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ABSTRACT Formany data mining applications under the Internet of Things (IoT) environments, the attitude
and the position of a rigid target are indispensable and hidden information to be dug. The term Rigid Body
Localization (RBL) refers to simultaneously estimation of the position and the attitude of a rigid target.
The RBL framework which adopts only one single base station (BS) is considered in this paper for IoT
applications. Several wireless sensor nodes with known topology information are fixed on the surface of the
rigid target. The single BS fuses the angle of arrival (AoA) measurements from the nodes with the topology
information for the RBL purpose. In this paper, we propose a two-stage RBL method to efficiently fusing
the aforementioned two pieces of information. Firstly, we built the maximum likelihood estimator (MLE)
of the information fusion and adopted the modified Newton’s iteration algorithm (mNIA) to determine the
wireless node position; then we used the unit quaternion (UQ) algorithm for estimating the relative position
and attitude with respect to the predetermined reference state, which completed the RBL task. Finally,
we evaluated the proposed RBL performance in terms of the root mean squared error (RMSE), convergence
success rate, as well as the computation costs. Simulation results showe that the proposed mNIA-based
RBL algorithm can achieve a finer RBL performance with obviously higher speed and 100 percent success
convergence rate, comparing with existing heuristic methods.

INDEX TERMS Internet of Things, heuristic algorithms, computational cost, rigid body localization, angle
of arrival.

I. INTRODUCTION
The location information and the attitude information of the
objects are of severe importance for many Internet of Things
(IoT) applications [1], in cases where objects of interest are in
rigid structure, i.e. rigid targets. The rigid object is the entity
whose deformation can be neglected. The distance between
any two points on the rigid body remains unchanged regard-
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less of the external force applied to it [2], [3]. In contrast
with the conventional positioning schemes which only aim
to find out the coordinates of the point source, the rigid
body localization (RBL) can simultaneously estimate both
the position and the attitude of a rigid target.

Rigid target localization has been playing an import role
in the fields of smart sensing and the Internet of Things
(IoT), including industries of entertainment, aerospace and
manufacturing etc. The applications of RBL in the small-
scale scenarios comprise virtual reality (VR) helmets, video
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games and smart robots [4], simultaneous localization and
mapping (SLAM) systems to name a few. The real-time three-
dimensional (3-D) position and posture of VR helmets are
essential information for VR systems to provide correspond-
ing virtual images. In SLAM systems, the location and the
orientation of the moving robots are needed to be fused with
the environment sensing information in real time to build
a map. The RBL is also applied to large-scale appliances
such as vehicles, ships, aircraft, spaceships and buildings [5].
In space docking scenarios, the real-time and high preci-
sion information of the relative position and the attitude is
crucial for posture adjustment during the docking process.
In addition, the security departments have to collect the data
from different types of sensors or even images from cameras
and then perform the data mining on these information for
monitoring the tilt and health of buildings, bridges etc. for
the public safety.

The state-of-the-art reteaches regard the localization and
the attitude estimation as two separate problems. Regardless
of the attitude of the target object, plenty of researches on
localization and tracking fields treat the target as a point
source. The point source localization generally relies on the
fusion of signal characteristic measurement in the smart sens-
ing environments, including the satellites, Wi-Fi networks,
and wireless sensor networks etc. The commonly adopted
signal characteristic measurement includes the received sig-
nal strength (RSS), the time difference of arrival (TDoA),
the time of arrival (ToA) and the angle of arrival (AoA)
etc., [6]. The localization schemes based on RSS sensing own
the upsides of low cost and easy implementation. However,
the accuracy of the RSS-based localization schemes is as low
as room-level because the RSS is susceptible to the varying
environments. The positioning methods based on ToA and
TDoA measurements can achieve high accuracy, but the syn-
chronization problem is a practical challenge: ToA methods
need the synchronization between the target and the base sta-
tion (BS), while TDoA methods require the synchronization
among the BSs, and a tiny clock shift can result in colossal
positioning error due to the velocity of light.

On the other hand, the local attitude measurement is usu-
ally realized by the magnetometer, the gyroscope or other
orientation-finding sensors [7], [8]. However, in a complex
environment, the magnetometer fails to yield accurate read-
ings and long term error accumulation makes the gyroscope
obsolete. The orientation deciding approach based on the
computer vision is another popular trend, in which several
visible feature points should bemarked on the target [9]–[11];
nevertheless this image-processing based technique is limited
by the computational cost and the lighting condition.

II. RELATED WORKS AND CONTRIBUTIONS
A. PRIOR WORKS
Researches have acknowledged the necessity of simultane-
ously estimating the position and the attitude of rigid targets
and tried several approaches to realize the RBL. One of
the most popular methods is to utilize the global navigation

satellite systems (GNSSs), e.g. the GPS, the Compass system,
etc. The GNSS is used for the RBL purpose as its derivative
function. In the GNSS-based RBL schemes, several satellite
receiving antennas should be equipped at known positions
on the target to measure phases of arriving signal from at
least 4 satellites. The phase differential technique is adopted
for mitigating the propagation-related measuring error and
for realizing the RBL purpose [9], [10]. However, the
GNSS-based RBL method has to consider the problems of
the period ambiguity in the phase measurement and the
high hardware costs of the GNSS antennas. In addition, the
GNSS-based RBL schemes are dedicated for large objects in
outdoor environments and are not available anymore in Non-
line of sight (NLOS) scenarios such as indoor and underwater
areas.

