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ABSTRACT Big data is an important factor almost in all nowadays technologies, such as, social media,
smart cities, and internet of things. Most of standard classifiers tends to be trapped in local optima problem
when dealing with such massive datasets. Hence, investigating new techniques for dealing with such
massive data sets is required. This paper presents a novel imbalanced big data mining framework for
improving optimization algorithms performance by eliminating the local optima problem consists of three
main stages. Firstly, the preprocessing stage, which uses the LSH-SMOTE algorithm for solving the class
imbalance problem, then it uses the LSH algorithm for hashing the data set instances into buckets. Secondly,
the bucket search stage, which uses the GWO for training bidirectional recurrent neural network BRNN and
searching for the global optimum in each bucket. Lastly, the final tournament winner stage, which uses the
GWO+BRNN for finding the global optimum of the whole data set among all global optimums from all
buckets. Our proposed framework LSHGWOBRNN has been tested over 9 data sets one of them is big data
set in terms of AUC, MSE, against seven well-known machine-learning algorithms (Naive Bayes, Random
Tree, Decision Table, and AdaBoostM1, WOA+MLP, GWO+MLP, and WOA+BRNN), then, we tested
our algorithm over four well-known data sets against GWO+MLP, ACO+MLP, GA+MLP, PSO+MLP,
PBIL+MLP, and ES+MLP in terms of classification accuracy and MSE. Our experimental results have
proved that our proposed framework LSHGWOBRNN has provided high local optima avoidance, and higher
accuracy, less complexity and overhead.

INDEX TERMS Grey wolf optimizer, neural network, big data mining, deep learning, imbalanced data sets,
optimization.

I. INTRODUCTION
The rapid growth of smart devices, internet of things, smart
cities andmassive number of sensors networks are leading the
world to be flooded by a gigantic amount of data generated
from numerous sources, such as social networks, sensor net-
works data, video broadcasting sites, bioinformatics, internet
marketing and more. Extracting knowledge from such vast
data sets is considered as one of the biggest challenges for
most of traditional machine learning techniques [1]. As a
result of the difficulties and challenges of processing, ana-
lyzing and extracting useful information from such massive
amounts of data, a new concept has arrived ‘‘big data’’ [2].
The major issue with big data can be defined by using the
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big data main four features, massive volume, enormous vari-
ety, vast velocity, and veracity, which can be called the 4V
model [3]. The most important feature among the 4V features
of big data and its biggest issue is the massive-volume that
stands for the gigantic amount of data collected [4].

The main sources for big data generated nowadays are
numerous and diverse, but three of them are considered as
the main source of big data, Internet of things, Online social
networks, and biomedical data [5]. Facebook with 1.33 bil-
lion active users, then, Google+ with more than 255 million
users, then, Twitter also with more than 220 million users and
LinkedIn with more than 180 million users [6], are creating
more than 20 Terabytes (TB) every single day [7]. Also, smart
cities with millions of sensors are creating a huge amount of
data that needs to be processed and stored [8]. In the e-health
bioinformatics field, millions of patient’s records and vast
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amount of data generated by sensors and actuators worn by
patients are created, stored, and processed per day [9]. E-mail
service providers are exchanging more than 210 billion mes-
sages every day [10]. Moreover, the Internet-based devices
number is expected to grow up to 100 billion devices by
2020 [11].

Another issue when dealing with big data is its tremen-
dous variety, since big data is involved in many different
data sources [12], hence, it includes most of data formats
available nowadays such as; texts, images, videos, and so
on. The third issue of big data is its vast velocity, which
refers to the big data fast generation rate. Accordingly, effec-
tive and efficient real time processing techniques are essen-
tial [13]. The big data real time processing is crucial for
many web applications nowadays, such as cyber security,
online money transfer transactions, and electronic commerce.
Unfortunately, not all big data available nowadays can be
processed efficiently for extracting meaningful information
due to the lack of resources and poor analysis tools [14].
Hence, a big percentage of big data that is to be processed
is either delayed, neglected or deleted. As a result, a huge
percentage of networking power consumption, storage and
bandwidth are wasted. Finally, the fourth and last issue with
big data is its massive veracity which refers to the existence of
vast number of inaccurate objects, incomplete objects, noisy
objects, and redundant ones [15].

Furthermore, most big data nowadays suffers from a criti-
cal problem known as class imbalance problem. A data set
is considered imbalanced, if the number instances in one
class, is massively outnumber the instances in the other class.
The main issue with the class imbalance problem is that the
results will be biased toward the majority class which could
provide us with inaccurate classification results and lead us to
take wrong decisions [16]. This issue happens because most
of classifiers does not usually consider the data distribution
when reducing the global parameters, for instance the error
rate [17]. So, a preprocessing phase is needed for solving
the problem of imbalanced classes in such datasets before
continuing toward the classification phase [18].

One of the most promising solutions for big data issues
is Deep learning due to its huge capability of extracting the
meaningful information from massive data sets [19]. Before
deep learning, only a few classification techniques were able
to handle big data, but today with the great revolution of
computer hardware, particularly, in graphics cards a massive
computational power provided by GPUs has become avail-
able even for ordinary people not only companies. Online
social networks can be considered as one of best examples
for adopting deep learning for handling big data sets, video
games development, and artificial intelligence (AI) [20].

Nowadays, Deep learning have been applied to many fields
such as machine learning, computer vision, social network
filtering, speech recognition, machine translation, medical
image analysis, bioinformatics, drug design and game indus-
tries where they have produced excellent results compared
to traditional machine learning techniques [21]. Recently,

in September 2018, Nvidia the famous graphics cards man-
ufacturer produced a new graphics cards series, the RTX
series. RTX cards uses a deep learning technique called DLSS
(Deep Learning Super Sampling) for increasing the games fps
(Frames per Second) and improving the games performance,
which hugely increased the games performance, sometimes
more than 90%[22].

Artificial Neural Networks (ANNs) are emulating the way
of information processing and communication distributed
nodes in biological nervous systems. ANNs mainly con-
sists of a group of connected units called artificial neurons,
the connections between neurons are called (synapse), and
it can transmit signals between neurons [23]. The receiver
neuron is called (postsynaptic), and it can process the signals,
and then send signals downstream to other neurons connected
to it. Neurons usually have a state, and it is commonly rep-
resented by real numbers between 0 and 1. The strength of
the signal that neurons send downstream can be increased
or decreased, and it is mainly depending on the weights of
the neurons and synapses, which varies as learning proceeds.
Neurons are usually organized in layers; the type of input pro-
cessing operations performed in each layer can vary between
different layers [24]. Signals are traveling from the first layer
(input) to the last layer (output), sometimes, its travers the
layers multiple times.

In the last years, ANNs have been applied to many
fields including regression, speech recognition, and machine
learning algorithms [25]. The ANNs performance is hugely
affected by the learning process and parameters optimiza-
tion. Multilayer perceptron (MLP) is one of the most com-
monly applied ANNs. Supervised learning techniques can
be divided into two main categories: stochastic techniques
and gradient-based [26]. A typical example of gradient-based
techniques is the back-propagation algorithm and its vari-
ants [27]. Nevertheless, gradient-based techniques mainly
suffer from three main issues: its convergence is very slow,
it is highly dependent on initial values [28], and it can be
trapped easily in local optima [29]. Local optima can be
defined as the best solution within a group of neighboring
solutions that may be incorrectly considered as the global
optimum,which can be defined as the optimal solution among
all possible solutions in the whole dataset [30].

