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ABSTRACT A direct vehicle-to-vehicle (V2V) charging scheme supplies flexible and fast energy exchange
way for electric vehicles (EVs) without the supports of charging stations. Main technical challenges
in cooperative V2V charging may include the efficient charging navigation structure designs with low
communication loads and computational complexities, the decision-making intelligence for the selection
of stopping locations to operate V2V charging services, and the optimal matching issue between charging
EVs and discharging EVs. In this paper, to solve the above problems, we propose an intelligent V2V charging
navigation strategy for a large number of mobile EVs. Specifically, by means of a hybrid vehicular ad-hoc
networks (VANETs) based communication paradigm, we first study a mobile edge computing (MEC) based
semi-centralized charging navigation framework to ensure the reliable communication and efficient charging
coordination. Then, based on the derived charging models, we propose an effective local charging navigation
scheme to adaptively select the optimal traveling route and appropriate stopping locations for mobile EVs
via the designed Q-learning based algorithm. After that, an efficient global charging navigation mechanism
is proposed to complete the best charging-discharging EV pair matching based on the constructed weighted
bipartite graph. A series of simulation results and theoretical analyses are presented to demonstrate the
feasibility and effectiveness of the proposed V2V charging navigation strategy.

INDEX TERMS Electric vehicles, intelligent V2V charging, charging models, VANETs.

NOMENCLATURE
1(ei) Average waiting time for the red traffic light

in road segment ei.
ω (u.v) Weight of edge e′ (u, v) to evalute thematch-

ing performance of charging EV u and dis-
charging EV v.

C EV battery power capacity.
CM (SLk) Charging comfortable level of an EV in stop-

ping location SLk .

The associate editor coordinating the review of this manuscript and
approving it for publication was Changqing Luo.

EC (SLk) Global energy consumption of an EV mov-
ing from its current position to the destina-
tion going through stopping location SLk .

EG (u, v) Energy gap between demanded energy
amount of EV u and supplied energy value
of EV v.

F (y) Objective function to imply the performance
of selected traveling route y.

G (SLk) Feasibility of selected stopping location
SLk .

L (ei) Length of road segment ei.
N c
ev Number of mobile EVs with V2V charg-

ing/discharging concerns.
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Nmec Number of MEC servers.
Nsl Number of stopping locations.
Nv Number of all moving vehicles including

EVs and oil-driven vehicles.
PRev Penetration ratio of EVs to all vehicles.
PW Charging power of EVs.
R Wireless communication range in VANETs.
T Information broadcast interval of NCC.
TA (SLk) Arrival time of an EV in stopping location

SLk .
TC (SLk) Charging time of an EV in stopping location

SLk .
TG (u, v) Arrival time gap between charging EV u and

discharging EV v.
TR (SLk) Global traveling time of an EVmoving from

its current position to the destination going
through stopping location SLk .

Nf (SLk) Number of free slots in stopping location
SLk in current time.

Tk (ei) Average traveling time of amobile EV going
through road segment ei.

Tcw (SLk) Charging waiting time of EVs for free slots
in stopping location SLk .

vk (ei) Average traveling velocity of a mobile EV
going through road segment ei.

CC/CV Constant-current/constant-voltage.
EV Eletric vehicle
EVC EVs with charging requirements.
EVD EVs with discharging abilities.
EVN EVs without charging/discharging interests.
G2V Grid-to-vehicle.
IMC Information managing centers.
ITS Intelligent transportation systems.
KM Kuhn-Munkres-based algorithm.
KWh KiloWatt-hour.
LSTM Long short-term memory.
MAC Media access control.
MEC Mobile edge computing.
MWM Maximum weighted matching.
NCC Navigation control center.
OBUs On board units.
RSUs Road side units.
SLs Stopping locations.
SOC State of charge.
V2G Vehicle-to-grid.
V2V Vehicle-to-vehicle.
VANETs Vehicular ad-hoc networks.

I. INTRODUCTION
With the significantly increasing concerns on the issues of
environmental conservations and intelligent transportation
systems (ITS), electric vehicles (EVs) have attracted more
and more attentions from both industry and academia due to
the advantages of zero emissions, low noises, efficient energy
conversions and so on [1], [2]. However, the rapid penetration

of EVs in traffic scenarios and uncoordinated EV charging
operations can result in huge power loss, heavy overloads and
serious harmonic distortions [3], all of which are detrimen-
tal to the reliability and security of current power systems.
To cope with the above challenges, some works [4], [5] have
focused on the harmonious charging navigation scheduling
for EVs, to efficiently distribute charging loads of EVs and
optimize their charging/discharging behaviors on the basis
of three main energy exchange operations, namely grid-to-
vehicle (G2V), vehicle-to-grid (V2G) and vehicle-to-vehicle
(V2V).

In the G2V scheme [6], EVs obtain energy from geo-
graphically distributed charging stations to meet the charg-
ing demands. In [7], F. Wu et al. introduced a feasible EV
charging adaptationmodel which is formulated as a two-stage
stochastic optimization problem, and made use of the Monte
Carlo-based sample-average approximation algorithm and
L-shaped method to efficiently resolve the mentioned opti-
mization problem, but this fully centralized charging frame-
work would violate privacy of EVs and aggravate wireless
network transmission loads due to detailed status information
collections of all EVs, result in significantly high computa-
tional costs in the case of huge charging/discharging demands
of EVs, and may cause severe service interruption once the
control center suffers from interferences. The authors [8]
presented a distributed charging scheduling algorithm based
on the deduced approximation model of waiting time, but
this method does not take into account the traveling time and
recharging cost in its objective function. In [9], the issue about
searching the most available charging station was modeled as
a multi-objective optimization problem, which is solved by
the proposed ant colony optimization based approach. Nev-
ertheless, the deduced queuing model in this work is not
rigorous enough owing to neglecting the charging reserva-
tion information of mobile EVs. To decrease the traveling
cost of EVs and improve the load level of the concerned
distribution system, a dynamic EV charging navigation strat-
egy [10] was proposed based on periodic traffic information
update, which can lead to severe congestions in cellular
networks and extremely increase communication expense
with the dramatic rise of EV number. In [11], the authors
designed a mobile edge computing (MEC) based framework
for the G2V charging system, where mobility-aware MEC
servers (including unmanned aerial vehicles and transporta-
tion buses) can keep stable communications with oppor-
tunistically encountered EVs, to disseminate CSs’ predicted
charging availability and collect EVs’ driving big data.
To achieve efficient inter-connections among aforemen-
tioned mobile MEC servers for adequate resource alloca-
tions, available air-ground integrated networks with feasible
architectures and communication algorithms were proposed
in [12], [13].

Through V2G technologies, EVs can act as mobile energy
storage facilities and be capable of discharging energy
back to power systems to improve energy grid performance
[14], [15]. Intensive studies in [16] demonstrated that V2G is
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quite effective in alleviating voltage fluctuations and enhanc-
ing frequency control of power systems. Ehsani et al. [17]
validated that V2G can complete protective relay tripping,
reduce distribution line losses and mitigate voltage drops.
A decentralized V2G management algorithm [18] was pro-
posed to intelligently extract an appropriate amount of energy
from EVs for power grid supports during emergent energy
conditions, but it would not promise the optimal achieve-
ments for coordinated V2G services from the whole system
perspectives due to the neglects of global charging informa-
tion. In [19], a dynamic tariff-subsidy method was designed
for congestion managements in distribution networks with
the V2G function. Through considering V2G capabilities
of EVs, predicted non-EV base loads and so on, the work
in [20] established a new adaptive control mechanism to
adjust EV charging/discharging behaviors for peak shaving
and load balance in power grids. However, EVs participat-
ing in V2G operations have to suffer from frequent battery
charging/discharging circles, which dramatically increase the
internal resistance and reduce the useable capacity of vehic-
ular batteries.