The RBL schemes applied in IoT environments are widely
studied, due to its advantages of high accuracy, low cost
and easy carrying out [11]–[14]. Generally, smart sensing
networks are setups where the terminals have the ability to
capture signal characteristic measurements (including RSS,
ToA, TDoA and AoA, etc.). In the RBL framework in IoT
environments, several wireless sensor nodes are mounted
on the rigid target. These nodes are relatively distributed
in a known topology, which can be fully described by the
Euclidean distances of all node pairs. While the positioning
and the attitude estimation are being performed, the spa-
tially distributed BSs measure the characteristics of signals
from the wireless sensor nodes. After that, the RBL system
fuses the sensed signal characteristic information with the
known topology information to figure out the attitude infor-
mation and the position information. Actually, different from
GNSS-based RBL schemes which provide the absolute ori-
entation and position information of the rigid target, the RBL
framework in IoT environments is to provide the attitude and
the position, relative to a predetermined reference frame of
the target. Essentially, the current state of the rigid target to
be estimated, also termed the current frame, is assumed to
be obtained by the reference frame undergoing a rotation and
a translation. In this way, the RBL is to estimate the trans-
lation vector and the rotation matrix. Actually, estimating
the rotation matrix is a challenging problem, because it is a
constrained 3-D Special Orthogonal SO(3) group [11].

Abundant RBL works for IoT applications utilize the rang-
ing technique, i.e., using the ToA or TDoA as the mea-
surement to incorporate with the topology information for
RBL purpose [10]–[15]. In the framework of RBL based
on ranging techniques, ToA or TDoA between the wireless
sensor nodes (mounted at a fixed position on the surface of
the rigid target) and the base stations (BS) can be measured
and converted into distances between wireless sensor nodes
and BSs. To estimate the SO(3) group and the 3D translation
vector, Sundeep et.al first mitigated the nonlinearity of the
RBL model by eliminating the quadratic unknown terms
through an isometry decomposition of the projection matrix,
and then proposed two types of least square estimators (LSEs)
for deciding the rotation and translation information.
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Moreover, the authors provided the constraint Cramér-Rao
Bound (CCRB) for the ranging-based RBL framework as
the rotation is belonging to SO(3) group [11]. To further
improve the computation efficiency, [12] used the traditional
TDoA-based positioning method to find the coordinates of
all wireless sensor nodes, and then adopted singular value
decomposition (SVD) for obtaining a rough result, and then
a refinement operation is performed with a non-iterative
algorithm which obtained higher RBL accuracy and lower
computational cost. Besides, they made use of the frequency
difference of arrival (FDOA) measurements for estimating
angular and translational velocities. Alternatively, authors
in [13] utilized the semi-definite relaxation (SDR) algorithm
to find an initial solution for the maximum likelihood esti-
mator (MLE) of the TDOA-based RBL scheme to guaran-
tee the estimation success under large noise conditions. The
developed SDR-based method was proved to owning higher
accuracy and lower computational cost, especially under
high-level measurement noise. As the extension work of [13],
the authors considered the additional function, i.e., realizing
the velocities estimation, including the moving speed and
rotational velocity under dynamic scenarios [14]. Moreover,
in the recently published [15], Hao et.al paid attention on
the RBL scenario under the problem of the BS position
uncertainties and successfully applied the SDR algorithm for
RBL purpose when the, moreover, the CCRB is provided as
the quantitative analysis in terms of the BS location error.

However, the ranging-based RBL approaches have two
tough issues to deal with when they are implemented in the
realistic world. One issue is that the ranging techniques have
a severe requirement (commonly nanosecond level) for the
time synchronization due to the speed of electromagnetic
wave [15]. To be specific, in the ToA-based ranging tech-
niques, the synchronization between the source and the BS is
needed, while TDoA-based ranging technique demands the
synchronization among BSs. The other problem is that both
the ToA and the TDoA method need four or more position-
knownBSs for 3-D localization in the IoT environments. This
may be impractical in scenarios such as space docking where
building spatially distributed BSs are not feasible, and in the
complex environment where the line-of-sight link can not be
guaranteed for all BS-node pairs. The research in [17] studied
the relative positions and attitudes of multiple rigid targets by
measuring the pairwise distance of wireless sensor nodes on
multiple rigid targets with no need of the base stations (BS),
however, this scheme is not efficient enough when objects
are far apart from each other. When AoA is adopted as the
measurement, the above two limitations can be eliminated.

In IoT environments, the AoA can be measured by the
antenna array embedded in the BS. The antenna array consists
of several antenna elements to sense the arriving signal phase,
and numbers of readily algorithms have been studied for
AoA estimation [18], such as the multiple signal classifica-
tion (MUSIC) algorithm and matrix pencil (MP) algorithm
etc. The 2-D AoA information measured in 3-D environ-
ment, including the azimuth and pitch angles, contains higher

information dimension than the ranging measurement (for
example, for 2-D localization, the AoA technique for point
source positioning needs two BSs while that of both ToA
and TDoA are three), which make it possible realizing the
RBL with a single BS. Besides, the AoA measuring cost is
generally lower than that of the range measurement.

The AoA-based RBL framework was developed by
Zhou et.al in [19] and [20]. In [19], they divided the RBL task
into two stages. At the first stage, the 3-D coordinates of all
the wireless sensor nodes in the current frame are obtained.
They reduce the number of unknown arguments using AoA
measurement and then find the unknown arguments using
the particle swarm optimization (PSO) [21]–[23] topology
information by setting the topology information as the cost
function; then at the second stage, the rotation matrix and
the translator vector are estimated by using SVD approach
to compute the 3-D rigid body transformation that aligns the
predetermined initial frame and the estimated current frame;
the CCRB of the AoA-based RBL framework was derived
as well. To enhance the RBL performance, a refinement
process based on weighted least square (WLS) is performed
at the first stage in the extension work [20]; in [20] they
also replaced the PSO algorithm with participatory searching
algorithm (PSA) for ensuring the global convergence success
rate under the higher noise level. However, because of the
high nonlinearity and the non-convexity of the AoA-based
RBL model, the estimators based on heuristic search posi-
tioning algorithms, i.e., the PSA and the PSO algorithm, have
a heavy calculation burden, which is not efficient enough in
the practical application.

