs: C̃1(p) and C̃2(p), if E(C̃1(p)) ≥
E(C̃2(p)), then C̃1(p) ≥ C̃2(p).
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D. DISTANCE MEASURE ALGORITHM BETWEEN TWO
PROBABILISTIC LINGUISTIC CLOUD SETS
Let C̃1(p) =

{
C (k)
1 (p(k)1 )| k = 1, 2, . . . , #C1(p)

}
and

C̃2(p) =
{
C (k)
2 (p(k)2 )|k = 1, 2, . . . , #C2(p)} be any two

PLCSs. The distance measure algorithm is as follows.

Distance measure algorithm between two PLCSs

Input: two PLCSs C̃1(p) and C̃2(p)and the number of cloud
droplets n.
Output: distance d(C̃1(p), C̃2(p)).
Steps:
1. Calculate the clouds C̃1,syn and C̃2,syn of C̃1(p) and C̃2(p)
by Eq.(10);
2. Generate n cloud droplets by the forward cloud generator,
i.e., (x1ι, µ(x1ι)) and (x2ι, µ(x2ι)), ι = 1, 2, . . . , n;
3. Sort two groups of cloud droplets from left to right accord-
ing to abscissa values x1ι and x2ι;
4. Filter and retain cloud droplets satisfying x1i ∈

[max{Xmin,Ex1,syn − 3En1,syn}, min{Xmax,Ex1,syn +
3En1,syn}] and x2i ∈ [max{Xmin,Ex2,syn −

3En2,syn},min{Xmax,Ex2,syn + 3En2,syn}];
5. Let m1 and m2 be the numbers of cloud droplets retained
after filtering. if m1 ≥ m2, then randomly select m2 cloud
droplets from m1 cloud droplets for C̃1,syn, and vice versa;
6. Let ϑ = min{m1,m2}. Store respective cloud droplets
in sets Drop1 and Drop2, relabel the m2 cloud droplets as
(xj,C̃1

, µ(xj,C̃1
)) and (xj,C̃2

, µ(xj,C̃2
))(j = 1, 2, · · · , ϑ);

7. Calculate distance d(C̃1(p), C̃2(p)) between C̃1(p)
and C̃2(p): d(C̃1(p), C̃2(p)) = d(Drop1,Drop2) =

1
ϑ

ϑ∑
j=1

√
[xj,C̃1

− xj,C̃2
]2 + [u(xj,C̃1

)− u(xj,C̃2
)]2.

This distance measure algorithm not only makes full use
of the numerical characteristics and probability distribution
of normal clouds in each PLCS, but also considers the dis-
tribution of cloud droplets. Firstly, the integrated clouds are
generated by the information in PLCSs. Then, based on
the forward cloud generator, cloud droplets are generated,
which are further filtered according to the 3σ principle of the
normal distribution curve. Later, the retained cloud droplets
are arranged and matched in pairs from the perspective of
the cloud droplet distribution. Finally, the distance of each
pair of cloud droplets in the cloud image is calculated by
utilizing the distance formula between two points, so as to
measure the distance between two PLCSs. Comparedwith the
distance measure method using the numerical characteristics
alone, the way in this paper has higher reliability because it
integrates more comprehensive and fine-grained information.

E. REGRET THEORY
According to RT, the DM’s perceived utility function consists
of a utility function for the current result and a regret/rejoice
function. Let xA and xB be the consequences of alternatives A
and B, respectively. Then the perceived utility for alternative

A is defined as

U (xA, xB) = v(xA)+ R(v(xA)− v(xB)) (11)

where v(·) is a von Neumann-Morgenstern utility function
with v′(·) > 0 and v′′(·) < 0. The utility function v(x) =
xα(0 ≤ α ≤ 1) [29] is usually used to simulate the utility
of DMs, where α is the risk aversion coefficient of the DM.
A larger α corresponds to a smaller risk aversion value. R(·)
is a regret/rejoice function, where R′(·) > 0, R′′(·) < 0,
and R(0) = 0 [30]. R′(·) > 0 represents that R(·) is strictly
increasing. Regret aversion, which generates the distinctive
predictions of RT, implies that R is concave, as reflected by
R′′(·) < 0. The regret/rejoice function is usually expressed
as R(1v) = 1 − exp(−δ · 1v) [31], where δ denotes
the regret aversion coefficient and satisfies δ ≥ 0 [41],
1v indicates the difference (v(xA) − v(xB)) between two
utility values for the results (xA and xB) of two alternatives
(A and B). R(v(xA) − v(xB)) > 0 means that DM will feel
rejoice from choosing A and giving up B; instead, R(v(xA)−
v(xB)) < 0 means the DM will feel regret.