In this paper a novel imbalanced big data mining frame-
work for eliminating the local optima problem consists of
three main stages is presented. The first stage is the pre-
processing stage, which uses the LSH-SMOTE algorithm
for solving the class imbalance problem, then it uses the
LSH (Locality Sensitive Hashing) algorithm for hashing the
data set instances into buckets, for creating subsets data for
simplifying the search of global optimum in each bucket.
The second stage is the bucket search stage, which uses
the GWO (grey wolf optimizer) for training and adjusting
the weights and biases of Bidirectional Recurrent Neural
Network (BRNN) and searching for the global optimum
in each bucket, composing a new data set from the best
5 search agents in each bucket called Final dataset. The third
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stage is the final tournament winner stage, which uses the
GWO+BRNN for finding the global optimum of the whole
data set among all global optimums from all buckets in the
Final dataset.

Themain reason for using the Greywolf Optimizer (GWO)
in this paper, is its high local optima avoidance ability that
will help us optimizing the BRNN parameters, and solve the
BRNN unstable gradient problem, which accordingly will
improve the classification results. GWO is one of the recent
meta-heuristic optimization algorithms, and it was proposed
by Seyed Ali Mirjalili in 2013 [31]. The GWO algorithm
simulates the hierarchy of leadership and hunting behavior of
grey wolves in nature. In [31], The GWOwas tested and com-
pared against different well-known optimization algorithms
such as GSA, PSO, EP, ES andDE algorithm to solve 29well-
known mathematical optimization problems, and three clas-
sical engineering design problems such as (the design of
tension/compression spring, the design of welded beam, and
the design of pressure vessel). As reported in [31], the GWO
algorithm provided very competitive and excellent results
compared to these well-known meta-heuristics algorithms.

The rest of this paper is organized as follows:
Section 2 illustrates the background. Section 3 provides and
explains in details the component of the proposed framework
LSHGWOBRNN. Section 4 demonstrates and discusses the
experimental part. Finally, the conclusion is presented in
Section 5.

II. BACKGROUND
In this section, we will explain in details; imbalanced data
sets, Locality Sensitive Hashing (LSH) algorithm, Recurrent
neural networks, and finally Grey wolf optimizer.

A. IMBALANCED DATASETS
The dataset is considered to be imbalanced if the number of
samples in the majority class is overwhelming the samples of
minority class [32]. For instance, the population of patients
constitutes only a small part compared to the normal healthy
persons. The more dangerous diseases have even rarer num-
bers of cases, such as AIDS and cancer. Frankly speaking,
it is very dangerous to identify one of patients with infec-
tious diseases as a healthy person and vice versa [33]. That
creates the imbalanced data set when we try to classify such
data which causes over-fitting the majority classes and could
lead to biases classification results and wrong decisions.
Traditional classifiers are reporting very bad results when
they are applied to imbalanced datasets [34]. For instance,
the classifier could report a very good performance on the
majority class but, on the other hand, it could report a very
bad performance on the minority class, since they consider a
balanced data distribution.

For solving the imbalanced classes problem, many tech-
niques have been proposed for solving this issue. Sampling
is one of the proposed techniques for preprocessing the
imbalanced classes problem [35]. Sampling is mainly based
on a simple idea which is, achieving the balance between

data set classes. Oversampling and under-sampling are the
main methods of sampling [36]. Under-sampling is achieving
the data distribution balance by removing some instances
from the majority class. In contrast, oversampling is trying
to achieve the balance by duplicating the minority class
instances. Unfortunately, both algorithms are suffering from
severe disadvantages. Under-sampling may neglect some
important instances, which accordingly, may affect the clas-
sification algorithms performance. Conversely, oversampling
may create unnecessary minority class instances, which may
consequently increase the algorithm running time. Generally,
Duplicating the classes instances can lead to over fitting.
for solving the over fitting problem, Chawla, Bowyer, and
Hall produced the SMOTE algorithm [37]. The basic idea
of SMOTE algorithm is generating synthetic instances of
the minority class by using the attribute domain instead of
the instance domain by creating synthetic instances of the
minority class.

B. LOCALITY SENSITIVE HASHING (LSH)
Locality sensitive hashing (LSH) technique is one of the
best techniques for finding related instances in a very short
time compared to other techniques in massive data sets [38].
This algorithm belongs to randomized class algorithms. Ran-
domized algorithms do not necessarily guarantee an accurate
answer but instead, give us a promise of returning the right
answer or one very adjacent to it. By performing additional
computational iterations, we can achieve higher probability.
There are many issues in the real-world applications today
that require finding similar samples. Usually, we can solve
such a problem by finding the nearest neighbor to an item
in some dimensional space [39]. This solution looks easy,
but when the dataset is massive and the instances are too
interfered and complicated, the time required for processing
is increasing linearly with the number of instances and the
complexity of the classes inside the dataset.

Theoretically, we can solve this problem by reiterating
through every object in the dataset and computing the dis-
tance to the query object. Nevertheless, our datasets may
consist of billions of instances; a vector that contains hun-
dreds of dimensions describes each object. Therefore, it is
very important to find a method that does not use linear
search method in the dataset. Modern methods to achieve
this solution include trees and hashes [40]. A Tree is starting
from the top node of the query then descending down con-
structing a tree of leaf’s, unfortunately, the time required for
constructing such a tree is O (logN), where N is the number of
instances in the dataset. In one-dimensional space, it will be
considered as a linear search, but in multi-dimensional space,
this requires constructing the k-d tree. The main drawback for
k-d trees is that its performance goes down when the number
of dimensions increases hugely; accordingly, we cannot use
it for massive datasets with complex dimensions [41].

Hashing basic idea is to build a hash table for mapping
between keys (indexes) and an array of buckets that contains
the values of the dataset. A well-designed hash table will
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allow us to find a value in O (1) with O(K) memory, where K
is the number of keys in the table [42]. The main advantage
for hashing over other techniques like Trees is the speed,
especially when the number of dimensions and entries is
too high. For such massive and high dimensional datasets,
locality sensitive hashing (LSH) is one of the best techniques
to use for retrieving samples that are similar to a query item.
In these searches, it can significantly diminish the computa-
tional time, at a cost of losing small percentage of precision
and accuracy [43]. Indyk and Motwani introduced the idea
of locality sensitive hashing (LSH) in [44]. LSH function
families have a very important property, that the probability
of collision between near instances are much higher than far
ones [45].

At the beginning, the dot product (DP) (scalar projection)
is applied to ensure that all near instances will fall into the
same bucket according to the following equation:

DP (Eq) = Eq · Ev (1)

where Eq is a query point, and Ev is a Gaussian random vector,
this scalar projection is then quantized into a set of buckets,
with a width w, with one assumption that adjacent items in
the original space will fall into the same bucket using the
following equation:

hv,z (Eq) =
Eq·Ev+ z
w

(2)

where w is the width of each quantization bucket and z is
a Random variable distributed from zero to w uniformly
for reducing the quantization error and maintain the same
performance [46]. At the end of projection and quantization
operations, each instance in our dataset should be placed in
a bucket described by d integer indices [47]. An ordinary
search for similar instances to the query point in the same
bucket can easily take O (log N) operations, where N is the
number instances within the same bucket, but we reduced this
to O (1) by using a pair of conventional hash functions. In the
beginning, for mapping the d-dimensional quantized projec-
tion into a single linear index, we will use a conventional hash
which is computed as following:

H1 =

∑
j

wjdj

mod N1 (3)

where Wi are weights and N1 is the hash table size. The
main idea for using hash tables is to make sure that unrelated
instances in the d-dimensional space are going to be allocated
to different N1 table entries for avoiding ‘‘collisions’’ in the
case of which distinct instances hash to the same value.While
a well-constructed hash will ensure a uniform distribution
of entries, the risk of distinct instances colliding obviously
increases, as the table gets smaller. To solve this problem,
we will create a second hash H2 of d-dimensional instances
similar to H1 but with different weights and size [48]. Then,
H2 will be used to verify that instances retrieved from the hash
table are near neighbors to our query.H2 values (wewill call it

our reference instances) will be stored in the buckets selected
by H1, and then on retrieval, we can compare our reference
instances with instances retrieved from the matching buckets
to identify the true matches, if they exist. Since these refer-
ence instances are short (for example, 13-bit values), their
comparison will be much faster than comparing the entire
d-dimensional original dataset (which requires a very expen-
sive memory and computation requirements). Furthermore,
the concurrent collisions probabilities under both H1 and H2
can be hugely reduced, even for a relatively small hash table.