B. CONTRIBUTIONS
In this paper, we focus on improving the estimation success
rate and the accuracy of the AoA-based RBL framework
using a single BS for IoT applications, as well as reducing
the computation cost. The proposed RBL estimator is divided
into two stages.

At the first stage, we represent the known topology infor-
mation and the AoA measurements as functions of 3D coor-
dinates of the wireless sensor nodes, which form the current
frame. Then, the current frame is estimated by the modified
Newton iteration algorithm (mNIA) with a random initializa-
tion. It is well known that, the traditional Newton iteration
algorithm (NIA), also termed the Gaussian-Newton method,
has a high requirement for the initialization [24], [25].
In the proposed modified one, we set the iteration intervals
for the parameters to be estimated using the known constraint
of the parameters, i.e., the priori knowledge the application of
the environment.

In the second stage, when the positions of wireless sensor
nodes in the current frame are known, we can calculate the
translation vector and the rotation matrix relative to the refer-
ence frame, by the unit quaternion (UQ) method. In the UQ
method, instead of directly calculating the rotation matrix,
we represent rotation employing a unit quaternion vector,
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FIGURE 1. In AoA-based RBL framework, the current frame is arrived by
undergoing a translation and a rotation.

which reduces the parameters to be estimated and avoid the
challenging constraint problem.

The remainder of the paper is organized as follows.
In Section III, the information collection for the AoA-based
RBL framework via a single base station in the IoT is
introduced and the corresponding MLE is built. Section IV
discusses the process of determining 3D coordinates of the
wireless sensor nodes mounted on the rigid object by the
mNIA algorithm and solving transformation information of
the object by the UQ method. In Section V, the performance
of the proposed method is compared with that of existing
estimators through simulations. Finally, a conclusion of the
paper and our future work are given in Section VI.

For clarity, the notations used in this paper are shown as
follows. ‖∗‖ means the Euclidian norm. Uppercase or low-
ercase bold letters are used to represent matrix and vectors,
respectively. XT is the transpose of X, ⊗ is the notation
of the Kronecker product, and In is the identity matrix of
n × n. vec(X) denotes the column vector which is obtained
by stacking the columns of the matrix X. diag(x) denotes
the diagonal matrix whose main diagonal is the vector x.
1M×N(0M×N) denotes the M × N matrix of ones (zeros).
cθ and sθ mean cos θ and sin θ , respectively.

III. AOA-BASED RBL MODEL
In the AoA-based RBL framework implemented in IoT envi-
ronments [29]–[39], one single BS and K wireless sensor
nodesmounted on the rigid target form a network for deciding
the location of the rigid target in 3-D space, as well as its
gesture. The distribution of theK wireless sensor nodes on the
target is known to a certain extent. As illustrated in Figure 1,
the single BS is set as the origin O in the assumed coordinate
system; a reference state of the target is set nearby the originO
and the current state of the target is to be estimated

A. REFERENCE FRAME DETERMINATION
Since our intent is to find the current state of the rigid tar-
get (comprising its position and its attitude) in the assumed

FIGURE 2. The structure of the LSAA at the single BS in the
IoT environment for 3-D angle estimation.

coordinate system, a reference state should be determined
in advance. The wireless sensor nodes under the reference
state are termed the reference frame. In the reference frame,
the coordinates of the kth wireless node are denoted as the
vector ck = [ck,x , ck,y, ck,z]T , k = 1, . . . , k , and the whole
frame is presented by C = [c1, . . . , cK ] ∈ R3×K .
In real applications, the immediate topology informa-

tion of mounted nodes is the pairwise distances, by which
C can be determined by the multidimensional scaling (MDS)
technique [26], [27]. We collect the pairwise distance di,j
between i-th and j-th nodes and obtain a K × (K − 1)/2
distance vector to present the relative topology information

do= [do1,2, . . . , d
o
i,j, . . . , d

o
K−1,K ]

T , i, j∈ [1, . . . ,K ], i< j.

(1)

We construct a zero-diagonal and symmetric squared dis-
tance matrix D ∈ RK×K , in which

D(i, j) =


(
doi,j
)2
, if i 6= j

0, if i = j.
(2)

Then we define a centering matrix E = IM −
1M×M
M

and convert D into B = −EDET/2 = ECTCET. Per-
forming the eigenvalue decomposition (EVD) of B yields
B = X diag(λ1, λ2, λ3)XT , where λ1, λ2, λ3 are the three
largest non-zero eigenvalues in descending order, and their
associated eigenvectors are collected in X ∈ RK×3. Finally,
the reference frame is acquired by

C =
[
Xdiag(

√
λ1,
√
λ2,
√
λ3)
]T
. (3)

Since do is measured in advance, the obtained reference
frame C is regarded to be known precisely.

B. AOA ESTIMATION
For estimating 2-D AoA (the azimuth angle α and the pitch-
ing angle β), Figure 2 shows the structure of an L-shaped
antenna array (LSAA) which is equipped at the single BS.
2M (M > K ) antenna elements are uniformly arranged
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along x and z axes with an interval of half-wavelength of the
operating wireless signal.

