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ABSTRACT Clustering refers to the problem of partitioning data into several groups according to the
predefined criterion. Graph-based method is one of main clustering approaches and has been shown
impressive performance in many literatures. The core issue of graph-based clustering is how to construct
a good adjacency graph. A large number of works employ the sparse representation of data as the similarity
measure by `1 regularization. However, due to the flat nature of the `1 norm, such methods solve the sparse
representation of each data point individually, which do not take into account the global structure of data.
To exploit the global and essential structure in data, in contrast to existing methods, we propose to learn
a graph with group sparsity. To incorporate more information into the graph, we also use the manifold
regularization with adaptive similarity during the process of group sparse self-representation. The resulting
model is handled by Alternating Direction Method of Multipliers (ADMM). Further, we employ Iterative
Re-weighted Least Squares (IRLS) algorithm and threshold operator to solve the ADMM subproblems.
Experimental results on real-world datasets demonstrate the superiority of our method compared to the
competing clustering methods.

INDEX TERMS Clustering, graph, group sparsity.

I. INTRODUCTION
As a fundamental and important technique in machine learn-
ing and data mining, clustering aims to partition data points
into several groups such that the data within the same group
similar while data in different groups are dissimilar as much
as possible [1]. It has been widely used in many domains,
such as biological engineering, image processing, and social
network [2]–[4]. Over the past decades, clustering algorithm
has been well studied and a number of methods have been
proposed so far [5]–[7]. The existing clustering algorithms
can be roughly categorized into two families: density-based
approaches, such as K-means and Expectation Maximiza-
tion (EM) clustering [8], [9], and graph-based approaches,
such as spectral clustering [10], normalized cut [11] and
min-max cut [12].

Due to the good performance and simplicity, graph-based
clustering methods [13]–[18] have gained considerable
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attention from a variety of communities, which usually adopt
a two-step strategy. Specifically, a weighted undirected graph
is first constructed, where the data points are the nodes and
the affinities are the weights. The affinities between the data
can be obtained via several similarity measures, such as RBF
kernel function, binary function and dot-product function,
representation coefficient obtained by sparse optimization
problem, and so on. The data clustering is then accomplished
by spectral or graph theoretic optimization procedures. Dur-
ing the process, it should be emphasized that how to build a
good similarity matrix is the most crucial step.

Previous works [19], [20] get the affinity matrix by com-
puting the Singular Value Decomposition (SVD) of the data
matrix, which is sensitive to the noise and outlier in the
data. Wang et al. [21] focused on learning distance measure
by exploiting a graph structure of data samples, where an
input similarity matrix can be improved through a propa-
gation of graph random walk. Recently, with the develop-
ment of sparse regularization, both theoretical and empirical
studies have suggested that sparsity is one of the intrinsic
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properties of real-world data. This motivates a large num-
ber of researchers to develop clustering models with sparse
representation [14], [22]–[25]. Cheng et al. [23] employed
the `1 norm to build the sparse graph weight matrix, which
has been shown to be capable of finding data-adaptive neigh-
borhood for the graph construction. Elhamifar and Vidal [22]
have proposed sparse subspace clustering (SSC), which rep-
resents each data point as a linear or affine combination of
the remaining data points and most combination coefficients
are zero or close to zero. Essentially, SSC minimizes the
`0 of representation coefficient, which denotes the number
of non-zero elements in a vector. Based on SSC, several
studies have been further developed to handle the noise [26]
and outliers [27] in the data. Using the kernel trick, Patel
and Vidal [28] extended SSC to non-linear manifolds, and
shown that sparse representation obtained by non-linear map-
ping could obtain better performance than state-of-the-art
methods. Also, Lerman et al. [29] proved that under certain
conditions the multiple subspace structures can be exactly
recovered via `p(p ≤ 1) minimization.