For two reasons, we will use Locality sensitive Hashing in
our proposed framework; the first one, is for creating subsets
of the big data set by hashing instances into buckets, hence,
the search for the global optimum in each bucket will bemuch
easier than searching in whole data set at once. The second
one, since we are working on big data, by using the LSH
we will achieve very huge saving in terms of the framework
running time, due to the fact, that is the complexity of LSH
is O (d log n) vs. O (d n) for linear search techniques such
as (K-NN), where d is the number of dimensions and n is the
number of instances.

C. RECURRENT NEURAL NETWORKS
Schuster and Paliwa producedBidirectional Recurrent Neural
Networks (BRNN) in 1997 [49]. The basic idea of BRNNs
is connecting hidden layers from opposite directions to the
output. As a result of this structure, information from the past
and future are available to the output at any time. Recurrent
neural networks [50] can be considered as an extension of the
ordinary feed forward multilayer perceptron networks, where
inputs and outputs are vector of values instead of discrete
values. Let us consider the input to a recurrent neural network
by A = {at} where atεVN is an input vector for each time
step t . Moreover, let us consider the output as C= {ct} where
ctεVM is the output vector for each time step t . Our aim is to
Model this distributionQ (C|A). Although, RNNs can be used
for mapping the input vectors to output vectors, also, it can be
used to predict the next input, which is called unsupervised
manner by setting C = {ct = at+1}.

1) UNIDIRECTIONAL RECURRENT NEURAL NETWORKS
The output of a unidirectional recurrent neural network ct can
be calculated by:

Q
(
ct | {ai}ti=1

)
= σ (Wcht + bc) (4)

where

ht = tanh (Whht−1 +Waat + bh) (5)

Wc are the weights that connects the hidden layer to output
layer, Wh are the weights that connects the hidden layer to
hidden layer, and Wa are the weights that connects the input
layer to the hidden layer. bc are the biases of the output layer,
and bh are the biases of the hidden layer. For the final nonlin-
earity σ we can use sigmoid, tanh, and Relu as an activation
function [51]. Due to this structure, the RNN will calculate
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the output ct based on the transmitted information through
the hidden layers regardless of whether it depends directly or
indirectly on the values {ai}ti=1 = {a1, . . . . . . .., at }.

2) BIDIRECTIONAL RECURRENT NEURAL NETWORKS
Bidirectional Recurrent Neural Networks (BRNN) can be
considered as an extension of the unidirectional recurrent
neural networks by adding a second hidden layer, where the
connections between the hidden to hidden layers are in the
opposite direction [52]. Consequently, this model can exploit
data from both directions, the past and the future. The output
ct can be calculated by:

Q
(
ct | {ai}i6=t

)
= σ (W f

c h
f
t +W

b
c h

b
t + bc) (6)

where

hft = tanh(W f
h h

f
t−1 +W

f
x xt + b

f
h) (7)

hbt = tanh(W b
h h

b
t+1 +W

b
a at + b

b
h) (8)

If we compared the BRNN with the regular RNN, we can
notice that the forward direction is designated by the super-
script f , have separate non tied weights and activation func-
tions from backward direction, which is designated by the
superscript b. please mind that, in the proposed structure, ct
does not get data from at due to the none cyclic connections.
Accordingly, this model can be used in an unsupervised
manner by setting C = A, for predicting one-time step given
all other time steps in the input sequence. Please mind that,
in the backward pass of the BRNN, there should be two
stages for the BPTT (Back Propagation Through Time) which
are responsible for minimizing the MSE by adjusting the
weights [53], since this job will be achieved by using the Grey
wolf optimizer, we did not implement those two stages in our
proposed algorithm.

3) BRNN PARAMETER OPTIMIZATION
Weights in a BRNN have two main roles; the first one is,
deciding how much the output is affected by the input [54],
and the second one is, controlling the learning rate of the
hidden layers. Exactly as slope in linear regression, where the
output is calculated by multiplying the weights to the inputs
then added up. Weights are numerical values that control how
much neurons are affecting each other. For any neuron, if the
inputs are a1, a2, and a3, and weights applied to them are w1,
w2, and w3. The output is:

c = f (a) =
∑n

j=1
ajwj (9)

where n is the number of inputs. Generally, the weighted sum
can be calculated by performing this array multiplication.
Bias is an additional variable that can be used to adjusting
the output along with the weighted sum of the inputs to the
neuron [55]. The final output of a neuron is:

c = f (a) =
∑n

j=1
ajwj + b (10)

where b is the bias.

4) BRNN UNSTABLE GRADIENT PROBLE
Most of deep neural networks, including bidirectional recur-
rent neural networks are suffering from a serious issue known
as unstable gradient problem. This is due to, if we moved
backward through the hidden layers, the gradient will start
getting smaller. Which accordingly means that, the learning
rate for neurons in the later layers is much faster than the
learning rate for neurons in earlier layers. This issue is known
as the vanishing gradient problem [56].

a: VANISHING GRADIENT PROBLEM
As we can notice from eq. 6, this formula is composed from
terms multiplication in the form of σ (wc.ht ) except the last
term (the bias). For understanding the behavior of each term
in this formula, let’s have a look at the plot of the activation
function σ :
As we can notice from Fig.1, the peak value for the

derivative is 0.25 at σ (0). The default initialization method
for neural networks is as follows; the weights and biases
will be chosen by using independent Gaussian distribution,
with mean equal to 0 and standard deviation equal to 1.
Consequently, all weights generally will satisfy |wc| <1.
From previous conditions, we can assure that all σ (wc.ht )
terms will usually satisfy |σ (wc. ht )| <0.25. Later on, this
term will be multiplied by many similar terms, and the result
of this product will start decreasing exponentially. As more
terms are being added to the product, the gradient will start
vanishing [57].

FIGURE 1. Derivative of sigmoid function.

b: EXPLODING GRADIENT PROBLEM
On the other hand, if we increased the weights wc during
training instead of decreasing, there could be a chance that the
terms σ (wc.ht ) will no longer satisfy |σ (wc.ht )| <0.25. In this
case, if the terms σ (wc.ht ) increased enough, and became
more than 1, then we will no longer have a vanishing gradient
problem. In contrast, the gradient will start growing exponen-
tially as we move backward through the layers. Instead of
the vanishing gradient problem, we will have an exploding
gradient problem.

To dominate the bidirectional recurrent neural network
unstable gradient problem, the grey wolf optimizer will be
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used for finding the optimal values of the weights and biases
with only one condition, the values should be adjacent to 1
(1=<F∗=<5). Neither, very small, hence the gradient will
vanish after the multiplication, nor very big, hence the gradi-
ent will explode after the multiplication.

D. GREY WOLF OPTIMIZER (GWO)
Grey wolves are one of apex predators, apex predators are
at the top of the food chain. Grey wolves usually prefer to
live in groups. The group size varies from 5–12 on average.
The most interesting thing about grey wolves is that they
have a very strict social leading hierarchy. The leaders called
alphas, are a male and a female. The alpha is responsible
for making important decisions to the group such as hunting,
sleeping place, and so on. The whole group should obey the
alpha’s orders [31]. On the other hand, it had been observed
that sometimes the alpha follows the other wolves in the
group, which can be considered as some kind of democratic
behavior. The alpha wolf is also called the leader wolf since
the whole group should follow his/her orders. Interestingly,
it is not necessarily for the alpha to be the strongest member
among the group, but the best in terms of leading the group.
Which implies that the discipline and organization of the
group is more important than its strength [31].