According to the aforementioned descriptions, many EV
charging/discharging navigation strategies have been pro-
posed in existing works for both G2V and V2G operations,
but these studies have been still restricted to the interactions
and energy exchanges between power systems and EVs due
to high investments in charging stations and limited charging
slots. To cope with the above challenges, some researchers
designed a group of more flexible power transferring algo-
rithms on the basis of V2V charging concepts [21], [22],
where energy can be exchanged among EVs without charging
station supports. Actually, feasible V2V charging is indeed
advantageous to both EVs with charging demands and EVs
with discharging capacities because of great energy trans-
ferring convenience, low energy consumption on traveling
to limited charging stations, huge energy trading profits and
so on. The work in [23] presented a novel V2V energy
trading system with respect to the derived activity-based
prediction model, to reduce the negative impacts of the charg-
ing process on the power system. In [24], a cloud-based
energy transferring structure was designed and an optimal
contract-based electricity trading algorithm was proposed to
efficiently improve the generated profit. In order to achieve
the cooperative V2V charging strategy in dynamic electricity
pricing environments, You et al. [25] formulated the cor-
responding charging scheduling problem as a constrained
mixed-integer linear program (MILP), which is solved by
means of dual decomposition and benders decomposition in
a distributed fashion, but this work just focused on EVs hav-
ing already been parked at charging stations, and neglected
the effects of EV mobility on charging coordination [26].
In [27], an online V2V energy swapping strategy (STCC)
was proposed based on the feasible price control, which is
modeled as an oligopoly game with competitions among
EVs, but this work finds EVs’ moving routes towards the
selected charging locations by means of the shortest-path

based algorithm [28], which does not work well in rapidly
dynamic traffic environments. In addition, when choosing
adequate charging locations for mobile EVs, the proposed
algorithm in [27] does not consider the impacts of waiting
time in candidate charging locations, which can decrease
the comfortable levels of energy exchange for EV drivers
and reduce V2V charging efficiency. In fact, the above V2V
charging behaviors have to be achieved through the assistance
of aggregators, which are responsible for gathering all the
information of EVs and grid status, and executing V2V power
transferring operations. However, the deployments of aggre-
gators increase the V2V energy exchange costs and reduce
the flexibility of V2V charging activities. In addition, most
of the above works depend on cellular networks to transmit
charging information between EVs and aggregators, but this
communication pattern may suffer from high expenses and
serious network congestions in the case of a huge number of
EVs involving V2V charging activities.

Obviously, it is essential to explore amore flexible and eco-
nomical V2V charging way to satisfy the increasing charging
demands of EVs. Through the aids of bidirectional charging
technologies [29] and charging cables connecting EVs, direct
V2V charging operations without fixed aggregator demands
can be completed in any stopping location (SL) via an approx-
imate charging-discharging EV pair matching scheme, and
Fig. 1 shows a simple example about such direct V2V charg-
ing services in urban scenarios. To the best of our knowledge,
there are very limited studies on direct V2V charging naviga-
tion strategies for mobile EVs. In our previous work (DVCS),
based on the deduced waiting time model and local traveling
energy consumption model, we have proposed a feasible
direct V2V charging scheme to minimize charging cost and
enhance charging efficiency [30]. However, this algorithm
adopts a simple rule of first arrive first service (FAFS) to
complete the global matching between charging EVs and

FIGURE 1. A example of direct V2V charging services in urban scenarios,
where green EVs with surplus energy are transferring energy to red EVs
with charging demands via conductive charging cables.
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discharging EVs, and it is not enough to accomplish the
optimal EV pair assignments. Note that, In [30], the charging
information exchanges between the parking service center
and mobile EVs are implemented by more flexible VANETs
(vehicular ad-hoc networks) based communications, where
all vehicles equipped with OBUs (on board units) can act as
data relaying nodes to achieve efficient wireless connections
by means of vehicle-to-vehicle and vehicle-to-infrastructure
communications [31], [32]. Compared with common cellu-
lar networks, VANETs indicate great advantages including
low communication expense, no energy constraints, excellent
scalability, high self-organization and so forth [33].

In this paper, in order to solve the aforementioned chal-
lenges, we propose an intelligent direct V2V charging
navigation strategy for a large number of mobile EVs.
In particular, to avoid heavy computation loads in tradi-
tional centralized manner and achieve the reliable charging
information transmission among the navigation control cen-
ter, distributed stopping locations and moving EVs, we estab-
lish a semi-centralized charging navigation framework and
design the corresponding management protocol on the basis
of flexible VANET-based communication pattern and avail-
able mobile edge computing (MEC). In addition, based on
the formulated charging models, namely, traveling time pre-
diction model, charging time estimation model and charging
comfortable degree model, a feasible local charging naviga-
tion scheme is proposed for mobile EVs to adaptively choose
the best moving route in varying traffic environments and
complete the optimal stopping location selection. Moreover,
we develop an effective global charging navigation strategy
to assign EVs with charging demands to EVs with addi-
tional energy for the optimal charging-discharging EV pair
matching.

The main contributions of this work are given as follows.
(1) An efficient charging navigation framework is pre-

sented for mobile EVs. Based on the feasible MEC supports,
we establish a semi-centralized charging navigation structure
by means of more flexible and scalable VANET-based com-
munication, to enable reliable charging information collec-
tion and release with low communication expense. Compared
with the fully centralized/distributed charging framework,
the designed structure can decrease communication conges-
tions and computational costs, enhance EV user privacy,
improve scalability and robustness of charging system, alle-
viate the randomness of EV charging behaviors and achieve
V2V charging optimization from global perspectives.

(2) We derive accurate charging models. Based on varying
traffic information with time sequences, different charging
rate with various battery state of charge (SOC) conditions,
busy situations of stopping locations and so on, we deduce
three actual charging models including long short-termmem-
ory (LSTM) based traveling time prediction model, charging
time estimation model and charging comfortable degree
model, to achieve efficient V2V charging navigations.

(3) We design an adaptive traveling route selection algo-
rithm. To choose the optimal moving path towards stopping

location for subsequent V2V charging services, we propose
a Q-learning based optimal method for mobile EVs with
charging/discharging demands to sufficiently cope with rapid
traffic changes in urban scenarios, by means of predicted
traveling time and corresponding energy consumption in each
road segment with time series.

(4) We propose an effective global charging navigation
scheme. In order to achieve the best charging-discharging EV
pair assignment for mobile EVs which have completed the
stopping location selections, we formulate the EV pair match-
ing issue as a maximum weighted matching problem based
on a constructed bipartite graph with certain weights (where
exchanged energy amount, arrival time interval and required
energy gap between charging EVs and discharging EVs are
taken into account), and propose a feasible optimal algorithm
with low complexity, to solve the mentioned problem.

The rest parts of the paper are organized as follows. The
system model is depicted in Section II. The proposed effec-
tive charging navigation strategy for EVs is illustrated in
Section III. Section IV demonstrates the designed strategy
performance bymeans of a series of simulations and analyses.
Finally, Section V concludes the paper.

II. SYSTEM MODEL
In this section, we design a MEC-based semi-centralized
charging navigation framework and introduce its corre-
sponding management protocol. In addition, we derive three
charging models, namely, traveling time prediction model,
charging time estimation model and charging comfortable
degree model, all of which play significantly important roles
in V2V charging coordination processes.

A. SEMI-CENTRALIZED CHARGING NAVIGATION
FRAMEWORK
In order to satisfy with the charging/discharging requirements
of a large number of mobile EVs in huge-scale urban envi-
ronments, we propose a feasible and scalable MEC-based
semi-centralized charging navigation framework by virtue of
hybrid VANET-based communication paradigm, as shown
in Fig. 2. The designed charging navigation framework
mainly consists of four entities, namely moving EVs, MEC
servers, distributed stopping locations (SLs) and navigation
control center (NCC).

1) MOVING EVs
According to different vehicular battery SOC levels and trav-
eling energy demands, moving EVs can be divided into three
categories including EVs with charging requirements (EVC),
EVs with discharging abilities (EVD) (which can be moti-
vated by selling their extra energy to EVC for additional rev-
enue), and normal EVs without charging/discharging inter-
ests (EVN). These mobile EVs and other oil-driven vehicles
can constitute flexible and scalable VANETs by means of
installed on board units (OBUs), to promise the reliable and
low-cost transmission between EVs and remote MEC servers
via vehicle-to-everything (V2X) communication. Besides,
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FIGURE 2. Semi-centralized charging navigation framework via
VANET-based communication.

based on their own status information (such as current SOC
level, moving velocity, current locations and so on) and
received charging information (for example, busy situations
of stopping locations) from NCC, EVC and EVD are able
to perform respective local charging navigation decisions in
a distributed manner. Note that, we assume that each EV
owns enough space and power to support large vehicular
computation resources for local charging navigation tasks.

2) MEC SERVERS
MEC servers can be attached to different communication
relaying nodes, such as road side units (RSUs), UAVs, light
rails, buses and so forth, and these MEC servers can provide
following middle-ware functions to adjacent mobile EVs:
(1) operating simple data preprocessing tasks (for example,
data cleaning and data aggregation) for gathered charging
information from NCC and mobile EVs, to reduce inessential
data transmission and ease network congestions, (2) imple-
menting temporary storage for fresh charging information
to optimize network performance and improve QoE (qual-
ity of experience), and (3) providing data relaying services
acting as gateways to effectively alleviate fragile end-to-
end connections between NCC and mobile EVs, and to fur-
ther increase the scalability and feasibility of VANETs in
substantial-scale urban scenarios. Obviously, the above MEC

servers do not carry out the significantly heavy computa-
tion offloading (such as charging navigation decisions) from
mobile EVs, and the aforementioned middle-ware functions
can be easily achieved on each MEC with low computation
time, to improve coordinated V2V charging navigation ser-
vices, which are regarded as a kind of delay-tolerant appli-
cation [3]. As a result, it is not very essential to carry out
the balance of data preprocessing loads among MEC servers
which are required to be inter-connected, to further decrease
corresponding execution delay.