It can be observed that most existing graph-based clus-
tering methods use the `1 norm to promote the sparsity of
coefficients, which have shown the promising performance.
Moreover, the resulting minimization can be easily handled
by a variety of techniques with global solutions. However,
due to the flat nature of the `1 norm, the sparse representation
of each data vector is found individually, which means that
no global constraint are enforced on the solution. There-
fore, this type of methods may be inaccurate at capturing
global structure of data, or even are not able to exploiting
the global structure. To address this issue, we propose to
use the group sparse regularization to promote the sparsity
of the coefficient matrix, which can exploit the global geo-
metric structure and essential structure in data effectively
and precisely. As a result, the performance can be improved.
Besides, recent years have witnessed a great success of man-
ifold learning in high-dimensional data analysis, which aims
to find low-dimensional manifold embedding from original
high-dimension data. Under the circumstance that if two
points are similar, their low-dimensional embeddings are also
similar, we integrate the manifold regularization into the
group spare self-representation for learning a sparse graph.

In summary, we highlight our main contributions as fol-
lows,
• We propose a unified model for graph-based clustering.
To exploit the global and essential structure, we propose
to use group sparsity for self-representation. Towell pre-
serve the structure of the original data space, we utilize
the manifold regularization.

• To minimize the proposed model, we derive the Alter-
nating Direction Method of Multipliers (ADMM)-based
optimization algorithm. Iterative Re-weighted Least
Squares (IRLS) algorithm and thresholding operator are
employed to obtain the solution of subproblems.

• We compare ourmethodwith the state-of-the-art cluster-
ing methods on several real-world datasets. The results

demonstrate the effectiveness of our proposed method in
terms of clustering accuracy, normalized mutual infor-
mation and adjusted rand index.

The rest of this paper is organized as follows. In Section II,
we provide some existing related works. In Section III,
we present the proposed method. Section III-A introduces the
group spare graph model for data clustering. In Section III-B,
we investigate how to optimize the proposed model. The
clustering details and convergence behavior are given in
Section III-C and III-D, respectively. In Section IV, we com-
pare the performance of the proposed method with the state-
of-the-art on the four real-world datasets. Finally, Section V
concludes the paper.

II. RELATED WORK
In this section, we give a brief overview from both
Graph-based clustering approaches and group sparsity.
Before we begin, we list notations to be used in this paper
in Table 1.

A. GRAPH-BASED CLUSTERING APPROACHES
In recent years, spectral clustering has become one of the
most popular modern clustering approaches with a huge num-
ber of variants being developed, whose main tools are the
graph Laplacian matrices, including normalized and unnor-
malized graph Laplacian [1], [30]–[32]. To improve the
performance of spectral clustering, two aspects have been
considered by researchers. On one hand, one can construct a
good or robust affinity matrix by using the standard spectral
algorithms. Lee et al. [33] proposed an alternative approach to
producematrices with block-diagonal structures. On the other
hand, many researchers focus on improving the clustering
result when fixing the way of generating the data affinity
matrix. Yan et al. [34] formulated spectral clustering as a
semi-definite programming (SDP), which could find the clos-
est doubly stochastic approximation to the affinity matrix
more accurately.

As an extension of spectral clustering, sparse spectral
clustering [1], [35] employs sparse regularization to enhance
the robustness of spectral clustering. To promote the spar-
sity of representation coefficient, the `0 is more desired.
However, such resulting optimization problems are in gen-
eral non-convex and NP-hard. Yang et al. [24] proposed the
`0 based clustering model solved by the Proximal Gradi-
ent Descent (PGD) method, which admitted a sub-optimal
solution with theoretical guarantee. One of the well-known
strategies is to replace the `0 by the convex `1 norm [14],
[22], [25].

Based on Low-Rank Representation (LRR),
Wang et al. [36], [38] and Wang and Wu [37] proposed
spectral clustering models, where the `1 regularization was
used to address the noise in the data. To better discover
the latent group structure of data, Yin et al. [39] devel-
oped a pairwise sparse subspace representation model based
on some prior information for clustering. More recently,
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TABLE 1. The list of notations and their definitions in this paper.