Beta is the second level in the hierarchy of grey wolves.
The betas are inferior wolves that are responsible for help-
ing the alpha in making the right decisions or other group
activities. The betas should respect the alpha, but on the other
hand, they are also commanding the other lower-level wolves.
They are playing dual role at the same time, an advisor to
the alpha and discipliner for the group. The betas are the
heavy hand of the alpha, they are responsible for reinforcing
the alpha’s commands throughout the group and reporting
feedback to the alpha. Omega is the lowest ranking grey
wolf. The omega plays the role of scapegoat [31]. Omega
wolves always have to succumb to all other dominant wolves.
Additionally, they are the last wolves that are allowed to eat.
Hence, the omegasmay be seen as not an important individual
in the group, but it has been observed that in case of losing
the omegas, the whole group may face internal fighting and
problems. This is because the omegas are venting of violence
and frustration of all wolves in the group. Accordingly, the
role of the omegas is to assist satisfying the entire group and
maintaining the dominance structure.

If a wolf is not an alpha, beta, or omega, he/she is called
inferior (or according to some references delta). Delta wolves
have to succumb to alphas and betas, but they command the
omega. Hunters, sentinels, scouts, and elders belong to this
category. Hunters are responsible for helping the alphas and
betas when hunting prey and providing food for the group.
Sentinels are responsible for guaranteeing and protecting the
safety of the group. Scouts job is watching the boundaries
of the territory and warning the group in case of any danger.
The experienced wolves who have been alpha or beta are
the Elders of the group. The social hierarchy of grey wolves
is interesting, but its group hunting technique is even more

interesting. The main stages of grey wolf hunting according
to [58] are as follows:

1) Tracking, chasing, and approaching the prey.
2) harassing, and encircling the prey until it stops moving.
3) Attack towards the prey.
In this section, the GWO will mathematically modeling

the grey wolves hunting technique (tracking, encircling, and
attacking prey) and the social hierarchy for performing opti-
mization.

1) SOCIAL HIERARCHY
When we are designing GWO, in order to mathematically
model the social hierarchy of wolves, we will consider the
best solution as the alpha (α). Accordingly, the second-
best solution will be named beta (β), and the third best
solution will be named delta (δ). Then, the rest of the best
solutions will be assumed as omegas (ω). In the GWO
algorithm the hunting technique (optimization) is controlled
by α, β, and δ. The ω wolves are following these three
wolves [31].

2) ENCIRCLING PREY
As we said before, the grey wolves are encircling prey during
the hunt. For modelling encircling behavior mathematically,
the following equations are proposed:

⇀

D =
∣∣∣ EC . EFp (t)− EF(t)∣∣∣ (11)

EF (t + 1) = EFp (t)− EA. ED (12)

where t represents the current iteration, EA and EC are coeffi-
cient vectors, which are calculated as in Eq. (14) and Eq. (15),
EFp indicates the position vector of the prey, and EF is the grey
wolf’s position vector. In each iteration, EF will be updated if
there is a better solution.

Ea = 2− t(
2

Maxiter
) (13)

EA = 2Ea.Er1 − Ea (14)

EC = 2. Er2 (15)

where t is the loop counter, Max iter is the maximum number
of iterations in this loop, Er1, Er2 are random vectors in [0,1],
and Ea is linearly decreased from 2 to 0 over the course
of iterations. For testing the effects of Eqs. (11) and (12),
assume a two-dimensional position vector and some of the
possible neighbors as shown in Fig. 2. As we can see in
this figure, a grey wolf in the position (X , Y ) can update
its position according to the position of the prey (X∗, Y ∗).
By adjusting the value of EA and EC vectors with respect to
the current position, different places around the best agent
can be reached. For example, (X∗–X, Y ∗) can be reached by
setting EA = (1,0) and EC = (1,1). The random vectors r1 and
r2 allow grey wolves to reach any position between the points
shown in Fig. 2. Accordingly, by using Eqs. (11) and (12) a
grey wolf can update its position randomly inside the space
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FIGURE 2. Grey wolves’ positions and their possible next locations.

around the prey. The same approach can be applied to an n-
dimensions search space, and the grey wolves will move in
(hyper-spheres/cubes) around the best solution obtained so
far [31].

3) HUNTING
One of the grey wolves’ abilities is determining the location
of prey and encircling them. The alpha usually guides the
whole hunt operation. Sometimes, the beta and delta are
participating in hunting operation. But, in our virtual 2D
search space, we do not have any idea about the location
of the prey (optimum). For mathematically simulating the
hunting behavior of grey wolves, we will assume that the
alpha, beta, and delta knows the potential location of prey. So,
we will save the best three results obtained so far, and then,
the other grey wolves (including the omegas) will be forced
to update their positions according to the position of the best
three search agents [31]. For achieving this, we proposed the
following formulas:

−→
Dα =

∣∣∣−→C1 ∗
−→
Fα −

−→
F
∣∣∣ , −→Dβ = ∣∣∣−→C2 ∗

−→
Fβ −

−→
F
∣∣∣ ,

−→
Dδ =

∣∣∣−→C3 ∗
−→
Fδ −

−→
F
∣∣∣ (16)

−→
F1 =

−→
Fα −

−→
A1 ∗

(
−→
Dα
)
,
−→
F2 =

−→
Fβ −

−→
A2 ∗

(
−→
Dβ
)
,

−→
F3 =

−→
Fδ −

−→
A3 ∗ (

−→
Dδ) (17)

−→
F (t + 1) =

−→
F1 +

−→
F2 +

−→
F3

3
(18)

Fig. 3 shows in a 2D search space, how a grey wolf (search
agent) updates its position according to alpha, beta, and delta.
Hence, as we can notice from Fig. 3, the final position of a
grey wolf (search agent) will be in a random place within a
circle in the search space defined by the positions of alpha,
beta, and delta. In other words, the position of the prey is
estimated by alpha, beta, and delta, and other wolves are fol-
lowing this estimation and updating their positions randomly
around the prey [31].

4) ATTACKING PREY (EXPLOITATION)
As we said above, the last stage in the hunt is attacking the
prey when it stops moving. For modeling approaching the

FIGURE 3. search agents’ positions updating in GWO.

FIGURE 4. GWO Hunting techniques: (a) attacking the prey (convergence),
(b) searching for prey (divergence).

prey mathematically, we will decrease the value of Ea. Please
note that, the range of EA will be also decreased by Ea. Which
means, EA is a random value in the interval [−2a, 2a], where a
is decreasing from 2 to 0 over the course of iterations. When
random values of EA are in [−1, 1], the next position of a grey
wolf (search agent) can be in any position between its current
position and the position of the prey. Fig. 4(a) shows that by
setting |A| < 1 it forces the wolves to attack towards the
prey. With the operators proposed so far, the GWO algorithm
allows its search agents to update their position based on
the location of the alpha, beta, and delta, and attack towards
the prey [31]. But, with these parameters only, the GWO
algorithm will probably suffer from stagnation in local solu-
tions. Although, the proposed encircling mechanism shows
exploration to some extent, but GWO algorithm still needs
more parameters for emphasizing exploration.

5) SEARCH FOR PREY (EXPLORATION)
As mentioned before, grey wolves are searching for the prey
according to the position of the alpha, beta, and delta. The
typical procedure includes two steps, divergence from each
other searching for prey, and convergence for attacking the
prey. For modeling the divergence mathematically, EA will be
utilized with random values greater than 1 or less than−1 for
forcing the grey wolf (search agent) to diverge from the prey.
This technique is emphasizing the exploration and allowing
the GWO algorithm to search globally. From Fig. 4(b) we can
see that |A| > 1 is forcing the grey wolves (search agents) to
diverge from the prey hoping to find a better prey.
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FIGURE 5. The block diagram for our proposed LSHGWOBRNN framework.