When narrowband signals from K wireless sensors are
impinging on the LSAA, all the antenna elements on x and
z axes can sense the arriving phases, yielding the steering
vector gx and gz [28], respectively; and their autocorrela-
tion matrix is denoted as Gx = E

{
gxgHx

}
and Gz =

E
{
gzgHz

}
. If we adopt the MUSIC algorithm, the angles

between kth impinging signal and two sides of LSAA,
αok and βok can be estimated by searching the peaks from the
pseudo-spectrum PMUSIC (θ). For example, to estimate αok ,
the pseudo-spectrum will be

αok = argmaxPMUSIC (θ) =
1

a(θ )HGwGHw a(θ )
, (4)

where Gw denotes the matrix in which the columns are
the eigenvectors corresponding to the M − K noise eigen-
values of the matrix Gx , and these noise eigenvalues are
typically much smaller than the remaining K eigenval-
ues. a(θ ) presents the searching steering vector: a(θ ) =
[1, e−jπ cos θ , . . . , e−jπ (M−1) cos θ ]

T
. By the same analogy,

βok can also be estimated using the autocorrelation matrixGz.

C. RBL PROBLEM FORMULATION
The wireless node coordinates under the current state to
be estimated are termed the current frame. Let the coordi-
nates of k-th wireless node in the current frame be sk =
[sk,x , sk,y, sk,z]T and the coordinates of K wireless sensor
nodes are collected in S = [s1, s2, . . . , sK ] ∈ R3×K , k =
1, . . . ,K . According to the affine transformation, the current
frame is transformed from the reference frame by rotation and
translation as shown in Figure 1. Mathematically, S can be
expressed as

S = RC+ t⊗ 11×K , (5)

where t = [x, y, z]T ∈ R3×1 and R ∈ R3×3 are the unknown
translation vector and rotation matrix, respectively [27]. The
rotation matrix R is an orthogonal matrix where the deter-
minant is 1, i.e. RTR = RRT

= I3. t and R respec-
tively present the relative position and attitude with respect
to predetermined C, and finding t and R will complete the
RBL task.

To find t and R, S should be estimated first. For this
purpose, two conditions are needed to be satisfied in the
RBL estimation. The first one is the Euclidean distances
between the node pairs on the rigid target. The known dis-
tance di,j can be presented by the position of wireless sensor
nodes in both frames that doi,j =

∥∥ci − cj
∥∥
2 =

∥∥si − sj
∥∥
2.

The second condition for RBL is the AoA measurements.
The AoA is measured by the single BS, which are clearly
presented in Section III-B. The ground truth of the angles
between arriving signal from the nodes in the current frame
and the x- and z-axes (see Figure 2) are denoted by are
denoted by αo = [αo1, . . . , α

o
K ]

T and βo = [βo1 , . . . , β
o
K ]

T ,
k = 1, . . . , k .

In summary, the two conditions are functionally presented
by the current frame to be estimated as follows:

αok = arccos
sx,k√

s2x,k + s
2
y,k + s

2
z,k

, k = 1, . . . ,K

βok = arccos
sz,k√

s2x,k + s
2
y,k + s

2
z,k

, k = 1, . . . ,K

doi,j =
∥∥si − sj

∥∥
2 , j > i ∈ [1, . . . ,K ].

(6)

Commonly, there is no root formula to solve the highly
non-convex and nonlinear model above. Thus, we shall build
the maximum likelihood estimator for the problem above.
We reshape the position of the wireless sensor nodes in the

current frame to be estimated as a vector s̃ = [sT1 , . . . , s
T
K ]

T

and reshape the known and measured noisy information as a
vector γ = [αTβTdT ]. In γ ,

α = [αo1, . . . , α
o
K ]

T
+ [υ1,x , . . . , υK ,x]T , (7a)

β = [β1, . . . , βK ]T + [υ1,z, . . . , υK ,z]T , (7b)

where [υk,x , υk,z]T ∈ N (0, [σ 2
k,x , σ

2
k,z]

T
) are the additive

Gaussian AoA measurement noise; and

d = do + n (8)

where n = [n1,2, . . . , ni,j, . . . , nK−1,K ]T are the distance
noise, and we assume it is in accord with the Gaussian
distribution ni,j ∈ N (0, ε2i,j). Actually, the noise level of[
αTβT

]
and dT are different.

[
αTβT

]
are measured in real

time with high-level noise, while dT is predetermined with
high reliability. Hence we decide ε2i,j to be an arbitrarily small
and non-zero constant, say εi,j = 10−6 meter.

Then, the MLE is the minimizer of the cost function

JML = (γ − γ̄ (s̃))TQ−1(γ − γ̄ (s̃)), (9)

where γ̄ (s̃) is the reconstructed measurements according to
Equation (6), andQ is the noise covariancematrix of γ , which
is defined as (10), as shown at the bottom of the next page.

The iteration-based method to solve the problem is pre-
sented in the next section.

IV. PROPOSED RBL ALGORITHMS
In the non-linear position estimating model presented in
Equation (6), there are 3× K unknowns, and K (K − 1)/2+
2K conditions which consist of 2K AoA measurements and
K (K − 1)/2 distances presenting the topology information.
That is, the proposed model has a unique solution only
when K ≥ 3.

A. THE HEURISTIC ALGORITHMS
Obviously, it is impossible to find the analytical solution
to minimize the cost function (9). The heuristic algorithms,
including the PSO algorithm and the PSA method are very
popular approaches for deciding the state of the object
of interest in the data mining field and the implementa-
tions of heuristic algorithms are straight forward approaches.
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Under similar RBL scenarios, the PSO algorithm and the
PSA methods were implemented and described in detail
in [18] and [19], respectively, thus we will not analyze imple-
mentations of heuristic algorithms here for the sake of conci-
sion. We only give the model for in the heuristic algorithms
as follows

mins̃ JML(s̃|α,β,d), subject to s̃ ∈ monitoring area.