3) STOPPING LOCATIONS
SLs are geographically deployed in urban scenarios, and
they provide available slots to EVs with charging/discharging
demands to implement V2V charging services. In addition,
based on the number of occupied slots, the number of EVs
waiting for available slots (already arrived in the correspond-
ing stopping location), charging/discharging reservation con-
ditions from mobile EVs and so on, the stopping locations
are capable of evaluating their own busy situations in a dis-
tributed manner.

4) NAVIGATION CONTROL CENTER
NCC is a logical server established and managed via a cloud
computing platform, and it takes charge of collecting and
releasing buy situations of all stopping locations, carrying
out the global charging navigation operations in a centralized
manner, and pushing the final charging decisions to corre-
sponding EVs and SLs to complete V2V charging scheduling
and update SLs’ busy situations, respectively.

According to the aforementioned descriptions, busy sit-
uation estimation of stopping locations and local charging
navigation decisions of mobile EVs are implemented in a
distributed manner, while global charging navigation deci-
sions are given by NCC in a centralized way, as a result,
our proposed MEC-based charging navigation framework is
managed in a semi-centralized pattern.

B. MANAGEMENT PROTOCOL OF CHARGING
NAVIGATION FRAMEWORK
Based on the coordinated V2V charging concept, we pro-
pose a conformable management protocol for the designed
charging navigation framework. Specifically, when suffer-
ing from range anxiety to destinations or owning redun-
dant battery energy, moving EVs can apply for direct V2V
energy-swapping services in suitable stopping locations for
energy supplements or additional energy exchange revenue.
Based on the obtained busy situations of all stopping loca-
tions processed by MEC servers, the mobile EVs with
charging/discharging demands firstly make local charging
navigation decisions to choose the optimal moving route and
most appropriate stopping location for further V2V charging
operations, and then push the decision messages to NNC
going through MEC servers. After that, when receiving the
collected local charging navigation decisions, NNC imple-
ments global charging navigation operations to realize the
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FIGURE 3. Procedure chart of the proposed charging navigation
management protocol, where T represents time interval of periodic
information dissemination and Tcr denotes the current time instant.
Besides, we assume that both data preprocessing time Tdp and
communication delay Tcd are much smaller than T (Tdp � T and
Tcd � T ).

optimal matching of charging-discharging EV pairs with
the same stopping location selection, and then the obtained
global decisions are pushed to corresponding EVs and SLs
to complete the concerted charging navigation processes.
Fig. 3 gives a typical procedure of the designed management
protocol, and it is illustrated as follows:

subsectionPROCEDURES 1-3 Operating collection and
dissemination of stopping locations’ busy situations at NCC
side. NCC takes charge of gathering the busy situations of all
stopping locations by a reactive communication pattern, and
then periodically (time interval T ) broadcasts the collected
busy information to total MEC servers. Note that, The MEC
servers can be capable of the temporal storage and freshness
of received busy situations.

1) PROCEDURES 4-6
Carrying out busy situation acquirements and local charging
navigation decision deliveries at the sides of mobile EVs.
When requiring V2V charing services, mobile EVs firstly
request busy situations of all stopping locations from nearby
MEC servers by means of established VANETs in a reactive
communication way. Then, on the basis of received busy
information and their own status conditions (such as cur-
rent position, velocity, SOC level and so on), mobile EVs
implement local charging navigation operations to determine

the optimal stopping locations for further V2V charging
activities, and then release the local navigation decisions
(including the chosen stopping location, arrival time at the
selected stopping location and required charging/discharging
energy amount) toMEC servers. Note that, the related routing
protocols utilized in VANET-based communication are given
in our previous works [31], [32], to cope with rapid changes
of network topologies and achieve low transmission delay.

2) PROCEDURES 7-9
Implementing global charging navigation calculations and
corresponding navigation decision transmission at NCC side.
Based on acquired valid local charging navigation decisions
(which have been analyzed and mined by MEC servers based
on the collected original local navigation decisions of mobile
EVswithin a·T time interval, and 0 < α < 1), NCC performs
a global charging navigation process for different mobile EVs
with the same stopping location selection, to achieve the best
charging-discharging EV pair matching appointments. After-
wards, NCC transfers the related global charging navigation
decisions to corresponding stopping locations to update their
local busy conditions, and to respective MECs, which further
relay the processed global information to mobile EVs to
satisfy their charging/discharging navigation requirements.

C. CHARGING MODEL DERIVATION
1) TRAVELING TIME PREDICTION MODEL
As an important measurable indicator for the designed smart
charging navigation strategy, the traveling time of mobile
EVs has closed relationships with segment length, road con-
gestion, traffic light effects and so on. In this paper, we con-
sider that traveling time model of mobile EVs in a road
segment is composed of two components including EV’s
moving time in a selected road segment and waiting time
when encountering a red traffic light. In addition, although
traffic data (such as vehicle density, moving velocity, etc.) in
a road segment presents fast changes with varying time, it still
keeps stability in a short time interval. Consequently, we can
make use of traffic data with different time series to predict
the accurate traveling time in a road segment, and it is derived
as:

Tk (ei) = TMk (ei)+ TW (ei)

=
L (ei)
vk (ei)

+ η (ei) · p (ei) ·1(ei) (1)

where Tk (ei) and vk (ei) denote the average traveling time
and velocity of a mobile EV going through road segment
ei on the basis of the predicted traffic data in time instant
TI (k) = t + k ·1u, respectively, where1u represents traffic
information update time interval, k is an integer value and
k ≥ 0. TMk (ei) and TW (ei) are the moving time and waiting
time during meeting the red traffic light in ei, respectively,
L (ei)means the length of road segment ei,1(ei) implies the
average waiting time for the red traffic light in ei, η (ei) =
{0, 1} is to indicate whether there is a traffic light located in
ei and 1 implies the traffic light is available, p (ei) signifies
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the probability that an EV suffers from the red traffic light
in ei.

Obviously, L (ei), 1(ei) and η (ei) can be easily obtained
from on-board digital map of mobile EVs, p (ei) can be
assumed as a constant value, while accurately predicting
vk (ei) is very difficult due to dynamic traffic scenarios. As a
result, the derivation of vk (ei) is a critical step to establish the
feasible traveling time prediction model. In order to realize
the above objective, we propose a LSTM-based algorithm
to estimate and predict accurate traffic data including traffic
flow and traffic density of road segments, to further deduce
the effective velocity model.

First of all, the traffic data forecast issue can be trans-
formed into a range of estimation tasks based on time series,
and these tasks can be easily solved by LSTM recurrent neural
network [34], which enables inside cells to store and read long
range contextual information. In each cell of LSTM, based on
outputs of its forget gate, input gate and output gate, the cell
state is expressed as

Ct = Ft ⊗ Ct−1 + It ⊗ φ (Wc(Ht−1, yt )+ bc) (2)

and the hidden output is given as

Ht = Ot ⊗ φ(Ct ) (3)

where Ct andHt denote the state and prediction output of cell
at time t , respectively, Ft , It ,Ot , yt correspondingly represent
the forget gate output, input gate output, output gate output
and input of cell at time t , Wc is the weight value, bc stands
for the bias vector, φ (·) implies the ReLU activation function.
The complete cell states and hidden outputs in LSTM can be
obtained by means of (2) and (3) recursively with time series.

In addition, LSTM-based prediction model construction
and training. To extract deeper and more features of traf-
fic data in high layers, an efficient LSTM-based predic-
tion model is set up and it consists of a input layer
with 3-dimensional (3D) tensor, five hidden layers based
on LSTM recurrent networks, a flatten layer to compress
the return sequences into a 1D tensor, and a fully con-
nected layer (FCL) with sigmoid activation. The designed
LSTM-based prediction model is presented in Fig. 4. After
that, we can input historical traffic data series X∗ into the
designed prediction framework to train the LSTM-based
recurrent network for complicated traffic data features,
where X∗ =

{
x∗
t−m·1u

, x∗
t−(m−1)·1u

, · · · , x∗t
}
, and the outputs

of FCL are the prediction results of traffic data Z∗ ={
x∗t+1u

, x∗t+2·1u
, · · · , x∗t+k·1u

}
, where x∗

t+k·1u
denotes the

traffic data set of all road segments in time t + k ·1u and
x∗
t+k·1u

= {Tdk ,T fk}, Tdk and T fk mean the traffic density
set and traffic flow set in time t + k ·1u, respectively.
Finally, according to the traffic flow theory [35], traffic

flow, traffic density and moving velocity on a road segment
have significant correlations in the spatial-temporal features.
Obviously, we can make use of aforementioned predicted
traffic dataZ∗ to calculate the corresponding average velocity
of mobile EVs on a given road segment. The derivation of

FIGURE 4. LSTM-based prediction model for traffic data forecast.

average velocity is expressed as

vk (ei) =
T fk (ei)
Tdk (ei)

(4)

where T fk (ei) and Tdk (ei) denote the predicted traffic flow
and traffic density of road segment ei in time t + k ·1u,
respectively, and T fk (ei) ∈ T fk , Tdk (ei) ∈ Tdk .