Quiggin [42] improved the applicability and generality of
RT by extending it to the selection of the optimal alternative
among several. Let {A1,A2, . . . ,Am} be a finite set of m
alternatives, the result of Ai is xi, and the DM’s perceived
utility for alternativeAi can be defined as

Ui = v(xi)+ R(v(xi)− v(x∗)) (12)

where x∗ = max{xi|i = 1, 2, · · · , n}, and R(v(xi) − v(x∗))
represents the regret value, which is always non-positive.

III. EXTENDED REGRET THEORY METHOD FOR
PLCSS CONSIDERING DUAL EXPECTATIONS
A. PROBLEM DESCRIPTION AND FRAMEWORK
Let A = {A1,A2, . . . ,Am} be a finite set ofm alternatives, and
B = {B1,B2, . . . ,Bn} a set of n attributes, whose weight vec-
tor isw = {w1,w2, . . . ,wn}T , wherewj ≥ 0 (j = 1, 2, . . . , n)
and

∑m
j=1 wj = 1. The notations Ai (i ∈ M ,M = {1, 2, . . . ,

m}) and Bj (j ∈ N ,N = {1, 2, . . . , n}), respectively, represent
the ith alternative and jth attribute.
DMs provide their evaluation information by using S(U ) =
{Ci|i = −τ, . . . , 0, . . . , τ }, which can be expressed by a
PLCS: C̃ij(p) =

{
C (k)
ij (p(k)ij )| C (k)

ij ∈ S(U ), k ∈ #Cij(p)
}
.

The PLCS denotes the attribute values over the alternative
Ai with respect to the attribute Bj, where C (k)

ij is the kth

cloud of C̃ij(p); p
(k)
ij is the probability of C (k)

ij , p(k)ij > 0,

k = 1, 2, . . . , #Cij(p),
∑#Cij(p)

k=1 p(k)ij ≤ 1, and #Cij(p) is the
number of cloud models in C̃ij(p). All the PLCSs constitute a
decision-making matrix X = [C̃ij(p)]m×n:

X = [C̃ij(p)]m×n

=

B1 B2 · · · Bn
A1
A2
...

Am


C̃11(p) C̃12(p) · · · C̃1n(p)
C̃21(p) C̃22(p) · · · C̃2n(p)
...

...
. . .

...

C̃m1(p) C̃m2(p) · · · C̃mn(p)

 (13)
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FIGURE 2. Research framework of the proposed method.

where C̃ij(p) =

{
C (k)
ij (p(k)ij )| k ∈ #Cij(p)

}
, i ∈ m;

j ∈ n.
DMs usually choose a suitable target by considering factors

such as their experience, alternative resources, and environ-
ment.We call this target expectation, and it can be understood
as internal references, which reflects the effort degree of the
alternative. Growth expectation mainly refers to the value of
the future development trend based on the historical data,
comprehensive development conditions, and the environment
of the alternative being evaluated. It can be regarded as a
time reference that can identify potential risks and predict
future development. Let T = [T̃ij]m×n and G = [G̃ij]m×n be
the target expectation matrix and growth expectation matrix,
where T̃ij and G̃ij are the target and growth expectations,
respectively, of alternative Ai with respect to attribute Bj.
T̃ij ∈ S(U ) is given directly, and G̃ij is obtained indirectly
through calculation. Unlike the decisionmatrixX, T andG are
composed of cloud models rather than PLCSs. The difficulty
of this kind of problem lies in how to judge the merits and
demerits of alternatives under various attributes according to
the decision-making matrix, target expectation matrix, and
growth expectation matrix, and how to achieve alternative
optimization.

The research framework contains two main phases: the
preparation phase and the decision making phase, as shown
in Fig.2.

B. GENERATION OF EVALUATING CLOUD AND
MEASUREMENT OF DUAL EXPECTATIONS
Without loss of generality, let τ = 3, the linguistic term
set can be taken as: S = {S−3, S2, S1, S0, S1, S2, S3}. Given
the effective universe U = [0, 1], these linguistic variables
can be converted to seven clouds according to the transfor-
mation method in [19]: C−3 = (0, 0.2958, 0.0125), C−2 =
(0.225, 0.2656, 0.0226), C−1 = (0.385, 0.2100, 0.0411),
C0 = (0.5, 0.1922, 0.0470), C+1 = (0.615, 0.2100, 0.0411),

C+2 = (0.775, 0.2656, 0.0226), C+3 = (1, 0.2958, 0.0125).
Then, the corresponding seven-label linguistic cloud scale is
S(U ) = {C−3 = very low, C−2 = low, C−1 = slightly low,
C0 = fair, C+1 = slightly high, C+2 =high, C+3 = very
high}, which is used for DMs to assess the performance of
each alternative associated to each attribute.