(11)

However, the drawbacks of the heuristic algorithm based
approaches, that is, the high cost of computation and the
low global convergence rate, limit its practical application,
especially when the number of the arguments to be estimated
is as many as 3× K since we intent to estimate S.

B. THE MODIFIED NEWTON’S ITERATION METHOD
The Newton’s iteration algorithm is one of the most efficient
methods for finding the optimal solution of nonlinear models.
The Newton’s method is the process producing successively
better approximations to the optimal value, and the advan-
tages of Newton’s method include the high speed of con-
vergence and the high accuracy. However, the optimization
process is susceptible to the initial value. Therefore, it is
necessary to set an appropriate initial value, or to monitor
the convergence process for guaranteeing the algorithm con-
verges and ensuring its convergence speed.

Minimizing (9) by Newton’s method is to linearize the
nonlinear equations. The equation is expanded into the Taylor
series at the initial value, and we can get an iterative rela-
tion by letting linear part of Taylor series to be zero if the
derivative of the equation is not equal to zero. The method
utilizes the derivative, and the direction of each iteration is
the direction in which the value of the current point of the
function decreases, which is detailed as follows.

In order to iteratively estimate the node positions expedi-
ently, we record the instant vectorized 3-D coordinates at t-th
iteration as s̃t . Obviously, the angle measurements and the
topology information of the current frame are determined by
s̃t . Thus, we define an information vector as

γ̄ (s̃) =
[
ᾱT (s̃t ) β̄

T
(s̃) d̄

T
(s̃)
]T
, (12)

where γ̄ (s̃t ) ∈ R(K (K−1)/2+2K )×1 denotes the information
vector yielded from s̃ according to Equation (6). When s̃t is
the optimal solution s̃, γ̄

(
s̃t
)
= γ = [αT βT dT ]

T
.

The beginning of the Newton iteration is performed by
randomly setting the initial value of s̃ to be estimated as
s̃0. Afterwards, at t-th iteration of the Newton’s method, we
expand the cost function (9) at s̃t by Taylor series and ignore
the items whose order are higher than two, to linearize the

model and obtain

γ̄ (s̃t ) ≈ γ̄ (s̃t )+G ·
(
s̃− s̃t

)
, (13)

where G ∈ R(K (K−1)/2+2K )×3K is the Jacobian matrix of γ ,
which is partially derived with respect to the coordinates of
wireless sensor nodes in s̃ and computed through

G =



∂αT

∂ s̃
|s̃=s̃t

∂βT

∂ s̃
|s̃=s̃t

∂dT

∂ s̃
|s̃=s̃t


, (14)

where ∂α
T

∂ s̃ and ∂βT

∂ s̃ are the partial derivate of αT andβT with

respect to s̃, and are matric in size ofK×3K , ∂d
T

∂ s̃ is the partial
derivate of dT with respect to s̃, and is a matrix of (K−1)K

2 ×

3K . The expressions of ∂α
T

∂ s̃ , ∂β
T

∂ s̃ and ∂dT
∂ s̃ are presented as

follows respectively:

∂αT

∂ s̃
=


∂α1

∂x1

∂α1

∂y1

∂α1

∂z1
· · ·

∂α1

∂xK

∂α1

∂yK

∂α1

∂zK
...

...
...

∂αK

∂x1

∂αK

∂y1

∂αK

∂z1
· · ·

∂αK

∂xK

∂αK

∂yK

∂αK

∂zK

, (15a)

∂βT

∂ s̃
=


∂β1

∂x1

∂β1

∂y1

∂β1

∂z1
· · ·

∂β1

∂xK

∂β1

∂yK

∂β1

∂zK
...

...
...

∂βK

∂x1

∂βK

∂y1

∂βK

∂z1
· · ·

∂βK

∂xK

∂βK

∂yK

∂βK

∂zK

 (15b)

and (16), as shown at the bottom of the next page.
According to Equation (13), the gap between the instant

information vector γ̄
(
s̃t
)
and the actual information vector γ

can be denoted by

1 = γ − γ̄
(
s̃t
)
−G ·

(
s̃− s̃t

)
. (17)

In next iteration of the Newton’s method, the update
of S′0 is aiming to minimizing 1. At instant update, the gap
between s̃t and the optimal solution can be obtained by

δ = s̃− s̃t =
(
GTQ−1G

)−1
GTQ−1

(
γ − γ̄

(
s̃t
))
. (18)

where Q is the covariance matrix of the information
vector which is a block diagonal matrix equaling to
diag(11×2K · σ, 11×K (K−1)

2
· ε)T in which σ and ε are the noise

standards of AoA measurements and d̄, respectively. σ is
larger than ε as the confidence of the topology is higher
than that of the measurements. Thus in the next step, we can
update the iterated value by replacing s̃t+1 with s̃t + δ

Q =
[
diag(σ 2

1,x , . . . , σ
2
K ,x , σ

2
1,z, . . . , σ

2
K ,z) 02K×(K−1)K/2

0(K−1)K/2×2K diag(ε21,2, . . . , ε
2
K−1,K )

]
(10)
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FIGURE 3. The modified Newton’s iteration algorithm for getting the coordinates of the nodes in the
current frame.

to mitigate the gap between the instant information vector
and the actual information vector. Then, iteration is started
again from Equation (13) using the updated s̃t+1. Above
updating progress will not be stopped until ‖δ‖ is suffi-
ciently small and the optimization converges, or a maximum
number of iterations has been reached. In the mNIA imple-
mentation, ‖δ‖ is adaptively set in proportion to the noise
level σ .
As we have discussed, the traditional Newton’s method is

easy to be unreliable when s̃0 is set far off from the ground
truth. Thus, we make two modifications to the classic New-
ton’s method. The first one is that the iteration monitoring.
In a determined RBL scene, the ranges of the coordinates
are known information, for example we can set the range
according to the size of the RBL environment, or according
to the communication distances from the single BS to the
wireless sensors. When s̃t is exceeding the predetermined
ranges, we directly initialize s̃0 by randomly setting s̃0 as the

vector inside the predetermined ranges and begin the Newton
iteration again.