When substituting (4) into (1), we can complete the travel-
ing time prediction of moving EVs on a given road segment.
Note that, the derived traveling time prediction model can
be subsequently used to choose the optimal moving route
(which consists of a series of road segments) from the current
position of an EV to its selected stopping location illus-
trated in following Section III. Besides, as shown in Fig. 3,
after receiving the preprocessed busy information of all stop-
ping locations from MEC servers, mobile EVs with charg-
ing/discharging demands begin to implement local charging
navigation tasks for the optimal selection of traveling route
and stopping location based on the current situation infor-
mation, such as traveling time, energy consumption and so
on. Obviously, offloading time (including data preprocess-
ing time on MEC servers and transmission delay of busy
information) from mobile EVs to nearby MEC servers is not
relevant to the local charging navigation execution, and it is
not essential to be considered in the procedure of traveling
time prediction model derivation.

2) CHARGING TIME ESTIMATION MODEL
In order to deduce the charging time model for EVs,
we assume that the embedded batteries are lithium-ion bat-
tery packs, and a constant-current/constant-voltage (CC/CV)
charging strategy is utilized in EV charging process. Specif-
ically, the CC strategy is applied in the first stage of
charging procedure, and the battery is recharged until its
SOC meets threshold value SOCth with constant power,
and the CV scheme is adopted in the following stage,
where the gradually-decreasing charging power is used to
recharge the battery until its SOC increases from SOCth to 1.
The corresponding correlation between the charging power
and the charging time is given as follows

PW (tc) =

{
PW if 0 ≤ tc ≤ tth
PW · e−σ(tc−tth) if tth < tc ≤ tf

(5)

where PW (tc) indicates the charging power of EV in time
tc, PW means the charging power at CC stage, tth implies the
charging time instant when the battery SOC is updated from 0
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to SOCth, tf denotes the time that the battery is fully charged,
here SOC = 1, and σ is a charging parameter.

Based on the current battery SOC level SOCc, energy con-
sumption EC towards the selected stopping location (derived
in our previous work [30]) and expected exchange energy
amount EA, mobile EV can easily predict its charging time,
which is estimated by the following equation∫ te

ts
PW (tc)dt = C · (SOCe − SOCs) (6)

where C is the maximum battery capacity of mobile EV, ts
and te represent the charging time interval when the battery
SOC value increases from 0 to SOCs and from 0 to SOCe,
respectively, SOCe denotes the battery SOC level when EV
completes its V2V charging operations, SOCs indicates the
EV’s SOC level when it just arrives in the selected stopping
location and both of them are derived as follow.

SOCe =
C · SOCc−EC + EA

C

SOCs = SOCc −
EC
C

(7)

According to different values of SOCe and SOCs, there are
three cases for charging time estimation of EVs by means
of (6) and (7).
Case 1: if SOCs < SOCe ≤ SOCth, the whole V2V

charging services are implemented via the CC scheme and
EV charging time TC is expressed as

TC = te − ts =
C · (SOCe − SOCs)

PW
(8)

Case 2: if SOCs < SOCth < SOCe, the battery of EV is
recharged by means of the CC and CV charging strategies,
and TC is deduced as

TC =(tth − ts)+ (te − tth) =
C · (SOCth − SOCs)

PW

−
1
σ
· ln

(
1−

σ · C · (SOCe − SOCth)
PW

)
(9)

Case 3: if SOCth ≤ SOCs < SOCe, the complete V2V
charging operations of EV are carried out by virtue of the CV
charging mechanism, and TC is derived as

TC = te − ts

=
1
σ
· ln

(
PW − σ · C · (SOCs − SOCth)
PW − σ · C · (SOCe − SOCth)

)
(10)

3) CHARGING COMFORTABLE DEGREE MODEL
We make use of EV waiting time for available stopping slots
to subsequently implement V2V charging services and free
stopping slot ratio, to evaluate charging comfortable level of
EVs in the selected stopping location. Based on the above
considerations, the formulated charging comfortable degree
model is given as follows.

CM (SLk)=χ ·
Tmax
cw −Tcw (SLk)

Tmax
cw

+(1−χ) ·
Nf (SLk)
Nmax (11)

where CM (SLk) denotes the charging comfortable level of
EV in stopping location SLk , Tcw (SLk) indicates the charging
waiting time of EVs for free slots in SLk , Tmax

cw means the
maximum value among charging waiting time in each candi-
date stopping location,Nf (SLk) represents the number of free
slots in SLk in current time, Nmax stands for the maximum
value among the total slot number of each stopping location,
χ is a weight value and χ = {0, 1}, here if Tcw (SLk) = 0,
we set to χ = 0, or χ = 1.

Apparently, if a group of stopping locations with zero
waiting time exist, the proposed charging comfortable degree
model makes mobile EVs choose the optimal stopping loca-
tion with the highest free stopping slot ratio, as the selected
stopping location owning more available slots can accommo-
date more EVs to implement V2V energy exchange opera-
tions in the same time interval, and the synchronous conflict
of stopping location selection can be effectively mitigated.
Here the synchronous conflict is defined that a large number
of mobile EVs choose the same stopping location in the same
time interval for further V2V charging services, as a result,
serious congestions in the selected stopping location may
occur, and the charging efficiency of EVs can be severely
impaired.

So as to complete the above deduction of CM (SLk),
it is significantly essential to derive charging waiting time
Tcw (SLk), which has closed relationships with EVs’ arrival
time TA (SLk) in SLk and the earliest free time TE (SLk) of
SLk , here TE (SLk) is defined as the time instant that there are
at least two available slots in SLk for a charging EV and its
corresponding discharging EV to operate V2V charging task.
As shown in Fig. 1, TE (SLk) can be obtained on the basis of
current occupancy situations of slots, waiting queue of parked
EV pairs in SLk and reservation states of mobile EVs for sub-
sequent V2V charging services, charging time and so on, and
its detailed derivation is illustrated in our previous work [30].
Note that, the charging time used in TE (SLk) is achieved by
our proposed charging time estimation model illustrated in
Section. II-C rather than that based on the constant charging
rate in [30]. Obviously, if TE (SLk) ≥ TA (SLk), all slots
in SLk are fully occupied, and EVs have to await the free
stopping space, so Tcw (SLk) = TE (SLk) − TA (SLk).
When TE (SLk) < TA (SLk), there are available slots for
V2V charging services and EVs do not spend extra charging
waiting time, so Tcw (SLk) = 0. According to above illustra-
tions, Tcw (SLk) can be derived as follows.
Case 1: if TE (SLk) ≥ TA (SLk),

Tcw (SLk) = TE (SLk)− TA (SLk) (12)

Case 2: if TE (SLk) < TA (SLk),

Tcw (SLk) = 0 (13)

Here arrival time TA (SLk) involves current time Tcu
and traveling time Ttr

(
LCev,LCSLk

)
from the EV’s current

location LCev to its preferred stopping location SLk , and
Ttr
(
LCev,LCSLk

)
can be calculated by means of the derived

traveling time prediction model of road segment in (1) and
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the proposed local charging navigation scheme introduced in
Section. III-A. TA (SLk) is derived as follows.

TA (SLk) = Tcu + Ttr
(
LCev,LCSLk

)
(14)

III. EFFECTIVE CHARGING NAVIGATION STRATEGY
In this section, we propose an efficient charging navigation
strategy to achieve feasible coordinated V2V charging ser-
vices for mobile EVs, and it is composed of both local and
global charging navigation schemes.

A. LOCAL CHARGING NAVIGATION SCHEME
In order to decrease heavy communication loads and alle-
viate serious calculation costs, a distributed local charging
navigation algorithm is designed for moving EVs, to choose
the most available stopping location for subsequent V2V
charging operations based on the proposed dynamic optimal
traveling route selection approach.