EC is Another component of GWO that emphasizes explo-
ration, as we can see in Eq. (15), the EC vector contains random
values in [0, 2]. This parameter is responsible for providing
the prey with random weights for emphasizing (C > 1) or
deemphasizing (C < 1) the effect of prey randomly in defin-
ing the distance in Eq. (11). Accordingly, this will increase the
exploration, increases the GWO random behavior throughout
optimization, and will increase the local optima avoidance.
In contrast to A, C here will not linearly decrease. For empha-
sizing the exploration not only during initial iterations, but
also during final iterations, C vector is intentionally required
to provide random values at all times [31]. This parameter is
very important for local optima avoidance, particularly in the
final iterations.

Another important feature of the C vector, that it can sim-
ulate the effect of obstacles that prevents grey wolves from
easily approaching prey in nature. In fact, the obstacles in
nature may appear in the hunting paths of grey wolves and
preventing them from quickly approaching prey, and this is
exactly what the vector C does. Depending on the position of
the grey wolf, it can give the prey a random weight and make
it farther and harder for wolves to reach it, or vice versa. To
summarize, the search process in the GWO algorithm begins
with creating a random population of grey wolves (search
agents). Over the course of iterations, the possible location
of the prey is estimated by alpha, beta, and delta wolves.
Each search agent is updating its distance from the prey.
For emphasizing exploration and exploitation respectively,
the parameter a is decreased from 2 to 0. Search agents
are diverging from the prey when

∣∣∣EA∣∣∣ > 1, and converging

towards the prey when
∣∣∣EA∣∣∣ < 1. At the end, the GWO

algorithm is terminated when an end criterion is reached.

III. COMPONENT OF THE PROPOSED FRAMEWORK
The main idea for our proposed framework is based on the
tournament idea. As in the tournaments there are the groups
level, then the best candidates will be escalated to the next
level of the tournament, tell the final level of the tournament.

In our framework we will hash the data set into buckets,
then, we will use the GWO+BRNN for finding the top 5 best
candidates in each bucket and escalate them to the next level
in our tournament, which is similar exactly to the group idea.
The next level of our tournament is the final tournament level,
in this level we will compose a new data set from all buckets
winners (the top 5 best winners from each bucket), then,
by using the GWO+BRNN we will choose the best of the
best to be our tournament winner, which will be accordingly,
the global optimum of the whole data set (the instance with
the lowest MSE). The original components of the proposed
framework are shown in Fig.5. It consists of three stages pre-
processing stage, bucket search stage, and final tournament
winner stage.

A. PREPROCESSING STAGE
In this stage, we will use LSH-SMOTE algorithm for resolv-
ing the imbalanced classes problem as it has provided a
very competitive results compared to SMOTE algorithm and
9 most recent variations of SMOTE algorithm [59], then,
we will apply the LSH algorithm for hashing the data set into
buckets for simplifying the search for global optimum in each
bucket.

1) LOCALITY SENSITIVE HASHING SYNTHETIC MINORITY
OVERSAMPLING TECHNIQUE (LSH-SMOTE)
In this algorithm, we will use the LSH-SMOTE algorithm
for solving the imbalanced data set classes quickly and effi-
ciently. This algorithm has been tested against SMOTE algo-
rithm and nine most recent variations of SMOTE algorithm
and proved that, it is the best among them in terms of running
time and classification results [59]. This algorithm is based
on the hashing idea and creating buckets, and assigning all
items with similar hash code to the same bucket, which is
accordingly will increase the probability of collision between
similar items. Later on, wewill select themost colliding items
from each bucket, and use the Euclidean distance for sorting
them and select only the top five among them. At the end,
a list that contains all the top five colliding items from each
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FIGURE 6. Locality sensitive hashing algorithm pseudo code.

bucket is sent back to the main SMOTE class for creating
synthetic samples.

2) APPLYING LOCALITY SENSITIVE HASHING (LSH) FOR
HASHING THE DATA SET INTO BUCKETS
Since the main reason for local optima is the big size of
data set and its multi-dimensional space, which makes find-
ing a global optimum in particular area not necessarily the
global optimum for the whole data set, which leads to the
local optima problem. Therefore, in this phase we will apply
the LSH algorithm for hashing the data set into buckets.
The main goal of this phase is creating smaller subsets of
the data set, which accordingly will ease the search for
global optimum in each bucket alone. Hence, we can find
the global optimum for the whole data set more easily and
precisely. The pseudo code for the LSH algorithm is provided
in Fig. 6.

B. BUCKET SEARCH STAGE
In this stage we will describe the details of our proposed algo-
rithm (GWO+BRNN) for adjusting the weights and biases
of the bidirectional recurrent neural network. Then, it will
be used for finding the best 5 candidates (search agents)
in each bucket, and escalate them to the final tournament
stage.

1) GWO PARAMETERS INITIALIZATION
In this step, wewill initialize the GWOparameters as follows:
we will initialize the number of wolves (search agents) to
100, we will initialize the number of iterations to 50. Those
values were selected after performing several experiments,
when we tried to increase the number of wolves and iterations
more than that, we did not achieve any improvement in the
results (AUC &MSE), in contrast, it increased the algorithm
overhead and complexity.

2) GWO-BASED BRNN TRAINER
As we stated before, the BRNN training is strongly affected
by the values of weights and biases. The trainer job is reach-
ing the highest classification results by selecting the optimal
values for weights and biases [60]. The variables provided to
the GWO algorithm should be in vector form as follows:

EV =
{
EW , Eb

}
={W11,W12,. . . .,Wmm, h, b1, b2, . . . ., bm (19)

where the number of the input nodes is m, the connection
weight from the xth node to the yth node is Wxy, and the bias
is by.
After defining the GWO parameters, our next step is defin-

ing the objective function for the GWO algorithm. The Mean
Square Error (MSE) is one of the common metrics for evalu-
ating the BRNN performance [61]. This metric calculates the
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FIGURE 7. Flowchart of the proposed LSHGWOBRNN algorithm.

difference between the required output and the actual output
of the BRNN by applying a set of training instances to the
BRNN according to the following equation:

MSE =
∑n

x=1
(ohx − d

h
x )

2 (20)

where n is the number of outputs, dhx is the optimal output of
the xth input neuron when the hth training instance is used,
and ohx is the actual output of the xth input neuron when the
hth training instance appears in the input. For increasing the
efficiency of BRNN, the performance of the BRNN should
be calculated according to the average of MSE over all the
training instances as follows:

MSE =
∑z

h=1

∑n
x=1 (o

h
x − d

h
x )

2

z
(21)

where z is the number of training instances. Finally, the prob-
lem of training BRNN can be formulated with the variable
and average MSE for the GWO algorithm as follows:

Minimize : f (Ev) = MSE (22)

Fig. 7 depicts the flowchart for our proposed algorithm
LSHGWOBRNN. At the beginning, we applied the LSH-
SMOTE algorithm for the imbalanced classes problem, then
we applied the LSH algorithm for hashing the data set into
buckets. After that, for training the BRNN we used the GWO
algorithm for optimizing theweights and biases of the BRNN.
Later on, we used the trained GWO+BRNN for searching

for the best five instances in each bucket and composed
a new data set called final data set. Finally, we used the
GWO+BRNN for searching for the tournament winner (the
best instance with lowest MSE).

3) TERMINATION POINT
The GWO search process will be terminated in one of
two cases, either if the maximum number of iterations has
been reached, or the best solution has not been changed
over four iterations. The GWO algorithm pseudo code is
shown in figure 8, and Fig. 9 is depicting the BRNN algo-
rithm pseudo code, while Fig. 10 is depicting our proposed
GWO+BRNN algorithm pseudo code within the bucket
search stage.

Fig. 8 is illustrating the grey wolf optimizer pseudo code,
this is a modified version of the one proposed by Seyed Ali
Mirjalili in [31], in three parts, the first one, for solving the
unstable gradient problem we restricted the search domain
to (1 =<F∗ =<5), the second one, if the best solution Fα
has not been changed for four iterations, the search process
will be terminated without reaching the maximum number of
iterations and Fα will considered as the best solution. And
the third one, is that the original GWO reports only 4 best
search agents, but in our modified one, we will report the best
5 search agents Fα,Fβ , Fδ , Fω1, and Fω2.