For the evaluation values C̃ij(p) =
{
C (k)
ij (p(k)ij )| k =

1, . . . , #Cij(p)
}
given by DMs, three steps are necessary

before decision-making: probability normalization, synthe-
sis, and attribute value normalization.
Step 1: Normalize C̃ij(p) to C̃ij(p̂):

C̃ij(p̂) =
{
C (k)
ij (p̂(k)ij )| k = 1, 2, . . . , #Cij(p)

}
(14)

where C (k)
ij = (Ex(k)ij ,En

(k)
ij ,He

(k)
ij ),M =

∑#C(p)
k=1 p(k)ij and

p̂(k)ij = p(k)ij
/
M for all k = 1, 2, . . . , #Cij(p).

Step 2: Synthesize C̃ij(p̂) into C̃ij,syn = (Exij,syn, Enij,syn,
Heij,syn).
Exij,syn= p̂

(1)
ij Ex

(1)
ij +p̂

(2)
ij Ex

(2)
ij +· · ·+p

(#C(p))
ij Ex(#C(p))ij

Enij,syn=
√
p̂(1)ij (En

(1)
ij )

2+· · ·+p(#C(p))ij (En(#C(p))ij )2

Heij,syn=
√
p̂(1)ij (He

(1)
ij )

2+· · ·+p(#C(p))ij (He(#C(p))ij )2

(15)

Step 3: Normalize C̃ij,syn to C̃ij,syn,nor = (Ẽxij,syn,nor ,
Ẽnij,syn,nor H̃eij,syn,nor ).

(Exij,syn,nor ,Enij,syn,nor ,Heij,syn,nor )

=



(
maxi Exij,syn − Exij,syn

maxi Exij,syn −mini Exij,syn
,

Enij,syn
Xmax − Xmin

,

Heij,syn
Xmax − Xmin

), for cost Bj

(
Exij,syn −mini Exij,syn

maxi Exij,syn −mini Exij,syn
,

Enij,syn
Xmax − Xmin

,

Heij,syn
Xmax − Xmin

), for benefit Bj

(16)
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It is clear that with the change of expectations, the cloud
moves around the horizontal axis, but its sharp does not
change. Particularly, for U = [0, 1], Enij,syn,nor = Enij,syn
and Heij,syn,nor = Heij,syn.
In this paper, the growth level is divided into seven trends

according to different development speed of attributes, which
are expressed as trendµ(µ = 1, 2, . . . , 7): extremely signif-
icant decline (↓↓↓, trend1), significant decline (↓↓, trend2),
slightly decline (↓, trend3), remain stable (�, trend4),
slightly growth (↑, trend5), significant growth (↑↑, trend6),
and extremely significant growth (↑↑↑, trend7). We can
quantify these trends by interval numbers: [πLµ , π

R
µ].

Let trendij be the growth trend for alternative Ai with
respect to attribute Bj, satisfying trendij ∈ {trendµ| µ =
1, 2, . . . , 7}, with corresponding growth interval [πLij , π

R
ij ]

satisfying [πLij , πRij ] ∈ {[π
L
µ , πRµ] | µ = 1, 2, . . . , 7}.

According to the Eqs. (2) and (4), the left and right clouds
of growth expectation (G̃Lij , G̃

R
ij) are calculated by

G̃Lij = (ExLij,G, En
L
ij,G, He

L
ij,G)

= ((1+ πLij ) · Exij,syn,
√
1+ πLij · Enij,syn,√

1+ πLij · Heij,syn) (17)

G̃Rij = (ExRij,G, En
R
ij,G, He

R
ij,G)

= ((1+ πRij ) · Exij,syn,
√
1+ πRij · Enij,syn,√

1+ πRij · Heij,syn) (18)

where Exij,syn, Enij,syn, and Heij,syn are obtained from
Eq. (15). πLij and πRij denote the upper and lower limits of
the growth trend for alternative Aiwith respect to attribute Bj.