Brbić andKopriva [40] introduced the nonconvex generalized
Minimax-Concave Penalty (MCP) and Schatten-0 quasi norm
for low-rank sparse subspace clustering. Based on the convex
hull of the fixed rank projection matrices, Lu et al. [1]
proposed a novel convex relaxation to alleviate the nonconvex
sparse spectral clustering model from the computational
issue.

B. GROUP SPARSITY
Suppose that the features are independent and the structures
of features are ignored completely, a variety of sparse reg-
ularizations have been proposed, including lasso (`1 norm),
adaptive lasso, fused lasso, trace lasso and elastic net [41].
However, in practical applications, the features have some
essential structures, such as disjoint groups [42], overlap-
ping groups [43], and graphs [44]. Integrating some priori
knowledge of the feature structures into model building can
help identify the important features. Accordingly, the sparsity
can be obtained by group lasso, overlapping group lasso, and
graph lasso. As an extension of the group lasso, the sparse
group lasso [45] combines both lasso and group lasso, which
can produce a solution with simultaneous between- and
within- group sparsity.

Among them, the `2,1-norm is one of the most popular
one, which is defined as the `1 norm of the vector con-
taining of the `2 norm of the matrix rows on a matrix.
It was first introduced in [46] as the rotational invariant of
the `1 norm. By its definition, the `2,1-norm encourages
row sparsity, i.e., it enforces entire row of the matrix to
have zero elements. It has been successfully used in fea-
ture selection [47], [48], dictionary learning [49], multi-task
learning [50], [51], and multi-class classification [52], [53].
Nie et al. [47] developed a feature selection model via the
`2,1 norm joint minimization on the loss function and spare
regularization. More feature selection works using the `2,1

norm as sparse regularization can be found in [41]. Based
on the `2,1 norm, Cai et al. and Xiang et al. improved the
Support Vector Machine (SVM) and least squares regression
for multi-class classification. More recently, group sparsity
has also been applied into deep neural works. Yoon and
Hwang [54] combined group and exclusive sparsity as a
regularization to enforce sparsity, by utilizing the sharing and
competing relationships among various network weights.

III. THE PROPOSED METHODOLOGY
A. MODEL FORMULATION
1) GROUP SPARSE SELF-REPRESENTATION
Suppose that we have a collection of data points
{x1, x2, · · · , xn}, where each sample xi lies in <d Euclidean
space. Let X = [x1, x2, · · · , xn] ∈ <d×n be the data matrix.
Self-representation learning aims to represent each sample as
the linear combination of its most relevant samples. In addi-
tion, the sparsity of the representation coefficient is more
desired, that is most combination coefficients are zero or
close to zero. Mathematically, the sparse self-representation
can be typically formulated as the following optimization
problem,

min
A

loss(X ,XA)+ α�(A), (1)

where the first term loss(·, ·) is the data fidelity term which
encourages an accurate representation, the second term�(A)
is the sparse regularization term which enforces the sparsity
on the coefficient matrix A = [a1, a2, · · · , an] ∈ <n×n, and
α is a positive regularization parameter which balances these
two terms in the formulation.

One commonly used loss function is the least squares loss,
which takes advantage over several other loss functions due
to its differentiability in the optimization of the resulting
problem. However, it is sensitive to the outlier and noise in
data points. To deal with this issue, in this paper, we use the
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`2,1 norm as the loss function. Then, (1) becomes,

min
A
‖X − XA‖2,1 + α�(A). (2)