Fig. 9 is illustrating the bidirectional recurrent neural net-
work (BRNN) algorithm pseudo code, this algorithm involves
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FIGURE 8. Grey wolf optimization algorithm pseudo code

FIGURE 9. Bidirectional recurrent neural network pseudo code.

of two stages, the forward pass and the backward pass. In the
forward pass stage, we will pass all inputs through the BRNN
for determining all the predicted outputs. And this can be
carried out through two phases. In the first phase, a forward
pass will be done for forward states (from y= 1 to y= n) and
backward states (from y = n to y = 1). In the second phase,

a forward pass will be done for output neurons. In the back-
ward pass, the derivative of the objective function σ will be
calculated using by two phases. In the first phase, a backward
pass will be done for output neurons. In the second phase,
a backward pass will be done for backward states (from y = 1
to y = n) and forward states (from y = n to y = 1).
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FIGURE 10. Bucket search stage pseudo code.

Fig. 10 illustrates the bucket search stage pseudo code,
firstly, we will apply the LSH-SMOTE algorithm for solving
the imbalanced classes problem. Secondly, we will apply the
LSH algorithm for hashing the data set instances into buck-
ets. Thirdly, the GWO algorithm will be used for providing
the BRNN classifier with weights and biases. Fourthly, our
BRNN classifier will be trained on the training set and the
MSE for the training phase will be calculated. Fifthly, our
GWO+BRNN classifier will be applied to the test set for
classification and the MSE for the classification phase will
be calculated. Finally, a new data set called final data set is
composed from all bucket’s winners (top 5 instances with the
lowest MSE).

C. FINAL TOURNAMENT WINNER STAGE
In this stage we will search for the final tournament winner
(the best instance with the lowest MSE), among all win-
ners from all buckets in the new composed data set named

Final dataset. First of all, we will calculate the dimensions
of the new data set. Then, the GWO algorithm will be
used for providing the BRNN classifier with weights and
biases. Finally, we will apply the GWO+BRNN classifier
for classifying the data set and calculating the MSE for
all instances in this dataset for determining the tournament
winner (the best instances with the lowest MSE). At the end,
calculating the classification rate (accuracy), and AUC for the
tournament winner. The algorithm for this stage is illustrated
in Fig. 11.

IV. EXPERIMENTAL RESULTS
Our experiment has been performed by using (i7-8700K
4.3 GHz, 16GB RAM, 1TB SSD, Windows 10 pro) with
Weka 3.9.1 and Matlab R2018a. Our experiment will include
two main sections. In the first section, our proposed frame-
work LSHGWOBRNN will be tested against seven clas-
sifiers (Naive Bayes, AdaBoostM1, Decision Table, and
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FIGURE 11. Final tournament winner stage pseudo code.

Random Tree), in addition to GWO+MLP, which is pub-
lished in 2015 [62], WOA+MLP, and WOA+BRNN [71],
will be performed over eight highly imbalanced data sets
obtained from the KEEL Data Set Repository (Imbalance
ratio higher than 9) [63], and one big dataset that has been
used in ECBDL 14 Big Data Mining Competition 2014 [64].
In the second part, our proposed framework LSHGWOBRNN
will be compared against GWO+MLP over all data sets in
that paper [62]. In [62], Seyed Ali Mirjalili used the GWO for
providing the neural network (multi-layer perceptrons) with
optimal weights and biases.

A. PERFORMANCE EVALUATION METRICS
Manymetrics have been proposed for the evaluation of imbal-
anced classification performance evaluation problems. Most
of them are based on the 2× 2 confusion matrix as depicted
in Table 1.

TABLE 1. The confusion matrix.

One of the most commonly used metrics for evaluating
the performance of classification techniques is the overall
accuracy [65], which can be calculated as following:

Acc =
TP+ TN

TP+ FN + TN + FP
(23)

However, it has been proved bymany researches that, in the
context of imbalanced data sets the overall accuracy is not

the optimal metric for such problems, since the results will be
strongly biased toward the majority class [66]. Hence, finding
other metrics that can efficiently measure the classification
performance of imbalanced data sets is essential.

Two simple metrics that are proven to calculate the clas-
sification performance over imbalanced data sets efficiently
are the true positive rate (or sensitivity or recall) and the true
negative rate (or specificity) [67], which is the percentage of
instances (positive and negative, respectively) are correctly
classified [68]:

sensitivity =
TP

TP+ FN
(24)

specificity =
TN

TN + FP
(25)

Another very important performance evaluation metric is
the area under the ROC curve (AUC), which is the geometric
mean of accuracies, the precision, the F-measure and the
area under the precision-recall curve, among others [69].
Generally, for imbalanced data sets these are good indicators
of classification performance because they are independent
from the distribution of instances between classes. The AUC,
which is one of the most commonly used metrics for evalu-
ating imbalanced classes problem, will be the method used
in this part of our experiment for performance evaluation.
The AUC which can be defined by a single point on the
ROC curve, is also referred to as balanced accuracy or macro-
average [70], which can be calculated as follows:

AUC =
sensitivity+ specificity

2
(26)

Our benchmark will be carried out by performing twomain
experiments. In both experiments, our proposed framework
LSHGWOBRNN will be tested against the seven classifiers
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TABLE 2. Experiment datasets characteristics.

TABLE 3. LSH-SMOTE parameters settings.

over nine data sets. The first experiment is done without
preprocessing while the second one uses LSH-SMOTE algo-
rithm for preprocessing the data sets. The four classifiers
benchmarks in all experiments will be performed on Weka
3.9.1, only GWO+MLP, WOA+MLP, WOA+BRNN, and
our proposed framework experiments will be performed on
Matlab R2018a. Also, the preprocessing stage for LSH-
SMOTE will be also performed on Weka 3.9.1, then the
preprocessed data sets will be imported into Matlab for per-
forming the GWO+MLP, WOA+MLP, WOA+BRNN, and
our proposed framework benchmarks. The characteristics of
data sets used are depicted in Table 2.

The original ECBDL’14 dataset has 32 million instances
with 631 attributes distributed among two classes, the uncom-
pressed dataset size is about 56GB of disk space. Our exper-
iments have been performed by using test set only which
is 5GB of disk space, and has 2897917 instances, and we
have reduced the number of attributes from 631 to 23 for
simplifying the computations.

For the solving the imbalanced classes problem, we will
use LSH-SMOTE algorithm for preprocessing our data sets.
The configuration for LSH-SMOTE algorithm is depicted
in Table 3

B. FIRST EXPERIMENT
In this experiment, our proposed framework LSHGWO-
BRNN will be tested against seven classifiers [71] over
nine highly imbalanced data sets, over two sub experi-
ments, without preprocessing, and with LSH-SMOTE pre-
processing in terms of AUC and MSE (Local Optima
Avoidance).

1) EXPERIMENT ONE (WITHOUT PREPROCESSING)
In this experiment, we will test our proposed framework
LSHGWOBRNN against the seven classifiers (Naive Bayes,
AdaBoostM1, Decision Table, Random Tree, GWO+MLP,
WOA+MLP, and WOA+BRNN) over nine data sets without
preprocessing in terms of AUC and MSE (Local Optima
Avoidance). The AUC results will be depicted in Table 4,
while the MSE results will be depicted in Table 5.