The secondmodification is the criterion of the convergence
quality. In traditional Newton’s iteration, the convergence
is accomplished when the updating step δ is small enough.
Here, we conduct an additional convergence quality checking
process. When the updating progress is stopped (when δ is
small enough or the maximum iteration number is reached),
we will compute the matching degree of the information
vector yielded from the final s̃0 and the actual the information
vector, and denote it as ρ=

∥∥γ − γ̄ (s̃t)∥∥2. If ρ is larger
than the predetermined threshold, we directly initialize s̃0 by
randomly setting s̃0 as the vector inside the predetermined
ranges and begin the Newton iteration again.

Forthrightly, we add two judgments in the modified New-
ton’s iteration algorithm to fuse the known positioning range
information and the information vector which ensures the
convergence success, as shown in Figure 3. Through the

∂dT

∂ s̃
=



∂d1,2
∂x1

∂d1,2
∂y1

∂d1,2
∂z1

· · ·
∂d1,2
∂xK

∂d1,2
∂yK

∂d1,2
∂zK

...
...

...
∂di,j
∂x1

∂di,j
∂y1

∂di,j
∂z1

· · ·
∂di,j
∂xK

∂di,j
∂yK

∂di,j
∂zK

...
...

...
∂dK−1,K
∂x1

∂dK−1,K
∂y1

∂dK−1,K
∂z1

· · ·
∂dK−1,K
∂xK

∂dK−1,K
∂yK

∂dK−1,K
∂zK


(16)
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modified Newton’s iteration algorithm, the current frame is
estimated. Until now, we get the reference frame C and the
current frame S.

C. DETERMINATION OF R AND t BY THE UNIT
QUATERNION ALGORITHM
After getting the optimal S through heuristic methods or
Newton’s method, the rotation matrix R and the translation
vector t of the rigid body, with respect to the reference frame,
will be determined.

In the transformation Formula (5), S and C are known.
In this section, the translation vector t and the rotation
matrix R shall be computed by the unit quaternion (UQ)
method. The UQ method uses a 3× 1 vector ψ = [l,m, n]T

to represent the rotation axis and an angular component θ to
represent the angle of rotation around this axis [29]. Using ψ
and θ , a UQ is defined as

q = [q0, q1, q2, q3]T

=
[
cθ/2, lsθ/2, msθ/2, nsθ/2

]T
, (19)

where the 3-D vector (l,m, n) meets l2 + m2
+ n2 = 1

is the rotation axis. Moreover, the rotation matrix R can be
derived from the Rodrigues formula (20), as shown at the

bottom of this page, where U =

 0 − n m
n 0 − l
−m l 0

 is the

cross product matrix of the rotary axis (l,m, n), substitut-
ing q to Equation (20) and we can get rotation matrix [30],
(21), as shown at the bottom of this page,
Then q is the solution which minimizes the following least
square error:

ε2 =
∑K

k=1
‖sk − Rck + t‖2 =

∑K

k=1

∥∥s′k − Rc′k
∥∥2

=

∑K

k=1
(s′Tk s′k + c′Tk c′k − 2s′Tk Rc′k ), (22)

where s′k = sk − s, c′k = ck − c, and s, c are means of sk
and ck respectively. The least square error can be rewritten
as ε2 = qTPq according to the attributes of the quaternion,
and P is a matrix of 4 × 4 denoted by (23), as shown at

the bottom of this page, where Hab =
∑K

k=1 c
′
k,as
′
k,b, a,

b ∈ (x, y, z), the UQ q is the eigenvector corresponding to the
largest eigenvalue of matrixP. Thusψ and θ are calculated by
Equation (18). Finally, the rotation matrix R can be obtained
from (20) with the known ψ and θ , and the translation vector
t can be obtained by substitute R into Equation (5).

V. PERFORMANCE EVALUATION
In this section, we shall evaluate the performance of the two-
stage AoA-based RBL scheme proposed in this paper. Prede-
fined parameters are set including the distances between node
pairs which are utilized to obtain the reference frame, as well
as the rotation matrix and the translation vector by which the
current frame is obtained from the reference frame. The pilot
runs are carried out in simulation environment individually
for each of four methods, which include the traditional New-
ton iteration algorithm and the proposed modified Newton
iteration algorithm with the information fusing mentioned
in Section 3.3, as well as the two heuristic methods, i.e.,
the PSO method and the PSA method. We focus on the
efficiency of the AoA-based RBL model and the results are
carefully observed and compared with each other to find out
the method with high convergence speed and high success
rate and outstanding accuracy.