1) ADAPTIVE OPTIMAL TRAVELING ROUTE SELECTION
To cope with rapidly varying traffic conditions in urban sce-
narios, a dynamic traveling path selection algorithmwith time
series is proposed to find the optimal moving route from the
EV’s current position to its corresponding stopping location
with respect to traveling time and energy consumption on this
route. In addition, we assume that an urban street map can be
abstracted as graph G (E), where E denotes the road segment
set, and we define that candidate traveling route y is com-
posed of a sequence of road segments {ec, . . . , ei, . . . , es},
where ei ∈ E , ec is the road segment in which a mobile EV is
moving, and es denotes the road segment where the selected
stopping location of this EV is located. According to the
above considerations, the efficient traveling route selection
issue can be formulated as an optimization problem, and the
corresponding objective function is expressed as

Min F (y) = λ1 · TR (y)+ λ2 · EC (y) (15)

where 
TR (y) =

∑
i
Tk (ei)

EC (y) =
∑
i
ECk (ei)

∀k ∈ {0, 1, · · ·,K }

(16)

where F (y) denotes the objective function and it implies
the performance of selected traveling route y, TR (y) and
EC (y) correspondingly mean the traveling time and energy
consumption when a mobile EV chooses y, Tk (ei) (derived
in (1)) and ECk (ei) (deduced in [30]) stand for traveling time
and energy consumption when a mobile EV passes through
road segment ei based on the predicted traffic data in time
t + k ·1u, respectively, λ1 and λ2 indicate the weight values.
To solve the above formulated problem, we propose a

Q-learning based optimal algorithm, which is skillful in
searching the best action-selection strategy even if the agent
does not own prior knowledge about its actions’ influences on
the environment [36]. The concrete procedures of Q-learning

based optimal algorithm for traveling route selection are
illustrated as follows

Firstly, we regard different road segments in urban scenar-
ios as environment states S = E =

{
e1, . . . , ej, . . . , eJ

}
,

where J denotes the total number of road segments in urban
environment, agent action a is defined as the movement of an
EV from one road segment ej to its neighboring road segment
el , transfer function gs (s, a) denotes the new state to which
environment state s ∈ S changes when agent action a is taken,
reward function gr (s, a) is given as the received reward after
taking action a in state s, where a ∈ A (A represents the set
of agent actions). Here we make use of reward value gr (s, a)
to show whether the mobile EV arrives in road segment es in
which the chosen stopping location is located, and gr (s, a) is
set to 100 if gs (s, a) = es, otherwise, gr (s, a) is given as 0.
Based on the above description, reward gr (s, a) is expressed
as follows.

gr (s, a) =

{
100 if gs (s, a) = es
0 otherwise

(17)

Secondly, once entering environment state s, the agent is
capable of choosing a feasible action to determine the road
segment with better traffic performance. To keep the balance
between exploration and exploitation of viable moving route
selection, the agent makes use of a simple ε−greedymethod,
where ε is a decreasing value with time lapse to make the
exploration rate reduce when the agent ownsmore knowledge
about the environments and 0 < ε < 1. The ε − greedy
scheme is formulated as follows.

P (a|s)=


1−ε+

ε

N (A (s))
if a = argmax

a
Q (s, a)

ε

N (A (s))
if a 6= argmax

a
Q (s, a)

(18)

where P (a|s) denotes the probability that the agent takes
action a when it is in state s, Q (s, a) indicates a real value
with relevant state-action pair and it is used to evaluate the
utility performance of action a when the agent is in state s,
A (s) means the set of actions that the agent can take when it
is in state s, N (A (s)) represents the element number in A (s)
and it also implies the number of neighboring road segments

for state s, and
N (A(s))∑
l=1

P (al |s) = 1.

Thirdly, after determining appropriate action a based on
current state s, the agent obtains corresponding reward value
gr (s, a) and its state changes to s′ = gs (s, a), then the
relevant Q value is updated bymeans of themodifiedBellman
Equation, which is expressed as follows.

Q (s, a)← (1− ∂) · Q (s, a)+ ∂ · gr (s, a)

+γ ·max
a′

Q
(
gs (s, a) , a′

)
(19)

where ∂ denotes the learning rate and 0 < ∂ < 1, a′ indicates
the optimal next action corresponding to next state gs (s, a)
with the highest Q value, and γ is a discount factor.

In order to adaptively choose the best road segment for
mobile EVs and maintain the appropriate effects of both
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future and immediate rewards, we devise a piecewise function
to dynamically characterize the changes of γ on the basis
of traveling time and energy consumption spent on different
road segments, and γ is given as follows.

γ=


min

{
γmax, δ ·

Fk (el)
Fk (el)

}
if Fk (el)<Fk (el)

max

{
γmin, δ ·

Fk (el)
Fk (el)

}
otherwise

(20)

where γmax and γmin denote the maximum and minimum
values of γ , respectively, δ stands for the weight value,
Fk (el) represents the traffic performance of road segment el
based on the predicted traffic data in time t + k ·1u (here
el is a neighbor of current road segment s), and Fk (el) =
λ1 · Tk (el) + λ2 · EC (el), Fk (el) means the average traffic
capability of all neighboring road segments for s, and it is
deduced as follows.

Fk (el) =

N (A(s))∑
l=1

Fk (el)

N (A (s))
(21)

Fourthly, based on the estimated traffic performance of
road segments in diverse time and random initial state selec-
tion, the agent repeats the aforementioned second and third
steps to iteratively choose available actions and update Q
values until the final convergence is achieved, which implies
that the Q values do not change and corresponding Q-value
tables are stable. After a restricted number of iterations,
a Q-value table set Qtb for different time slots is obtained to
copewith rapid changes of traffic conditions of road segments
and Qtb = {Qtb (t) ,Qtb (t +1u) , . . . ,Qtb (t + k ·1u)},
where Qtb (t + k ·1u) denotes the stable Q-value table in
time t + k ·1u.

Finally, based on the pre-stored convergent Q-value tables
with various time, mobile EVs can adaptively choose the
optimal road segments toward the selected stopping location
for V2V charging services, and this dynamic selection proce-
dure is implemented by following the agent actions with the
highest Q values. In order to illustrate the basic concept of our
proposed optimal route selection strategy, a simple example is
given in Fig. 5, in which we define that each road segment ei

FIGURE 5. An example for the adaptive traveling route selection, where
the blue lines indicate the final moving path from road segment e1 to
road segment e9 for EVs located in e1 in time t based on Q-value tables
with varying time.

stands for a discrete environment state in S, the arrows of solid
lines indicate distinct actions moving between neighboring
road segments, and the values in close proximity to these
solid lines denote the Q values for corresponding actions.
In addition, we assume that mobile EV evn is moving on e1
in time t and its selected stopping location is located in e9.
When carrying out the optimal traveling route selection in
t , evn follows the directions with the highest Q-values to
search the best route R (t) towards e9 based on Qtb (t), and
R (t) = e1 → e2 → e5 → e8 → e9 marked by red
lines in Fig. 5(a). If the predicted position of evn along R (t)
is located in e5 in t +1u, a new traveling route selection
operation from e5 to e9 is launched by means of Qtb (t +1u)

to adapt varying traffic situations, and the selected optimal
route R (t +1u) is e5 → e6 → e9. The above processes are
repeated on the basis of Qtb (t + j ·1u) until the predicted
position of evn is on e9. For example, if evn can move on e9
before t + 21u, the optimal traveling route selection process
can be completed in time t +1u, and the whole chosen path
for evn between e1 and e9 is determined by combining R (t)
andR (t +1u), and it is given as e1→ e2→ e5→ e6→ e9,
which is shown by blue lines in Fig. 5(b).

2) AVAILABLE STOPPING LOCATION DETERMINATION
In order to cope with the range anxiety and improve the qual-
ities of driving/charging experience of mobile EVs, we con-
sider four factors to evaluate the feasibility of candidate
stopping locations for subsequent V2V charging services,
namely trajectory-based traveling time, energy consumption,
charging time and charging comfortable quality, of which all
are derived in Section II-C. In addition, the optimal traveling
route for mobile EVs is selected by our proposed algorithm
presented in Section III-A rather than a simple shortest-path
algorithm. Based on the above discussions, the objective
function for available stopping location determination can be
formulated as follows.

MinG (SLk)
SLk

= λs1 · TR (SLk)+ λ
s
2 · EC (SLk)

+λs3 · TC (SLk)+λ
s
4 · (1−CM (SLk)) (22)

subject to EC (SLk) ≤ C · SOCc (23)

where G (SLk) denotes the feasibility of selected stopping
location SLk , λs1, λ

s
2, λ

s
3 and λs4 are weight values, TR (SLk)

and EC (SLk) indicate the global traveling time and energy
consumption of EV moving from its current position to the
destination going through SLk , respectively, TC (SLk) and
CM (SLk) correspondingly stand for the charging time and
charging comfortable degree of EV in SLk .

So as to solve the formulated function in (22) to com-
plete the available stopping location selection for mobile
EVs, we make use of a simple numerical substitution based
method due to limited number of stopping locations. In par-
ticular, based on the derived models in Section II-C and the
optimal traveling route selection scheme in Section III-A,
the obtained EC (SLk) is firstly substituted into (23) to
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FIGURE 6. An example to validate the effectiveness of global
trajectory-based concept.

determine whether it satisfies with the constraint, if yes,
corresponding feasible value G (SLk) is then computed by
means of (22). Once all values of G (SLk) are obtained
(where ∀k ∈ N , and N denotes the number of stopping
locations in a geographic area), the most available stop-
ping location SLop is easily accomplished and SLop ={
SLk |min

SLk
{G (SLk)} ,∀k ∈ N

}
.