Then the growth expectation G̃ij is

G̃ij = (Exij,G, Enij,G, Heij,G)

= (
ExLij,G + Ex

R
ij,G

2
,

√
(EnLij,G)

2 + (EnRij,G)
2

2
,√

(HeLij,G)
2 + (HeRij,G)

2

2
) (19)

C. CALCULATING THE RT-BASED PERCEIVED
UTILITY MATRIX
After converting C̃ij(p) to C̃ij,syn,nor by Eqs.(14)-(16),
the score of C̃ij(p) over Ai with respect to Bj can be obtained:

E(C̃ij(p)) = S̄(C̃ij,syn,nor ) (20)

where S̄(C̃ij,syn,nor ) is the contribution value of C̃ij,syn,nor
calculated according to Fig. 1.
Definition 7: Let E(C̃(p)) be the quantified score of prob-

abilistic linguistic cloud set C̃i(p). Suppose that v(x) is the
classical utility function, satisfying v′(x) > 0 and v′′(x) < 0.
Then the probabilistic linguistic cloud set utility function is
defined as v(E(·)):C̃(p)→ v

(
E(C̃(p))

)
.

Definition 7 implies that probabilistic linguistic cloud set
utility function v

(
E(C̃(p))

)
can degenerate to the classical

utility function v (x) if the probabilistic linguistic cloud set
C̃(p) is quantified as the crisp number x.
Definition 8: Let Ai be the ith alternative, C̃i(p) the eval-

uation of Ai, and v(E(·)) the probabilistic linguistic cloud
set utility function as defined in Definition 7. Then the
regret/rejoice function based on the probabilistic linguistic
cloud set is defined as

Ri = R
[
v
(
E(C̃i(p))

)
− v

(
E(C̃∗(p))

)]
, i ∈ M , (21)

where C̃∗(p) = max{C̃i(p)|i = 1, 2, . . . ,m} is the ideal
alternative or ideal point, R(·) is a regret/rejoice function as
described in Eq. (11).
Let C̃ij(p) be the evaluation information in the decision

matrixX = (C̃ij(p))m×n. According to Definition 8,

Rij=R
[
v
(
E(C̃ij(p))

)
−v

(
E(C̃∗j (p))

)]
, i∈M , j∈N ,

(22)

where C̃∗j (p) = max{C̃ij(p)|i = 1, 2, . . . ,m} is the ideal point
with respect to attribute Bj.
Eq. (22) indicates that the regret/rejoice function based on

the PLCS is Rij when choosing alternative Ai instead of the
ideal point with respect to attribute Bj.
The perceived utility value over alternative Ai with respect

to attribute Bj based on RT is

Uij = v
(
E(C̃ij(p))

)
+ Rij

[
v
(
E(C̃ij(p))

)
− v

(
E(C̃∗j (p))

)]
i ∈ M , j ∈ N . (23)

This paper uses v(x) = xα as the utility function and
R(x) = 1 − exp(−δ · (x)) as the regret/rejoice function.
Accordingly, Eq. (23) is transformed into

Uij = − exp
{
−δ ·

[(
E(C̃ij(p))

)α
−

(
E(C̃∗j (p))

)α]}
+

(
E(C̃ij(p))

)α
+ 1, i ∈ M , j ∈ N . (24)

D. DETERMINING MEMBERSHIP AND
ATTRIBUTE WEIGHTS
In this paper, a fuzzy pattern recognition model is used to
determine the membership degree between each alternative
and dual expectations, as well as the attribute weight vector.
Before giving this model, we first need to calculate the dis-
tance between the attribute evaluation value and dual expec-
tations. For dual expectations, they do not require probability
normalization and synthesis processing, only normalization
based on attribute types (Eq. (16)). Using distance measure
algorithm, the distances between attribute evaluation value
C̃ij(p) and target and growth expectations (G̃ij and T̃ij) can
be calculated, denoted as dij(C̃ij(p), T̃ij) and dij(C̃ij(p), G̃ij).
Then, the synthetic distance between attribute evaluation
value and dual expectations is

d synij = ϕ d(C̃ij(p), T̃ij)+ (1− ϕ) d(C̃ij(p), G̃ij) (25)

where ϕ is a parameter that reflects the degree to which the
DMs focus on the target expectation, and it can be adjusted
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according to the DM’s preference. A value of ϕ = 0.5 means
the target and growth expectations are equally important.