Table 4 and Fig. 12 shows the AUC results for all
classifiers over nine data sets without preprocessing. For
yeast-2_vs_4 dataset, our algorithm ranked first with score
(0.989). For yeast-1_vs_7 dataset, our algorithm ranked
second with score (0.831), while the first algorithm
AdaBoost achieved (0.832). For yeast-1-4-5-8_vs_7 dataset,
our algorithm ranked second with score (0.659), while the
first algorithm Naive Bayes achieved (0.662). For yeast-
2_vs_8 dataset, our algorithm ranked second with score
(0.811), while the first algorithm Naive Bayes achieved
(0.821). For yeast4 dataset, our algorithm ranked first
with score (0.909). For yeast-1-2-8-9_vs_7 dataset, our
algorithm ranked second with score (0.762), while the
first algorithm WOA+MLP achieved (0.764). For yeast5
dataset, our algorithm ranked First with score (0.992). For
yeast6 dataset, our algorithm ranked first with score (0.927).
For ECBDL 14 dataset, our algorithm ranked first with
score (0.731). Finally, we achieved the best average over
all other algorithms (0.848), then, WOA+BRNN algorithm
ranked second with score (0.832), then, AdaBoost algorithm
ranked third with score (0.830), then, WOA+MLP algo-
rithm ranked fourth with score (0.829),then, GWO+MLP
algorithm ranked fifth with score (0.826), then, Naive Bayes
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TABLE 4. AUC results without preprocessing.

FIGURE 12. AUC results without preprocessing.

algorithm ranked sixth with score (0.822), then, Random
Tree algorithm ranked seventh with score (0.661), and finally,
Decision Table algorithm ranked eighth with score (0.630).
From table 4 results, we can notice that our proposed frame-
work LSHGWOBRNN did not perform very well in this
stage (we achieved the highest score in four data sets only
out of nine data sets), due to the fact, that all data sets in
this stage were imbalanced and have not been preprocessed.
In contrast, Naive Bayes algorithm alone outperformed our
proposed framework LSHGWOBRNN in two data sets out of
nine data sets. These bizarre results of Naive Bayes algorithm
are expected due to two weaknesses of this classifier. The
first issue, if the classes are imbalanced, the Naive Bayes
chooses poor weights for the decision boundary. The second
issue, Naive Bayes assumes that all features are independent.

These weaknesses can be summarized as severe assumptions,
which could lead to fake high results [72].

Table 5 shows the MSE results for all classifiers over
nine data sets without preprocessing. For yeast-2_vs_4
dataset, our algorithm ranked first with the lowest MSE
score (1.93E-04). For yeast-1_vs_7 dataset, our algorithm
ranked second with score (0.031245), while the first algo-
rithm AdaBoost achieved the lowest MSE score (0.028224).
For yeast-1-4-5-8_vs_7 dataset, our algorithm ranked sec-
ond with score (0.120345), while the first algorithm Naive
Bayes achieved the lowest MSE score (0.114244). For
yeast-2_vs_8 dataset, our algorithm ranked second with
score (3.53E-02), while the first algorithm Naive Bayes
achieved the lowest MSE score (0.032041). For yeast4
dataset, our algorithm ranked first with score (3.11E-05).
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TABLE 5. MSE results without preprocessing.

For yeast-1-2-8-9_vs_7 dataset, our algorithm ranked sec-
ond with score (0.049635), while the first algorithm
WOA+MLP achieved the lowest MSE score (0.046235).
For yeast5 dataset, our algorithm ranked second with score
(1.14E-04), while the first algorithmWOA+BRNN achieved
the lowest MSE score (1.0E-04). For yeast6 dataset, our
algorithm ranked first with score (1.46E-04). For ECBDL
14 dataset, our algorithm ranked first with score (0.076958),
while the first algorithm AdaBoost achieved (0.082369),
then, GWO+MLP ranked second with score (0.085849).
Finally, we achieved the lowest MSE score average among
all other algorithms (0.034885), then, WOA+MLP algorithm
ranked second with score (0.036839), then, WOA+BRNN
algorithm ranked thirdwith score (0.042041), then, AdaBoost
algorithm ranked fourth with score (0.042208), then, Naive
Bayes algorithm ranked fifth with score (0.042322),then,
GWO+MLP algorithm ranked sixth with score (0.042439),
then, Random Tree algorithm ranked seventh with score
(0.127709), and finally, Decision Table algorithm ranked
eighth with score (0.170998). Table 5 results are a clear evi-
dence for high local optima avoidance ability of our proposed
framework LSHGWOBRNN, even if the difference was not
very big, but this actually is due to the fact, that all data sets in
this stage were imbalanced and have not been preprocessed.

2) EXPERIMENT TWO (LSH-SMOTE PREPROCESSING)
In this experiment, we will compare the proposed algorithm
LSHGWOBRNN against the seven classifiers (Naive Bayes,
AdaBoostM1, Decision Table, Random Tree, GWO+MLP,
WOA+MLP, and WOA+BRNN) over nine data sets prepro-
cessed by LSH-SMOTE algorithm in terms of AUC andMSE
(Local Optima Avoidance). The AUC results will be depicted
in Table 6 while the MSE results will be depicted in Table 7.

Table 6 and Fig. 13 shows the AUC results for all clas-
sifiers over nine data sets preprocessed by LSH-SMOTE
algorithm. For yeast-2_vs_4 dataset, our algorithm ranked
first with score (0.996). For yeast-1_vs_7 dataset our algo-
rithm ranked first with score (0.971). For yeast-1-4-5-
8_vs_7 dataset our algorithm ranked first with score (0.979).
For yeast-2_vs_8 dataset our algorithm ranked first with score
(0.998). For yeast4 dataset, our algorithm ranked first with
score (0.997). For yeast-1-2-8-9_vs_7 dataset our algorithm
ranked first with score (0.995). For yeast5 dataset our algo-
rithm ranked First with score (1). For yeast6 dataset our
algorithm ranked first with score (0.999). For ECBDL 14
dataset, our algorithm ranked first with score (0.998).
Finally, we achieved the best average over all other algo-
rithms (0.993), then WOA+BRNN algorithm ranked second
with score (0.987), then WOA+MLP algorithm ranked third
with score (0.981), then GWO-MLP algorithm ranked
fourth with score (0.980), then Decision Table algorithm
ranked fifth with score (0.974), then Random Tree algo-
rithm ranked sixth with score (0.945), then AdaBoost algo-
rithm ranked seventh with score (0.908), and finally, Naive
Bayes algorithm ranked eighth with score (0.879). The results
of table 6 demonstrates that our proposed framework LSHG-
WOBRNNwith preprocessing (LSH-SMOTE algorithm) has
achieved best AUC score over all data sets, which is a clear
evidence of the superior efficiency of the proposed algorithm
over big imbalanced data sets. In contrary, the Naive Bayes
algorithm failed and achieved the worst average among all
other algorithms, due to its severe assumptions and poor
quality of results.

Table 7 shows the MSE results for all classifiers over
nine data sets preprocessed by LSH-SMOTE algorithm. For
yeast-2_vs_4 dataset, our algorithm ranked first with the

VOLUME 7, 2019 170789



E. M. Hassib et al.: Imbalanced Big Data Mining Framework for Improving Optimization Algorithms Performance

FIGURE 13. AUC results with LSH-SMOTE preprocessing.

TABLE 6. AUC results with lsh-smote preprocessing.

lowest MSE score (1.39E-07). For yeast-1_vs_7 dataset our
algorithm ranked first with the lowest MSE score (1.93E-
06). For yeast-1-4-5-8_vs_7 dataset our algorithm ranked
first with the lowest MSE score (3.11E-08). For yeast-2_vs_8
dataset our algorithm ranked first with the lowest MSE
score (1.33E-07). For yeast4 dataset, our algorithm ranked
first with the lowest MSE score (6.00E-09). For yeast-1-2-
8-9_vs_7 dataset our algorithm ranked first with the low-
est MSE score (3.83E-09). For yeast5 dataset our algo-
rithm ranked First with the lowest MSE score (1.14E-09).