Note that, compared with other researches [27], [30] that
only consider local energy consumption EC (CL, SLk) from
EV’s current location CL to its selected stopping location
SLk , our trajectory-based factors used in (22) for stopping
location selection are more reasonable and make EV drivers
undergo lower charging navigation cost from the global trip
perspective. An example is depicted to demonstrate such
advantages in Fig 6. In the maximum driving range of mobile
EV evn located in CL, there are two candidate stopping
locations (SL1 and SL2) for V2V charging services. In the
case of local energy consumption concept, evn selects SL2
rather than SL1 to implement V2V charging operations due
to EC (CL, SL2) < EC (CL, SL1). However, evn has to
suffer from higher traveling cost in the future path from SL2
to its destination location DL compared with that between
SL1 and DL because of EC (SL2,DL) � EC (SL1,DL).
Besides, the computation time of local charging navigation
tasks carried out on mobile EVs would make corresponding
EVs create redundant movements, which have certain effects
on the whole traveling time calculation from the current
position of an EV to its selected stopping location, but such
computation time is very limited for delay-tolerant V2V
charging navigation services and it can be neglected with
the purpose to simplify the formulated model. The corre-
sponding reasons are obvious: (1) in the process of adaptive
optimal traveling route selection, the states and actions in
our proposed Q-learning based optimal algorithm are discrete
and their number is limited, which make the corresponding
Q-value tables easily converge within the bounded time,
(2) based on our designed charging navigation factor models,
Q-tables can be calculated via the offline way in advance
to further decrease computation time, and (3) in the process
of available stopping location determination, the calculation
complexity of proposed numerical substitution based method
is very low and the number of stopping locations is not
large in constructed urban scenarios, both of which achieve
the efficient computing task operations with short execution
delay.

B. GLOBAL CHARGING NAVIGATION SCHEME
Base on the collected local charging navigation information,
as shown in Fig. 3, NNC immediately carries out an effi-
cient global charging navigation scheme to achieve the best
charging-discharging pair matching for EVs, which choose
the same stopping location for V2V charging services.

From the viewpoint of overall performance of V2V charg-
ing system, three targets of our proposed global charging
navigation scheme are considered as follows. The first goal
is to make EVs exchange as much energy as possible, to suf-
ficiently satisfy with the energy demands of charging EVs
and promise highV2V charging revenues of discharging EVs.
In addition, the sum of arrival time interval between charging
EV and discharging EV assigned in one matching pair should
be minimized to decrease extra waiting time for further V2V
energy exchanges. The final objective is to minimize the
total gaps between demanded energy from charging EVs and
supplied energy from discharging EVs, so as to efficiently
balance the supply and demand requirements of different
EVs, and defend the benefits of discharging EVs as much as
possible. To effectively achieve the aforementioned targets,
we regard the charging-discharging EV pair matching issue
as a maximum weighted matching (MWM) problem based
on a designed bipartite graph G =

(
U ,V ,E ′

)
with weight

ω : E ′ → R, where U and V represent charging EV
set and discharging EV set with the same stopping location
selection, respectively, E ′ means the edge set implying the
candidate matching between U and V . According to the
above descriptions, the introduced charging-discharging pair
matching problem can be formulated as follows.

max P =
∑
∀u∈U

pu (24)

subject to


pu =

∑
∀v∈V

ω (u, v) < 2, ∀u ∈ U∑
∀u∈U

ω (u, v) < 2, ∀v ∈ V
(25)

where ω (u, v) denotes the weight of edge e′ (u, v) ∈ E ′, and
it is used to evaluate the matching performance of charging
EV u and discharging EV v.

In order to achieve the mentioned objectives of global
charging navigation, we induce ω (u, v) in terms of three
parameters, namely exchanged energy amount, arrival time
interval and required energy gap between u and v, and two
cases are considered as follows.
Case 1: if demanded energy amount EY du of u is no more

than supplied energy value EY sv of v, and arrival time interval
TG (u, v) between u and v does not exceed configured max-
imum value TG, that is

(
EY du ≤ EY

s
v
)
∩ (TG (u, v) ≤ TG),

the matching between u and v is feasible, and ω (u, v) is
derived as

ω (u, v) = 1+ α1 ·
EY du
C
+ α2 ·

TG− TG (u, v)
TG

+α3 ·
EGmax − EG (u, v)
EGmax − EGmin

(26)
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Case 2: if
(
EY du > EY sv

)
∪ (TG (u, v) > TG), the matching

between u and v is not effective, and ω (u, v) is given as

ω (u, v) = 0 (27)

where TG (u, v) = |TAu − TAv|, TAu and TAv mean the
arrival time in the selected stopping location of u and v,
respectively, C is the maximum battery capacity, EG (u, v) =
EY sv − EY du , EGmax = max {EG (u, v) |∀u ∈ U ,∀v ∈ V },
EGmin = min {EG (u, v) |∀u ∈ U ,∀v ∈ V }, α1, α2 and α3
are weight factors and all of them are more than 0, and
α1 + α2 + α3 = 1.

According to the above descriptions, (25) can ensure
that each charging EV in U is capable of being put into
one-to-one correspondence with each discharging EV in V .
Besides, Cu, TG, EGmax and EGmin in (26) are utilized
to remove the dimensional characteristic effects of differ-
ent matching performance parameters in the normalization
process.

To solve the above formulated MWM problem in (24)
with constraints expressed as (25), we propose an effi-
cient Kuhn-Munkres (KM) [37] based algorithm. Specif-
ically, we start with an initial matching M and a
valid labeling y, where y is defined as the labeling
{y (u)← max

v∈V
ω (u, v) , y (v)← 0|∀u ∈ U ,∀v ∈ V}. After

that, we search a candidate augmenting path starting at vertex
u to extendM , where u ∈ U , u /∈ M . If a feasible augmenting
path exists, the matching is updated via replacing the edges
in M with the edges in the augmenting path that are not in
M . In the case that there is not a feasible augmenting path,
we carry out labeling improvement operations to form an
extended subgraph and then go back to the step of candidate
augmenting path search for tight edges. The above procedures
are constantly implemented until a maximum matching is
found. In the process of labeling improvement, we firstly
let ψ be the minimum of y (u)+ y (v)− ω (u, v) over all of
u ∈ U ′ and v ∈ V/V ′ (which is defined as v ∈ V and v /∈ V ′),
and then based on the deduced ψ , labeling y is improved by
means of the following expression.

y (x)←

{
y (x)− ψ if x ∈ U ′

y (x)+ ψ if x ∈ V ′
(28)

where U ′ and V ′ are reachable vertex sets in the explored
augmenting alternating path, and U ′ ⊆ U , V ′ ⊆ V .

The detailed steps of proposed KM-based optimal match-
ing algorithm is given in Algorithm 1, and a simple example
to illustrate the best charging-discharging EV pair assignment
is presented in Fig. 7, in which there are three charging EVs
and four discharging EVs, and the weight values of different
matching pairs via (26) and (27) are indicated next to the
corresponding solid lines. After several iterations based on
our proposed KM-based matching algorithm, the optimal EV
matching results are given, that is u1 to v4, u2 to v3 and u3 to
v1, all of which are represented by black bold line, red bold
line and green bold line, respectively.

Algorithm 1 An Efficient KM-Based Matching Algo-
rithm for the Optimal Charging-Discharging EV Pair Assign-
ments
1: y (u): the label of u.
2: y (v): the label of v.

*********************************************

3: y (u)← max
v∈V

ω (u, v) ,∀u ∈ U .

4: y (v)← 0,∀v ∈ V .
5: E ′t ← Set of explored tight edge e′ (u, v), where y (u) +
y (v) = ω (u, v).

6: M ← Maximum cardinality matching for graph G′ =(
U ,V ,E ′t

)
.

7: while M is not a maximum matching do
8: Explore an augmenting path for M starting from an

appointed unmatched vertex in U .
9: if no augmenting path exists then
10: U ′ ← {u′|u′ is a reachable vertex in the explored

augmenting alternating path, u′ ∈ U}.
11: V ′ ← {v′|v′ is a reachable vertex in the explored

augmenting alternating path, v′ ∈ V}.
12: ψ =min

{
y (u)+y (v)−ω (u, v) |u ∈ U ′, v ∈ V/V ′

}
.

13: y (u)← y (u)− ψ,∀u ∈ U ′.
14: y (v)← y (v)+ ψ,∀v ∈ V ′.
15: New edge e′ (uc, vc) is added to extend the existing

tight subgraph, where {uc, vc} ← argmin
u,v

ψ (u, v).

16: Go back to line 8.
17: end if
18: Update E ′t and M .
19: end while
20: ReturnM .

FIGURE 7. The optimal charging-discharging EV pair matching example by
means of KM-based algorithm. The best assignment results are given as
follows: u1 matches with v4, u2 matches with v3, u3 matches with v1.

IV. PERFORMANCE AND DISCUSSIONS
In this section, we evaluate the performance of proposed
Intelligent Direct V2VChargingNavigation strategy (IDCN).
In addition, to better illustrate the advantages of our designed
IDCN scheme, five efficient charging navigation strate-
gies are utilized as the benchmarks including STCC [27],
DVCS [30], GCNA (greedy charging navigation algorithm,
where the nearest stopping location is selected for V2V
charging service, and matching pairs are assigned as long
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TABLE 1. Simulation parameters.

as the demanded energy of charging EVs is less than the
corresponding supplied energy of discharging EVs), IDCN_S
(a defined version of IDCN where the optimal traveling route
for mobile EVs is determined based on the static Q-value
table at the current time rather than the varying Q-value tables
with different time, and V2V charging reservation situations
are not considered in the derived charging comfortable degree
model) and ACMS, where the charging navigation scheme
is almost same as that of our proposed IDCN, except that
both local and global charging navigation missions are imple-
mented on MEC servers rather than on distributed EVs and
centralized NCC in IDCN, respectively.