A smaller synthetic distance d synij indicates a smaller gap
between the evaluation value and dual expectations, and a
greater d synij indicates a larger gap. Therefore, a two-level
opposite fuzzy recognition center Q = [qθ j]2×n(θ = {1, 2})
is established. When θ = 1, then qθ j = 0, which represents
the optimal set of attributes; when θ = 2, then qθ j = 1,
which represents the worst set of attributes. Let Y = [yθ i]2×m
be the membership matrix, yθ i represents the membership
of Ai and the fuzzy recognition center, and y1i = 1 − y2i
because of the opposition of the recognition center. Then,
the weighted generalized Euclidean distance between Ai and
fuzzy recognition center can be written as

fi(y,w) =
2∑
θ=1

yθ i ·
√√√√ n∑

j=1

[wj · (d
syn
ij − qθ j)]

2


2

=

2∑
θ=1

y2θ i ·
n∑
j=1

[wj · (d
syn
ij − qθ j)]

2

, (26)

where w = (w1,w2, · · · ,wn)T is the attribute weight vector.
Obviously, a smaller fi(y,w) implies a smaller difference

between Ai and dual expectations, i.e., better overall recogni-
tion of target and growth expectations. Let the set F(y,w) =
[f1(y,w), f2(y,w), . . . , fm(y,w)] be the difference between
each alternative and the corresponding dual expectations.
Inspired by [43], we built the following model to determine
the optimal attribute weight vector w∗ = (w∗1,w

∗

2, · · · ,w
∗
n)
T

and membership matrix Y ∗ = [y∗θ i]2×m.

min Z = F(y,w) =
m∑
i=1

fi(y,w)

=

m∑
i=1

2∑
θ=1

y2θ i ·
n∑
j=1

[wj · (d
syn
ij − qθ j)]

2


s.t.

2∑
θ=1

yθ i = 1, 0 ≤ yθ i ≤ 1

n∑
j=1

wj = 1, 0 ≤ wj ≤ 1

(27)

The Lagrange relaxation function is utilized to handle this
objective optimization problem.

L(y,w, λy, λw) =
m∑
i=1

2∑
θ=1

y2θ i ·
n∑
j=1

[wj · (d
syn
ij − qθ j)]

2


− λy(

2∑
θ=1

yθ i − 1)− λw(
n∑
j=1

wj − 1) (28)

where λy and λw are the Lagrange parameters.

Then, let ∂L
/
∂y = ∂L

/
∂w = ∂L

/
∂λy = ∂L

/
∂λw = 0,

and we can obtain

yθ i =


2∑
κ=1


n∑
j=1

[wj(d
syn
ij − qjθ )]

2

n∑
j=1

[wj(d
syn
ij − qjκ )]

2



−1

(29)

wj =


n∑
κ=1


m∑
i=1

2∑
θ=1

[yθ i(d
syn
ij − qjθ )]

2

m∑
i=1

2∑
θ=1

[yθ i(d
syn
iκ − qκθ )]

2



−1

(30)

To find the optimal membership matrix Y ∗ = [y∗θ i]2×mand
weight vector w∗ = (w∗1,w

∗

2, · · · ,w
∗
n)
T , we use the cross-

iteration algorithm in the variable fuzzy pattern recognition
model to solve Eqs. (29) and (30), as shown below.

Cross-iteration algorithm

Steps:
1. Give the iteration accuracy ε of w, generally, let ε =
0.0001;
2. Arbitrarily set the initial weight vector w0

=

{w0
1,w

0
2, . . . ,w

0
n}, satisfying wj ≥ 0,

∑n
j=1 wj = 1;

3. Bring w0 into Eq. (29), and obtain the corresponding initial
matrix y0θ i;
4. Bring matrix y0θ i into Eq. (30), and obtain vector w1

=

{w1
1,w

1
2, . . . ,w

1
n};

5. Compare w1 with w0. If max |w1
j − w

0
j | < ε for all j ∈ N ,

the iteration is ended; otherwise, continue iterating with w1

as input weight vector;
6. Repeat steps 2-5 until max |wψj − wψ−1j | < ε is satisfied
after ψ iterations.

E. MODIFYING PERCEIVED UTILITY VALUE AND
SELECTING OPTIMUM ALTERNATIVE
After determining the optimal attribute weight vector w∗ =
(w∗1,w

∗

2, · · · ,w
∗
n)
T , we can obtain the perceived utility value

V (Ai) for the alternative Ai(i ∈ M ):

V (Ai) =
n∑
j=1

w∗j × Uij, i ∈ M , (31)

where Uij is calculated by Eq. (24). If we only consider the
perceived utility value of the alternative, then a larger V (Ai)
obviously indicates a better alternative, and all alternatives
can be ranked based on perceived utility values.