A. SIMULATION ENVIRONMENT
In the simulated AoA-based RBL scenario with a single BS,
we consider K = 4 wireless sensor nodes mounted on rigid
objects with different sizes, and the distances between node
pairs are precisely measured to be

do =
[
d1,2, d1,3, d1,4, d2,3, d2,4, d3,4

]
= [1, 1, 1,

√
2,
√
2,
√
2]× D, (24)

where D is the size of the targets. According to the dis-
tance information between wireless sensor pairs, the refer-
ence frame is determined by the MDS algorithm as

C =

 0 1 0 0
0 0 1 0
0 0 0 1

× D, (25)

R = I3 + 2U · sθ/2 · cθ/2 + 2s2θ/2 · U
TU

=

 1− 2(m2
+ n2)s2

θ/2 2lms2
θ/2 − 2nsθ/2cθ/2 2lns2

θ/2 + 2msθ/2cθ/2
2lms2

θ/2 + 2nsθ/2cθ/2 1− 2(l2 + n2)s2
θ/2 2mns2

θ/2 − 2lsθ/2cθ/2
2lns2

θ/2 − 2msθ/2cθ/2 2mns2
θ/2 + 2lsθ/2cθ/2 1− 2(l2 + m2)s2

θ/2

 (20)

R =

 q20 + q21 − q22 − q23 2 (q1q2 − q0q3) 2 (q0q2 + q1q3)
2 (q0q3 + q1q2) q20 − q

2
1 + q

2
2 − q

2
3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q0q1 + q2q3) q20 − q
2
1 − q

2
2 + q

2
3

 (21)

P =


Hxx + Hyy + Hzz Hyz − Hzy Hzx − Hxz Hxy − Hyx

Hyz − Hzy Hxx − Hyy − Hzz Hxy + Hyx Hzx + Hxz
Hzx − Hxz Hxy + Hyx Hyy − Hxx − Hzz Hyz + Hzy
Hxy − Hyx Hzx + Hxz Hyz + Hzy Hzz − Hxx − Hyy

 (23)
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FIGURE 4. The convergence success rate of the four methods under different vs. noise standards and rigid target sizes (a) D = 1 meter: (b) D = 2
meters, (c) D = 3 meters.

which means the wireless sensor nodes are distributed as a
four-sided pyramid with a bottom of equilateral triangle and
three sides of isosceles right triangles in the reference frame.
The ground truth of the current frame is obtained from the
reference frame by rotating [ 30 − 50 80 ]T degrees along
x, y, z axes, respectively and then by a translating vector
t = [6 5 2]T meters, meaning that the rigid target is 8 meters
far away from the reference frame.

Signal arriving angles from the wireless sensors to the sin-
gle BS (fixed at the origin) ismeasuredwith noise.We assume
that the AoA measurement noises are independent and iden-
tically distributed as white Gaussian noise with the same
standard σ , i.e. σ 2

k,x = σ
2
k,z = σ

2.
Under above parameters assumption, the simulation is car-

ried out withMATLABon a 3.5 GHz personal computer.. The
four methods are simulated for finding the optimal current
frame and 18 cases are considered for each method (6 noise
levels × 3 different rigid target sizes).

B. PERFORMANCE EVALUATION
The simulations are conducted over N = 1000 independent
Monte Carlo runs for each of the four estimation approaches,
and their performances are evaluated in terms of conver-
gence success rate (CSR), computing cost of the simulation
experiment, and the root mean squared error (RMSE) of the
estimates.

To investigate the effectiveness of the mNIA method on
the convergence success rate, we set different and random
initial value to S at the beginning of each iteration. Besides,
the random initial value S0 are all generated within the known
range (Unit: meter), which is assumed as 0 < sx,k < 10,
0 < sy,k < 10, and 0 < sz,k < 5, k = 1, . . . ,K . The
comparison among the four methods is shown in Figure 4.

Results in Figure 4 show that the larger size of the rigid
target can enhance the CSR, for the PSO method and the tra-
ditional Newton method. For the traditional Newton method,
the improvement is slight, because this method relies heavily
on the initial value of the iteration process. It is observed
that the modified Newton method and the PSA method can

TABLE 1. The computation time (in seconds) of NIA, mNIA, PSA and PSO
methods when D = 2 meters.

guarantee 100 percent CSR in all cases, which verifies
the effectiveness of the modified Newton method. Actu-
ally, the two additional judgement links in Figure 3 ensure
the CSR. However, comparing with the traditional Newton
method, these two links increase the computational cost.

In Table 1, the average time cost per Monte Carlo runs of
the four methods under different cases are listed. It is apparent
that Newton’s methods outperform the heuristic methods,
since the each convergence of the heuristic methods is as
high as several seconds while that of Newton’s methods is
recorded in milliseconds. Although the success rate of the
PSAmethod and the proposed mNIAmethod all reach 100%,
the computational expenditure of the former is much higher
than the later one. In addition, as the noise increases, the gap
between the NIAmethod and the mNIAmethod grows larger.
The reason behind is that when an improper initial value
causes convergence failure, a new random initial value is
given for another Newton iteration for searching the optimal
solution, until the instant information vector matches the
actual information vector; and the higher noise level increases
the afresh searching possibility, thereby more convergence
time is required; nevertheless, its computational efficiency is
still much higher than the existing heuristic methods.

Finally, we evaluate the accuracy of the four methods in
terms of the RMSE of the estimates of R and t which are
computed by [10]

RMSE (R) =

√
1
N

∑N

n=1

∥∥∥R− R̂n

∥∥∥, (26)

RMSE (t) =

√
1
N

∑N

n=1

∥∥∥t− t̂n
∥∥∥, (27)
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FIGURE 5. Estimation RMSE comparison of the four methods in terms of
the rotation matrix R of targets in different sizes (a) D = 1 meter,
(b) D = 2 meters, (c) D = 3 meters.

where R̂n and t̂n mean the estimates in the nth Monte Carlo
iteration. The RMSEs of the translation vector (location) and
the rotation matrix (attitude) are respectively shown in Fig-
ures 5 and 6 under different levels of noise and different target
sizes.