A. EXPERIMENTAL ENVIRONMENTS
To implement our experiments, a realistic urban scenario
extracted from Nanjing city, Jiangsu province, China, is con-
sidered in the simulations, and its area size is set to 4 kilo-
meters (km) × 3.7 km, as shown in Fig. 8, and practical
traffic dataset of mobile vehicles moving on the above region
is given by Nanjing Transport Bureau from January 1 to
April 5, 2018. In addition, we assume that the type of mobile
EVs is TESLA Model S, and EV battery capacity C and
charging power PW are set to 85 KiloWatt-hour (KWh) and
17.2 KiloWatts (KW), respectively, initial state of remaining
energy in the battery for each EV is uniformly selected from
[15, 80] KWh, and the penetration level of EVs is give as
10%− 20%. Moreover, we consider that maximum charging
waiting time Tmaxcw is given as 4 hours (h), traffic informa-
tion predicted interval 1u is 0.25 h, maximum value γmax
and minimum value γmin of discount factor are presented
as 0.85 and 0.25, respectively, and maximum arrival time
gap TG is set as 0.5 h. Furthermore, δ is set as 0.6, α1, α2
and α3 are given as 1

3 , respectively. Finally, in VANET-based
communication scenarios, wireless communication range of
vehicles is fixed to 200 and 250 meters (m), channel trans-
mission capacity is set to 6 Million bits per second (Mbps),
and themedia access control (MAC) layer protocol is given as
802.11p. The detailed simulation parameters are described in
table. 1.

FIGURE 8. A snapshot of the realistic simulation scenario.

B. COMMUNICATION PERFORMANCE EVALUATION
1) THEORETICAL ANALYSIS ON TRANSMISSION COST
We define the transmission cost as the total number of estab-
lished delivery connections during communication period.
Compared with the number of other entities of charging
navigation framework, such as stopping locations, mobile
EVs, MEC servers, the amount of information managing
centers (IMC, which is renamed as navigation control cen-
ter in IDCN, parking service center in DVCS, and aggre-
gator in STCC) is very limited, as a result, an IMC can
be regarded as the communication bottleneck of the over-
all charging navigation framework, and it easily suffers
from the passive effects of big V2V charging information
delivery. Obviously, it is very critical to analyze the trans-
mission cost of each IMC for various charging navigation
strategies. As the IMC communicates with stopping loca-
tions and MEC servers for local/global charging navigation
messages in each α · T period (0 < α < 1), as shown
in Fig. 3, the transmission cost in proposed IDCN is scaled
by 2

(
Nsl+Nmec
α·T

)
, where Nsl and Nmec denote the num-

ber of stopping locations and MEC servers, respectively, T
means the broadcast time interval. In addition, every IMC in
STCC collects real-time charging/discharging profiles from
mobile EVs with V2V charging/discharging requirements,
and broadcast the calculated price decisions to all mobile
vehicles per T , so the transmission cost of IMC is given as
2
(
N c
ev +

Nv
T

)
, where N c

ev indicates the number of mobile
EVs with V2V charging/discharging concerns, and Nv is the
number of all moving vehicles including EVs and oil-driven
vehicles. Moreover, IMC suffers from the transmission cost
of 2

(
Nsl + N c

ev +
Nv
T

)
in DVCS, since it broadcasts busy

situations of all stopping locations to mobile vehicles per T ,
and gathers (pushes) real-time V2V charging information
from (to) both stopping locations and moving EVs with V2V
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TABLE 2. Transmission cost of charging navigation.

FIGURE 9. Transmission cost with different EV penetration ratio and
broadcast time intervals.

charging/discharging requirements, to complete the feasible
charging navigation tasks. The transmission costs of three
different charging navigation strategies are summarized in
table 2. Obviously, based on the general knowledge, Nmec �
N c
ev,Nsl � Nv, and thus the transmission cost of our proposed

IDCN is much lower than that of STCC and DVCS. Besides,
table 2 shows that the transmission cost in IDCN is only
proportional to the number ofMEC servers and stopping loca-
tions rather than the larger number of moving vehicles, as a
result, IDCN presents highly significant scalability compared
with other charging navigation strategies.

2) EXPERIMENTAL VALIDATION ON TRANSMISSION COST
Fig. 9 shows the transmission cost of each IMC in different
charging navigation strategies with varying EV penetration
ratio and broadcast time interval T . From this figure, we see
that transmission costs of all charging navigation strategies
increase with the decrease of broadcast time interval T ,
which leads to raise communication frequency and estab-
lish more transmission connections. In addition, we observe
that the transmission cost in both STCC and DVCS is
directly proportional to the EV penetration ratio levels,
as higher EV penetration ratio implies more EVs requiring
V2V charging services, which can result in more substan-
tial communication demands. Furthermore, the transmission
cost in the proposed IDCN keeps stability with varying EV
penetration ratio and it indicates the lowest values com-
pared with those of other charging navigation strategies,
so IDCN owns better performance in the aspects of big

FIGURE 10. Packet delivery ratio with different RSU number and EV
penetration ratio.

data transmission and network congestion alleviation. Appar-
ently, Fig. 9 exhibits the communication effectiveness of our
establishedMEC-based semi-centralized charging navigation
framework, and the above simulation results are in accor-
dance with the theoretical analysis in Section IV-B-1.

3) PACKET DELIVERY RATIO EVALUATION
Fig. 10 displays the end-to-end packet delivery ratio between
IMC and mobile EVs based on varying EV penetration ratio
and different number of RSUs, which are uniformly dis-
tributed in urban scenarios. From this figure, we observe that
the proposed IDCN indicates the highest packet delivery ratio
compared with other referencing schemes, because each RSU
in IDCN owns MEC capacities and it can carry out data
mining and aggregation operations to remove unqualified
charging information, which is advantageous to communi-
cation congestion alleviation and transmission interference
reduction. In addition, more RSUs are capable of dividing the
enormous urban environment into several smaller local areas,
and charging information can arrive in its IMC by passing
through shorter wireless distance, which implies less effects
from communication channel fading, noise interferences and
so on, so packet delivery ratio can be further enhanced.
Moreover, Fig. 10 shows that packet delivery ratio slightly
decreases with the rise of EV penetration ratio, and the reason
is obvious: higher EV penetration ratio implies that V2V
charging/discharging demands increase, and more charging
information should be exchanged between mobile EVs and
IMC, as a result, serious communication congestions may
occur and packet delivery losses may rise.

4) AVERAGE OFFLOADING TIME
As presented in Fig. 11, the average offloading time from
EVs to nearby MEC servers is evaluated with respect to
various EV penetration ratio and communication ranges in
VANETs, here we define that offloading time is composed
of two parts including data processing time on MEC servers
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FIGURE 11. Offloading time with different EV penetration ratio and
communication range.

and transmission delay betweenMEC servers and EVs. From
this figure, we observe that offloading time in our proposed
IDCN is below 1.5 seconds, and it is very low compared
with the whole traveling time of EVs towards the selected
stopping locations. Two reasons are given to explain such
results. Firstly, the available communications betweenmobile
EVs and adjacent MEC servers are carried out by means
of efficient VANETs, where our proposed adaptive routing
protocols [31], [32] are implemented to achieve low trans-
mission delay. Secondly, the data preprocessing tasks on each
MEC server are very simple, and corresponding computation
time is indeed short. In addition, from Fig. 11, we see that
the offloading time of ACMS is significantly higher than
that of IDCN, and such results can be explained as follows:
(1) MEC servers of ACMS would gather more exhaustive
charging information from mobile EVs and more data would
pour into VANETs connecting MEC servers and mobile
EVs, so severe network congestions may occur and trans-
mission delay increases, and (2) both preprocessing tasks for
more charging information and charging navigation missions
would be operated on MEC servers of ACMS, and corre-
sponding computation time substantially increases especially
in the case of high EV penetration ratio. Moreover, Fig. 11
indicates that offloading time decreases with the rise of
communication range, which makes broken wireless links in
VANETs be recovered and the corresponding delivery delay
is reduced.