In the variable fuzzy pattern recognition model, when
θ = 1, the membership y∗1i calculated by cross-iteration
reflects the closeness of the alternative to dual expectations.
Let Y (Ai) = y∗1i, if we only consider the membership of the
alternative, then a larger Y (Ai) indicates a better alternative.
In this paper, the perceived utility and membership are con-
sidered simultaneously. If the perceived utility of Ai is greater
and the membership is lower, then the perceived utility of Ai
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is better. However, if the deviation between the alternative
and dual expectations is larger, then Ai is not optimal; and
if the perceived utility of alternative Ai is smaller and the
membership is higher, then although the alternative is closer
to dual expectations, it has poor utility, and Ai is still not
optimal. Most studies consider only the perceived utility of
the alternatives. In this paper, the perceived utility of the
alternative is modified using the membership between the
alternative and dual expectations. The modified comprehen-
sive perceived utility for Ai is

F(Ai) =
n∑
j=1

w∗j × Uij × Y (Ai), i ∈ M . (32)

According to Eq. (32), alternatives can be rank-ordered.
The optimal alternative is

A∗ = {Ai| max
1≤i≤m

F(Ai)}. (33)

IV. AN APPLICATION CASE STUDY
Investment decisions are becoming more complicated with
the rapid development of capital markets and the uncertainty
of the investment climate. Moreover, one cannot rely solely
on technical analysis of relevant parameters with histori-
cal data to establish effective models for stock selection.
Nonfinancial techniques that account for behavioral con-
cerns, such as investor’s expectations, psychological charac-
teristics, and evaluation of alternatives, should also be valued.
How to select a high-quality stock from multiple stocks is
crucial to investors. In this paper, we examine a real example,
using the proposed method to rank 12 listed stocks (Ai, i =
1, 2, . . . , 12) from the Chinese food and beverage industry.
A key step in choosing the best-performing investment object
is to select appropriate and effective assessment attributes.
Accordingly, we first consider the relevant references
[1], [11], [44], [45] to provide a list of frequently-used indica-
tors. We then appeal to financial analysts and active investors
to narrow the indicators to those that are genuinely effective,
as shown in Table 1.

A. IMPLEMENTATION AND COMPUTATION
The implementation process is as follows.
Step 1: Input and process evaluation information.
Four DMs with different levels of experience and knowl-

edge are involved in the decision-making group and provide
evaluation information with the seven-label S(U ), the numer-
ical characteristics of these cloud models are shown in
section 3.2. The evaluation matrices are shown in Table 2.
We can find that there are some blanks in the table, reflecting
that DMs cannot provide relevant information. The PLCSs
decision-making matrix X = [C̃ij(p)]12×6 can be obtained
by collecting all DMs’ evaluation information (see Table 3).
Note that B1, B2, and B3 are of benefit type, and the rest are
of cost type. According to Eqs. (14)-(16), the synthesized and
normalized decision-making matrix [C̃ij,syn,nor ]12×6 can be
calculated (see Table 4).

TABLE 1. Attributes for evaluating stocks.

Step 2: Input and process dual expectation information.
The target expectation of a stock with respect to each

attribute is characterized by using the seven-label S(U ). For
convenient comparison and calculation, the target expectation
should be normalized according to Eq. (16), the results are
shown in Table 5. Moreover, we set the quantification inter-
vals [πLµ , πRµ] (µ = 1, 2, . . . , 7) of growth trend levels
(↓↓↓,↓↓,↓,�,↑,↑↑,↑↑↑) as [−15%, −10%], [−10%,
−6%], [−6%,−2%], [−2%, 2%], [2%, 6%], [6%, 10%], and
[10%, 15%]. The growth trend of Ai with respect to Bj is iden-
tified based on the corresponding geometric average growth
rate over the past five years, as shown in Table 6. Then,
the growth expectation can be calculated using Eqs. (17)-(19).
It is normalized into a comparable one by Eq. (16), as shown
in Table 7.

Fig. 3 shows the corresponding normalized cloud figures of
attribute evaluation and dual expectations over alternative A1
with respect to attribute B1.
Step 3: Calculate the score of C̃ij(p).
Using the cloud contribution value algorithm and Eq. (20),

E(C̃ij(p)) can be calculated, as shown in Fig. 4.
Step 4: Calculate the perceived utility matrix based on RT.

The ideal sequence is:

C̃∗(p) = ({C+3(1.0)}, {C+3(1.0)}, {C+3(1.0)},

{C−3(0.75),C−2(0.25)}, {C−3(0.25),C−2(0.25),

C+1(0.25)}, {C−3(0.75),C−2(0.25)}).

We set α = 0.88 and δ = 0.3 as in [29] and [33].
Then, the perceived utility matrix U = (Uij)12×6 is obtained
according to Eq. (24), as shown in Fig. 5.
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TABLE 2. Cloud evaluation matrices provided by four DMs.

TABLE 3. Probabilistic linguistic cloud decision-making matrix of the group.