The CCRBs [19] of the estimates of R and t in the AoA-
based RBL scheme is also given as reference. It is widely
known that, CCRB can give a lower bound for the esti-
mating variance of the parameter estimation problems with
constraints, and CCRB is widely applied for the field of
localization. For providing a benchmark of the estimation
performance over a small noise region (derivation of the

FIGURE 6. Estimation RMSE comparison of the four methods in terms of
the translation vector t of targets in different sizes (a) D = 1 meter,
(b) D = 2 meters, (c) D = 3 meters.

CCRB for the considered RBL framework is presented in
Appendix).

Here we should note is that currently existing RBL models
mainly focusing on utilizing ranging-based measurements,
e.g. TDoA and ToA, for information fusing. Hence, it is
unfeasible to add ranging-based approaches for comparison
because that the parameters affecting the RBL performance
are different. In ranging-based schemes, the effecting param-
eters include the number of BSs and the synchronization
error, etc.; while in the AoA-based RBL scheme adopting
only a single BS, the AoA measurement accuracy and the
size of the rigid body need to be considered. Besides, the
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superiority of AoA-based RBL model over the ranging based
RBL model has be discussed in detail in the Section II.A.
Hence, for comparison, we simulated the RBL schemes using
the traditional NIA method [25], and the PSO algorithm [19]
and the PSA method [20] and provide CCRB as a criterion
for these methods.

As it can be seen from the figures, the AoA-based RBL
scheme via a single BS has a remarkable accuracy: when the
rigid target is 8 meters away from the single BS and when the
AoA measuring noise is around 0.1 deg, the positioning error
can reach to the centimeter level and the attitude estimation
is also impressive, when the AoA measuring noise is around
0.1 deg. According to the results shown in Figures 5 and 6,
the RMSEs of estimates decrease as the noise level of AoA
reduces as we expected. Moreover, larger size of rigid target
can improve the CSR and RMSE of the RBL performance.
With a larger D, the differences of AoA between wirless
sensors increases, by which the bigger D can avoid the
AoA measuring interference, which enhances RBL robust-
ness against AoA estimation noise. This conclusion indicates
that reasonable sensor distribution is that the sensor should
be fixed on the target as far apart as possible.

It is observed that the proposed mNIA-based RBL scheme
is closest to the CCRB, which verifies its superiority over
the other three methods. The RBL performance of the tra-
ditional NIA-based method is also shown in the figures;
however, because of its low convergence success rate results
in huge RBL error, we even barely see its performance in the
comparison range. Theoretically speaking, the performance
gap between the mNIA-based method and the NIA-based
method is zero, if there is no convergence failure. Simi-
larly, the estimation RMSE of the PSO-based method is also
beyond the comparison range at a higher level of noise, due
to the low convergence success rate. But at the lower noise
level, the PSO method outperforms the PSA method when
there is no convergence failure, while the PSA-based method
performs better at higher noise level.

VI. CONCLUSION AND FUTURE WORK
In this paper, the RBL framework based on the AoAmeasure-
ment was considered for the Internet of Things (IoT) applica-
tions, in which a single BS is used to estimate the position and
attitude of the rigid body target. Several wireless sensor nodes
were fixed on the rigid object and their pairwise distances are
foreknown; meanwhile, the AoA of the wireless signals from
the nodes to the single BS was measured. By merging the
topology information with the AoA measurements, we could
obtain the 3-D coordinates of each node. For the information
fusion, we proposed the modified Newton’s iteration algo-
rithm, considering the range information of the RBL scenario
and the information vector fitness. Then position and attitude
information of rigid target relative to the reference frame
was determined by UQ method. Finally, the performance
of the proposed method was evaluated by simulations. The
simulation results indicate that comparing with the heuristic
algorithms and the traditional Newton’s iteration algorithm,

the proposed RBL method shows its superiority of fast speed
and high success rate, and finer RBL performance approxi-
mating the CCRB.

During the simulations, it is indicated that the size of the
target has an important impact on the convergence success
rate and the RMSE performance. Actually, it is the topology
information that matters to the RBL performance. Hence,
the influence from the deployment of wireless nodes, includ-
ing the topology information and the adopted sensor num-
ber, should be explored; in addition, the uncertainty of the
topology information is another worthwhile topic for testing
the robustness of the AoA-based RBL framework adopting a
single BS in the smart sensing network. The above two issues
will be investigated in our future works.

APPENDIX
CCRB DERIVATION FOR AOA-BASED RBL FRAMEWORK
In the considered RBL framework, the parameters to be esti-
mated consist of the translation vector t = [x, y, z]T and the
rotation matrix R = [r1 r2 r3]. We collect the parameters
using a 12 × 1 composite vector ρ = [rT1 , rT2 , rT3 , tT ]T .
Because RTR = RRT

= I3, the unknown vector ρ is
then subject to equality constraints and The CCRB of ρ has
form [31]

CCRB (ρ) ≥M
(
MTF(ρ)M

)−1
MT , (28)

where M ∈ R12×P is decided by the equality constraint as
follows

M =


−r3 03×1 r2
03×1 −r3 −r1 09×3
r1 r2 r3×1

03×3
√
2 · I3

; (29)

and F(ρ) is the Fisher information matrix (FIM) resulted by
F (ρ) = −E

[
∂2 ln p(α,β;ρ)

∂ρρT

]
, in which p (α,β; ρ) is the likeli-

hood of α and β; since we assumeAoAmeasurements follow
the independent Gaussian distribution, p (α,β; ρ) equals

p (α,β; ρ)=
1(

2πσ 2
)K
2

∗ exp
{
−

[
1

2σ 2 ∗
∑K

k=1

((
αk−α

o
k
)2

+
(
βk − β

o
k
)2)]}

. (30)
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