In (2), we expect that only few numbers of ai are non-zeros,
which implies that each sample can be represented by as few
samples as possible. As a result, the samples corresponding to
those non-zero rows are selected to regress the original data to
its low-dimensional representation. To the end, different from
existing works using the `1 minimization, we employ the
group sparsity to exploit global and essential structure of the
data. As stated earlier, the `2,1 norm is the most common used
and has shown the promising performance. Therefore, we use
the `2,1 norm to promote the group sparsity and obtain the
`2,1 norm regularized sparse self-representation formulation
as follows,

min
A
‖X − XA‖2,1 + α‖A‖2,1. (3)

It can be easily observed that the sparse coefficients rep-
resent the contribution of each data to the reconstruction of
other data, which can be measured by the `2 norm. Due to
the existence of the `2,1 norm sparse regularization, the above
formulation will lead to a small number of non-zero rows in
representation matrix.

2) MANIFOLD REGULARIZATION WITH ADAPTIVE SIMILARITY
Let S ∈ <n×n be a KNN adjacency matrix on the data,
and Sij = 1 if and only if either xi is among the K-nearest
neighbors of xj. The manifold learning aims to find the
low-dimensional embedding of each data in accordance with
the manifold assumption by minimize the following regular-
ization term,

min
ai

1
2

n∑
i=1

n∑
j=1

Sij‖ai − aj‖22, (4)

where ai is the low-dimensional representation of data point
xi, for i = 1, 2, · · · , n. With some simple linear algebra,
we have the following,

1
2

n∑
i=1

n∑
j=1

Sij‖ai − aj‖22

=
1
2

n∑
i=1

n∑
j=1

Sij‖ai‖22 −
1
2

n∑
i=1

n∑
j=1

2Sij〈ai, aj〉

+
1
2

n∑
i=1

n∑
j=1

Sij‖aj‖22

=

n∑
i=1

n∑
j=1

Sij‖αi‖22 −
n∑
i=1

n∑
j=1

Sij〈ai, aj〉

=

n∑
i=1

aTi Dai −
n∑
i=1

aTi Sai

= Tr(ATLSA), (5)

where D =
∑n

j=1 Sij is the degree matrix, and LS = D− S is
the Laplacian matrix. Hence, (4) can be rewritten into,

min
A6=0

Tr(ATLSA). (6)

The constraint A 6= 0 is to avoid the trivial solution. As we
know, although the similarity matrix S constructed by KNN
encourages the local smoothness of the low-dimensional rep-
resentation in a neighborhood of each data point, it neglects
the data that are far away from each other in the original data
space. Inspired by the great success of the local smoothness
of the low-dimensional embedding in clustering [14], we con-
sider the following problem,

min
A

Tr(ATLWA)

s.t. W = (|A| ◦ S + |AT| ◦ ST)/2, (7)

where the notation | · | stands for the absolute value of
each element in matrix, and ◦ denotes the Hadamard product
between two matrices with the same scale. The equality con-
straint would result in the low-dimensional varying smoothly
along the geodesics of the data manifold through the graph
Laplacian.

By combining the self-representation with the `2,1 norm
(3) and manifold regularization with adaptive similarity (7),
our proposed model can be formulated as follows,

min
A,W
‖X − XA‖2,1 + α‖A‖2,1 + βTr(ATLWA)

s.t. W = (|A| ◦ S + |AT| ◦ ST)/2, (8)

whereα andβ are two positive regularization parameters. The
joint minimization will admit a sparse solution along the row,
which can identify the most relevant features for each sample.
Instead of the original data matrix, we perform the clustering
on the sparse representation coefficient matrix.

B. OPTIMIZATION
In this subsection, we present the optimization algorithm of
our proposed model. Before proceeding the process, we give
another optimization problem, which is equivalent to (8) but
can be solved more easily.
Lemma 1: Problem (8) is equivalent to the following con-

strained optimization problem,

min
W ,A
‖X − XA‖2,1 + α‖A‖2,1 + βTr(ATLS◦|W |A)

s.t. W = A (9)

Proof: To prove the equivalence, we make the following
the calculation,

Tr(ATLS◦|W |A) =
1
2

n∑
i=1

n∑
j=1

Sij|Wij|‖ai − aj‖22

=
1
4

n∑
i=1

n∑
j=1

Sij|Wij|‖ai − aj‖22

+
1
4

n∑
i=1

n∑
j=1

Sji|Wji|‖aj − ai‖22

=
1
2

n∑
i=1

n∑
j=1

Sij|Wij| + Sji|Wji|

2
‖ai − aj‖22.