C. CHARGING NAVIGATION PERFORMANCE EVALUATION
1) DETOURING CHARGING NAVIGATION COST
Table 3 presents the detouring charging navigation cost of
different algorithms, namely detouring traveling time and
detouring energy consumption. Here detouring traveling time
is defined as the difference between traveling time of an EV’s
current trip R (CL,DL, SL) from its current location CL to
destinationDL passing through selected stopping location SL
and that of the direct trip R (CL,DL) from CL to DL, and

TABLE 3. Detouring traveling time and energy consumption for each
mobile EV.

detouring energy consumption is given as the gap between
traveling energy consumption of R (CL,DL, SL) and that of
R (CL,DL). In addition, in this experiment, we set the num-
ber of stopping locations and EV penetration level to 5 and
20%, respectively. From this table, we observe that the pro-
posed IDCN algorithm indicates the best charging navigation
performance compared with other strategies in terms of mean
values and standard deviations (std.) of detouring traveling
time and detouring energy consumption, respectively. The
reasons are given as follows: (1) when selecting available
stopping locations for V2V charging services, IDCN takes
into account both global trajectory-based traveling time and
energy consumption of R (CL,DL, SL) rather than local per-
formance of route from CL to SL in other referencing algo-
rithms (GCNA, STCC and DVCS), and the extra charging
navigation cost can decrease as much as possible, and (2)
when determining the moving route for mobile EVs, IDCN
is capable of dynamically selecting the optimal traveling path
based on predicted traveling time and energy consumption
of road segments in varying time series, while both the
shortest-path algorithm (used in GCNA, STCC and DVCS)
and the static route selecting scheme (applied in IDCN_S)
can not effectively cope with the rapid changes of traffic
conditions, and they may lead to higher charging navigation
cost.

2) AVERAGE WAITING TIME FOR CHARGING SERVICES
Fig. 12 shows the relationships among average waiting time
of each EV, EV penetration ratio PRev and stopping location
number Nsl for different charging navigation schemes. It is
observed that the waiting time of all charging navigation
strategies increases with ascending EV penetration ratio,
which implies more EVs with charging requirements, and
the existing stopping slots are not enough for huge V2V
charging demands. In addition, this figure displays that higher
stopping location number is beneficial to the decrease of EVs’
waiting time, as more stopping locations can provide mobile
EVs with more feasible energy exchange sites, which are
advantageous to improving charging efficiency and reducing
average waiting time. Moreover, from Fig. 12, we can see
that the waiting time of IDCN, IDCN_S and DVCS is lower
than that of STCC and GCNA, because the influences of
waiting time are considered in these three algorithms (IDCN,
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FIGURE 12. Waiting time with different EV penetration ratio and stopping
location number.

IDCN_S and DVCS) when they select the available stopping
location. Furthermore, as described in Fig. 12, the proposed
IDCN charging navigation algorithm achieves the lowest
waiting time compared with that of other strategies, and such
results can be explained as follows. Firstly, IDCN makes
use of Q-learning based method to adaptively choose the
optimal traveling route, as a result, we can estimate more
accurate arrival time, which could be conducive to choosing
the stopping location with better charging comfortable degree
and decreasing waiting time. Secondly, based on the realistic
CC/CV battery charging scheme rather than simple constant
charging rate, IDCN considers not only undergoing queue and
waiting queue of EVs for charging service but also reserving
queue of EVs to calculate the waiting time, which is more
precise compared to that of other algorithms. Thirdly, IDCN
implements the global charging scheme by means of the
minimum arrival time gap between the charging EV and its
corresponding discharging EV, so the direct V2V charging
efficiency is improved and then waiting time declines.

Besides, we explore the impacts of varying exchanged
energy amount and charging information broadcast time
interval T onwaiting time of EVs in IDCN, and related results
are shown in Fig. 13, where we set EV penetration ratio and
stopping location number to 10% and 20, respectively. From
this figure, it is easily observed that average waiting time is
proportional to the exchanged energy amount of each EV,
as more energy transaction requirements lead to higher charg-
ing time, which has significant influences on the increase
of waiting time. In addition, Fig. 13 presents that when we
raise the values of broadcast time interval, the average wait-
ing time obtains distinct increase. The reasons are obvious:
(1) higher T decreases the accuracy of busy situations of
all stopping locations stored at the sides of MEC servers,
and subsequently leads to inefficient local charging naviga-
tion, and (2) the rise of T imposes negative effects on the
transmission of gathered local navigation decisions, which
can affect the optimal performance of charging-discharging
EV pair matching at the NCC side. As a result, the

FIGURE 13. Waiting time with different exchanged energy amount and
broadcast time intervals.

TABLE 4. Total exchanged energy amount (value unit: KWh).

charging efficiency becomes lower and average waiting time
rises.

3) TOTAL EXCHANGED ENERGY AMOUNT AND CHARGED
EV NUMBER
Table 4 and Fig. 14 indicate the total exchanged energy
amount and the number of successfully charged EVs with
varying EV penetration ratio PRev and stopping location
number Nsl , respectively. First of all, we observe that when
EV penetration ratio rises, more EVs can take part in the
V2V charging services, as a result, both exchanged energy
amount and charged EV number obtain obvious increase.
Besides, both Table 4 and Fig. 14 present that the growth
of stopping location number is beneficial to the increment of
exchanged energy amount and charged EV number, because
better candidate parking choice and more available stopping
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FIGURE 14. Successfully charged EV number with different EV
penetration ratio and stopping location number.

slots are supplied to mobile EVs, and direct V2V charging
efficiency can be significantly improved with the rise of
stopping location number. Moreover, it is obvious that the
performance of IDCN is best compared with that of other
referencing charging navigation strategies, and there are some
reasons to interpret such results as follows: (1) IDCN is
capable of selecting the most available stopping location
via considering charging comfortable degree with respect to
more accurate waiting time and free parking slot ratio, which
are very useful to alleviate the congestion status of stopping
locations and mitigate the synchronous conflicts of stopping
location selection for a large number of EVs, and (2) IDCN
establishes an adequate global charging navigation scheme to
realize the optimal charging-discharging EV pair matching,
by means of arrival time interval and required energy gap
between charging EVs and discharging EVs, and exchanged
energy amount, all of which are beneficial to raising the
EV pair matching number and achieving the maximum total
exchanged energy. While IDCN_S makes use of static traffic
information to compute EVs’ arrival time in corresponding
stopping locations, and does not take into account the reser-
vation information of charging/discharging EVs to estimate
the charging comfortable degree, as a result, the selected
stopping location may suffer from congestions which lead to
low V2V energy exchange efficiency. In STCC and GCNA,
only required energy level (as long as the supplied energy is
not less than the demanded energy) is considered in the pro-
cess of charging-discharging EV pair matching, and essential
temporal coordinations of EVs are neglected. In order to
complete EV pair matching, DVCS considers the energy lev-
els of charging-discharging EVs and FAFS (first arrive first
service) principle, both of which are not enough to promise
the efficient global EV pair assignments in a selected stopping
location.

4) TIME COMPLEXITY
Based on various EV penetration ratio, Table 5 shows the
time complexity of different matching methods (namely

TABLE 5. Time complexity evaluation (value unit: s).

KM-based algorithm and simple permutation-based algo-
rithm) used in the proposed global charging navigation
scheme, to obtain the optimal charging-discharging EV pair
assignments. In this experiment, we set the number of stop-
ping locations to 10. From table 5, we can observe that
the two algorithms’ calculation time increases with the rise
of EV penetration ratio, which results in more EVs par-
ticipating in V2V charging operations and heavier match-
ing tasks in NCC side. In addition, this table presents that
the calculation time of KM-based algorithm is far less than
that of permutation-based algorithm, and the outcome can
be explained from the perspective of theoretical analysis.
In the KM-based algorithm, the size of matching is raised by
1 edge in each round and there are O (nkm) rounds to search
the maximum matching (where nkm = max (|U | , |V |), U
and V denote the charging EV set and discharging EV set,
respectively), and in each round, total O

(
n2km

)
is assigned to

improve the labeling if no augmenting path is found, so the
whole time complexity of KM-based algorithm is given as
O
(
n3km

)
. While the time complexity of permutation-based

algorithm is easily gained and it is expressed as O
(
npb
)
,

where npb =
n1!

(n1−n2)!
, n1 = max (|U | , |V |) and n2 =

min (|U | , |V |). In general, ||U | − |V || is small, and both |U |
as well as |V | are large, so O

(
n3km

)
� O

(
npb
)
.

V. CONCLUSION
In this paper, we have proposed an intelligent V2V charging
navigation strategy for mobile EVs in VANET-based com-
munication environments. Firstly, an efficient MEC-based
semi-centralized charging navigation structure has been
established to ensure the reliable charging information dis-
semination and feasible charging coordination with low cost
of communication and calculation. After that, based on the
derived charging factor models, namely, traveling time pre-
diction model, charging time estimation model and charging
comfortable degree model, we have designed an effective
local charging navigation scheme and global charging navi-
gation mechanism, to dynamically choose the optimal trav-
eling route as well as stopping location for V2V charging
operations, and achieve the best charging-discharging EV
pair matching assignments, respectively. Finally, the simu-
lation results and theoretical analyses have been given to
demonstrate the effectiveness of our proposed strategy. In
the future work, based on several factors including EV driver
preferences, current calculation capacities of EVs and MEC
servers, network communication quality and so on, we would
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like to design an adaptive computation offloading adjustment
scheme for mobile EVs, to dynamically assign charging nav-
igation calculation tasks implemented by local execution on
EVs, or full offloading on MEC servers, or partial offloading
on MEC servers.
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