TABLE 4. Synthesized and normalized cloud decision-making matrix.

Step 5: Calculate the membership and weight vector of
attributes.

Using the distance measure algorithm, the distances
between attribute evaluation values and the target and growth
expectations are calculated, respectively. Taking ϕ = 0.5, the

synthetic distance d synij is calculated (see Table 8) according to
Eq. (25) and is used in the variable fuzzy pattern recognition
model.

The optimal membership matrix Y ∗ = [y∗θ i]2×12 and
attribute weight vector w∗ = (w∗1,w

∗

2, · · · ,w
∗

6)
T are
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TABLE 5. Normalized target expectation matrix.

TABLE 6. Growth trend of each attribute for each alternative.

TABLE 7. Normalized growth expectation matrix.

computed by Eqs. (29) - (30). Y ∗ = [y∗θ i]2×12 is shown
in Table 9, and w∗ = (0.1628, 0.1879, 0.1601, 0.1767,
0.1287, 0.1838).
Step 6: Derive the perceived utility value of each alterna-

tive.
After obtaining w∗, the perceived utility value V (Ai) for

each alternative is derived according to Eq. (31). The results
are listed in the second row of Table 10.
Step 7:Modify the perceived utility value of each alterna-

tive based on membership.
The values in the optimal membership matrix Y ∗ cor-

responding to θ = 1 clearly represent the membership

Y (Ai) (third row, Table 10) between each alternative and
dual expectations. The modified comprehensive perceived
utility value F(Ai) for each alternative is calculated by
Eq. (32), as shown in the last row of Table 10.

Therefore, the ranking of the alternatives is identified as
A3 � A12 � A8 � A6 � A4 � A10 � A11 � A1 � A9 �
A7 � A5 � A2.

B. COMPARISONS AND DISCUSSIONS
In this section, some comparisons are conducted to demon-
strate the characteristics and effectiveness of the proposed
method (scenario1).
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TABLE 8. Synthetic distance between attribute evaluation value and dual expectations.

TABLE 9. Optimal membership matrix.

FIGURE 3. Normalized clouds of attribute evaluation and dual
expectations over A1 with respect to B1.

FIGURE 4. Scores of PLCSs over different alternatives with respect to
different attributes.

First, for convenient comparison, we calculate the results
of the other three scenarios: only consider target expecta-
tion (scenario2, ϕ = 1), only consider growth expectation
(scenario3, ϕ = 0), and ignore dual expectations (scenario4).
The ranking results for all alternatives under these four sce-
narios are summarized in Fig. 6.

It can be seen from Fig. 6 that except for the worst-
performing alternative (A2), the alternatives have different

FIGURE 5. Perceived utility values of the alternatives with respect to
different attributes.

ranks under these four scenarios. For example, the best alter-
native obtained by considering dual expectations (scenario1)
isA3, which agrees with the results obtained from scenario2,
but it is in the fourth position under scenario3. This difference
is due to the memberships obtained under scenario1 and
scenario2 that are relatively high (0.8643 and 0.9747, respec-
tively), but the membership is relatively small (0.6754) under
scenario3, which results in A3 losing its first position after
modifying perceived utility with membership. In addition,
scenario4 represents that there is no membership amendment,
and A8 ranks first and A3 second, which is different from the
result under scenario1 thatA3 is in the first position and A8the
third. This difference is mainly due to perceived utility values
and memberships, as shown in Table 10. The perceived utility
values of A3 and A8 obtained by RT are 0.4755 and 0.5221,
respectively, which leads to the performance of A8 is better
than that of A3 under the scenario4. However, the member-
ships of A3 and A8 obtained by Eqs. (29)-(30) are 0.8643 and
0.6646, respectively, which means A3 is closer to dual expec-
tations, so when considering two aspects comprehensively,
the modified comprehensive perceived utility of A3 is greater
than that ofA8, and A3 is superior to A8.
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FIGURE 6. Histogram of alternative ranking under different scenarios.

TABLE 10. Perceived utility value, membership, and modified comprehensive perceived utility value.

We also compare the proposed RT-based method to the
TOPSIS-based and VIKOR-based methods used in MADM
problems with PLCSs evaluation. To control the influence of
dual expectations on ranking results, the membership Y (Ai)
is used to modify the results of the comparison methods; the
modified closeness coefficient in the TOPSIS-based method
is CImod (Ai) = CI (Ai) · Y (Ai). The distances d(Ai,L+) and
d(Ai,L−) are calculated by the distance measure algorithm
as in this paper. In the VIKOR-based method, a smaller
Q(Ai) indicates a better alternative, which is contrary to
decision-making withY (Ai). So, the modified value of Q(Ai)
is Qmod (Ai) = Q(Ai) · (1 − Y (Ai)), a smaller value indicates
a better alternative.