For yeast6 dataset our algorithm ranked first with the lowest
MSE score (1.46E-07). For ECBDL 14 dataset, our algo-
rithm ranked first with the lowest MSE score (1.23E-06).
Finally, we achieved the lowest MSE score average among all
other algorithms (4.02E-07), then WOA+BRNN algorithm
ranked secondwith score (0.000282), thenWOA+MLP algo-
rithm ranked third with score (0.0006),then GWO+MLP
algorithm ranked fourth with score (0.000602), then Decision
Table algorithm ranked fifth with score (0.000941), then Ran-
dom Tree algorithm ranked sixth with score (0.004054), then
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TABLE 7. MSE results with LSH-SMOTE preprocessing.

TABLE 8. Algorithm running time in minutes.

AdaBoost algorithm ranked seventh with score (0.014766),
and finally, Naive Bayes algorithm ranked eighth with score
(0.021911). From table 7 results, we can conclude that our
proposed framework LSHGWOBRNN with preprocessing
(LSH-SMOTE algorithm) has achieved the lowestMSE score
over all data sets, which is a very strong evidence of the high
local optima avoidance ability of our proposed framework
LSHGWOBRNN over big imbalanced data sets.

3) COMPLEXITY AND oVERHEAD OF THE PROPOSED
ALGORITHM ANALYSIS
Is this sub section, we will discuss the complexity and
overhead of our proposed framework LSHGWOBRNN in
terms of algorithm running time in minutes? We will

measure the running time for (GWO+MLP, WOA+MLP,
and WOA+BRNN) algorithms with each data set over
all stages (preprocessing stage with LSH-SMOTE algo-
rithm, and classification stage) and our proposed frame-
work LSHGWOBRNN with each data set over all stages
(preprocessing(LSH-SMOTE & hashing), bucket search,
and final tournament winner). The results are illustrated
in Table 8.

Table 8 depicts the running time of our proposed frame-
work LSHGWOBRNN, as we can see from the table, the run-
ning time was reasonable for all data sets except for the
ECBDL’14 big data set it was very long around 5 to 7 hours
with all algorithms except for our algorithm, it was around 2
hours and 20minutes. Hence, we can notice that our proposed
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TABLE 9. Results of lshgwobrnn vs GWO+MLP and all other algorithms in (reference no.62) over four chosen data sets.

framework LSHGWOBRNN has achieved a tangible saving
in terms of running time as we have expected at the begin-
ning. And this is the second contribution for our proposed
framework LSHGWOBRNN after solving the local optima
problem in high dimensional data sets.

C. SECOND EXPERIMENT
In this experiment, our proposed framework LSHGWO-
BRNN will be tested against the GWO+MLP and all
other classifiers in that paper (Ant Colony Optimization
(ACO), Genetic Algorithm (GA), Particle Swarm Optimiza-
tion (PSO), Population-based Incremental Learning (PBIL),
and Evolution Strategy (ES), over four data sets (Balloon,
Breast cancer, Iris, and Heart) chosen from that paper [62]
is terms of classification accuracy and MSE.

Table 9 illustrates the Results of LSHGWOBRNN vs
GWO+MLP and all other algorithms in [62] over four chosen
data sets. The First data set is the Balloon data set, which
is considered as one of the easiest data sets, accordingly, all
algorithms achieved full accuracy score easily. The second
one is the Beast Cancer data set, which is known as difficult
one, our proposed framework LSHGWOBRNN ranked first
with the highest accuracy (1.00) and lowest MSE (0.000763),
then, the GWO+MLP algorithm ranked second with accu-
racy (0.99) and MSE (0.0012). The third data set is the Iris
dataset, which is more difficult than the Beast Cancer data
set, our proposed framework LSHGWOBRNN ranked first
with the highest accuracy (0.97) and lowest MSE (0.00912),
then, the GWO+MLP ranked second with accuracy (0.91)
and MSE (0.0229). The fourth and last data set is the Heart
dataset, which is the most difficult among all data sets is
this experiment, our proposed framework LSHGWOBRNN
ranked first with the highest accuracy (0.91) and lowest
MSE (0.071671), then, the GWO+MLP ranked second with
accuracy (0.75) and MSE (0.1226). From previous results,
we can conclude that, our proposed framework LSHGWO-
BRNN has achieved the best efficiency in terms of the high

classification accuracy, and the best local optima avoidance
with the lowest MSE results among all other classifiers.
At the end, the excellent results of our proposed framework
LSHGWOBRNN in all experiments are because of two main
reasons; the first reason is, the hashing of the big data sets
by using the LSH technique created smaller sub data sets
in each bucket, accordingly, the GWO+BRNN was applied
to less number of dimensions and instances in each bucket,
which gave GWO+BRNN the ability of finding the top best
5 instances in each bucket more effectively and precisely.
The second reason, is our tournament technique (best of the
best), in other words, after finding the top 5 instances in each
bucket, we escalated them to the final stage of our tournament
creating a new data set that contains all buckets winners called
the final data set, after that the GWO+BRNN technique was
applied to this final data set for searching for the best among
them all (the tournament winner).

V. CONCLUSION
In this paper, a novel framework for imbalanced big data
sets LSHGWOBRNN is presented. The proposed framework
consists of three stages. The first stage uses the LSH-SMOTE
algorithm for solving the class imbalance problem, then,
it uses the LSH algorithm for hashing the data set into buck-
ets. In the second stage, we used the GWO optimizer for find-
ing the optimal values for weights and biases of the BRNN
classifier, then, use our proposed algorithm GWO+BRNN
for finding the best 5 search agents in each bucket in terms
of MSE scores, then, composing a new data set from all
bucket’s winners named Finaldataset. In the third and last
stage, GWO+BRNN algorithm is used for finding the tour-
nament winner (the best instance among all the bests from all
buckets in terms of the lowest MSE score). Our experimental
results proved that our proposed framework can effectively
and efficiently handle extremely imbalanced big datasets
and achieving better classification results for all datasets.
For testing the validity of our proposed LSHGWOBRNN
framework, we performed two main experiments. In the first
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experiment, we tested our proposed framework LSHG-
WOBRNN against seven classifiers over nine imbalanced
datasets in terms of AUC and MSE with and without pre-
processing and we achieved the best AUC average over all
algorithms (0.848) and the lowest MSE among all algorithms
(0.034885) without preprocessing, and, when the datasets
were preprocessed by LSH-SMOTE algorithm, we achieved
the best AUC average over all algorithms (0.993) and the Best
MSE over all algorithms (4.02E-07) respectively. Addition-
ally, our proposed framework LSHGWOBRNN has achieved
tangible saving in terms of running time against other algo-
rithms. In the second experiment, we tested our proposed
framework LSHGWOBRNN against the GWO+MLP and
all other classifiers in that papers (PSO, GA, ACO, ES, and
PBIL), over four data sets (Balloon, Breast cancer, Iris, and
Heart) chosen from that paper, and we have achieved the
highest accuracy and lowest MSE at the same time over all
data sets, which is a clear evidence for the high local optima
avoidance ability of our proposed framework. At the end,
we can conclude that our proposed framework LSHGWO-
BRNN can handle extremely imbalanced big data sets and
achieve better classification results.

FUTURE WORK
In our proposed algorithm LSHGWOBRNNwe achieved two
important improvements (local optima elimination and huge
saving in running time), but there was also a limitation, which
is the long running time for the big data set ECBDL’14,
although that we have performed all experiments on the test
set only not the whole dataset. At the beginning, we tried
to load the whole dataset into Weka 3.9.1 for applying the
LSH-SMOTE, but the Weka stopped working. After that, we
tried to load the test set only without reducing the number of
attributes, and again theWeka stopped working. Accordingly,
we have been forced to reduce the number of attributes to get
it work, and after all of that, the running time was a little bit
long, it took more than two hours to finish. To overcome such
issues in our future work, we are looking for a distributed
version of our algorithm LSHGWOBRNN based on Spark or
Hadoop for processing such big datasets without any issues
and with a reasonable running time.
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