According to Peng et al. [17], a new distance can be
adjusted in the cloud model. Let C1 = (Ex1,En1,He1) and
C2 = (Ex2,En2,He2) be any two cloud models. The new
distance based on Peng et al. [17] can be set by:

d(C1,C2)=

∣∣∣∣(1− (En1)2+(He1)2

(En1)2+(He1)2+(En2)2+(He2)2
)Ex1

− (1−
(En2)2+(He2)2

(En1)2+(He1)2+(En2)2+(He2)2
)Ex2

∣∣∣∣
For convenient comparison with the distance measured

in [17], other computations are consistent with the method
in this paper. The calculations and ranking results are
summarized in Table 11.

From Table 11, it can be seen that the optimal alternative
determined by the proposed method is consistent with that
from the VIKOR-based method, which illustrates the effec-
tiveness of the proposed method for selecting the optimal
alternative. However, there are some differences in rank-
ing among these three methods. We can explain the results

as follows. The RT-based method has a prominent feature in
considering the regret aversion of DMs. For example, the
perceived utility values shown in Fig. 5 indicate that investors
will feel more regretful if they select A2 instead of A5, result-
ing in A5 � A2, and the TOPSIS-based method produces the
same result, while the VIKOR-based method ranks A2 � A5.
In addition, it is necessary to identify the positive and negative
ideal points in the TOPSIS-based method without calculating
the score of each PLCS. However, only the positive ideal
point is necessary for the RT-based method, and the calcu-
lation of PLCSs scores is indispensable, which is also a key
step in the VIKOR-based method. Therefore, the setting of
the ideal reference points is different among these methods,
with a non-negligible effect of the results. Our method takes
full advantage of the information in PLCSs and reflects the
DM’s psychological behavior, which is more reasonable in
real decision-making.

The best/worst alternative by the method in [17] is consis-
tent with the proposed method, this means that the proposed
distance measure algorithm and the distance in [17] can
both select the best/worst alternative, largely because the two
methods fully utilize the three digital characteristics of cloud
models.

The above analysis illustrates that our method can reflect
the influence of dual expectations on decision-making results
and ignore errors caused by single or no reference expecta-
tions. Our method also accounts for the distribution charac-
teristics of cloud droplets and fully uses the information in
PLCSs. Another prominent feature of the developed method
is that it considers DM’s psychological behavior. Thus rank-
ing results obtained by our method is more accurate and
convincing.
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TABLE 11. Calculation results obtained by different methods.

V. CONCLUSION
MADM methods are crucial in effective investment deci-
sions, but the existing research has paid little attention to
nonfinancial parameters such as DMs’ psychological behav-
ior and expectations for the future. From the perspective of
regret aversion/rejoice preference, we propose an extended
RT decision-making method considering dual expectations
to identify and rank-order superior stocks in a complex and
uncertain investment environment. The contributions of this
study are highlighted in the following four aspects:
(1) Considering the uncertainty and vagueness of the

decision-making environment and humans’ limited
cognition, we define PLCSs as an extension of cloud
models, which can ideally disclose the fuzziness of
qualitative concepts and effectively handle information
loss and distortion that occurs in the information fusion
process.

(2) RT is extended to the PLCSs environment to enable
calculation of DMs’ fuzzy perceived utility value with
respect to each alternative. This means that RT is
extended to a generalized level, and the effect of some
psychological behavior such as regret aversion can be
quantified when selecting from multiple alternatives in
an uncertain decision environment.

(3) Target and growth expectations are noted to ensure
fair, accurate, and suitable results. A proposed dis-
tance measure algorithm considers the characteristics
of cloud droplet distribution to calculate the distance
between attribute evaluation values and target and
growth expectations.

(4) A fuzzy pattern recognition model is built for obtain-
ing the optimal membership and optimal attribute
weights. A Lagrange relaxation function is constructed
to solve the model. RT-based perceived utility is mod-
ified based on the optimal membership to obtain the

comprehensive perceived utility, which is used for
determining the ranking of alternatives.

A case analysis shows that our method provides more
feasible and effective outcomes that are consistent with the
psychological behavior of human beings. In further research,
it would be interesting to consider other behavioral charac-
teristics of DMs, along with nonfinancial parameters, so as to
extend the proposedmethod to a multi-stage decision-making
process. We also would like to apply multiple attribute
decision-making models to efficient portfolio construction.
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