(10)
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According to the equality constraint W = A in (9) and
the above equation, we arrive at that these two optimization
problems are equivalent to each other.
Clearly, the | · | operator and the transpose operator are

removed from the equality constraint in (8), which leads to be
more tractable than its preliminary form.We will focus on the
optimization of problem (9), which is a convex optimization
with global solutions. However, it involves the non-smooth
term `2,1-norm and has no closed-form solutions. In this
paper, we propose to use ADMM, which achieves globally
optimal solution for a class of convex problems. To this
end, we first formulate the augmented Lagrangian of prob-
lem (9) as,

L(A,W , 6) = ‖X − XA‖2,1 + α‖A‖2,1 + 〈6,W − A〉

+βTr(ATLS◦|W |A)+
µ

2
‖W − A‖2F , (11)

where µ > 0 is the penalty parameter. According to [55],
ADMM consists of the following iterations,

Ak+1 := argmin
A

Lρ
(
A,W k , 6k

)
; (12a)

W k+1
:= argmin

W
Lρ
(
Ak+1,W , 6k

)
; (12b)

6k+1
:= 6k

+ ρ
(
Ak+1 −W k+1

)
, (12c)

where the superscript is the iteration counter. In what follows,
we will describe the details of (12a) and (12b). For simplicity,
we omit the superscript in (12a) and (12b).

1) UPDATING A
With W and 6 fixed in (12a), the ADMM subproblem with
respect to A is reduced to,

min
A
‖X − XA‖2,1 + α‖A‖2,1 + βTr(ATLS◦|W |A)

+〈6,W − A〉 +
µ

2
‖W − A‖2F . (13)

As seen from (13), although the objective function is con-
vex which admits global solutions, it is non-smooth, mak-
ing it difficult to be solved directly. Here, we utilize the
Iterative Reweighted Least-Squares (IRLS) [56] algorithm to
solve the ADMM subproblem, which is in an iterative way.
To the end, we first construct two diagonal matrices Gkx =
diag(G1

x ,G
2
x , · · · ,G

n
x) and G

k
a = diag(G1

a,G
2
a, · · · ,G

n
a) at

the iteration k with,

Gix =
1

2‖xi − Xai‖2
(14)

and

Gia =
1

2‖ai‖2
, (15)

for i = 1, 2, · · · , n, respectively. Then Ak+1 can be updated
by solving the following weighted least squares problem,

Ak+1 := argmin Tr((X − XA)TGkx (X − XA))
+αTr(ATGkaA)+ βTr(A

TLS◦|W |A)

+〈6,W − A〉 +
µ

2
‖W − A‖2F . (16)

For the above unconstrained optimization problem, we can
get the derivative and then set it to zero. Then, we have,

2XTGkxXA− 2XTGkxX + 2αGkaA+ 2βLS◦|W |A

−6 + µ(A−W ) = 0. (17)

The closed-form solution can be given by

Ak+1 = Y−1(2XTGkxX +6 + µW ), (18)

where Y = (2XTGkxX + 2αGka + 2βLS◦|W | + µI ). To obtain
the next iteration point, we need to update Gxk and Gak with
Eqs.(14) and (15) based on Ak+1, respectively. The whole
IRLS procedure is summarized in Algorithm 1.

Algorithm 1 IRLS for ADMM Subproblem (13)
Input: data matrix X and regularization parameter α
1: Initialize k = 0 and A0 = 0
2: repeat
3: Calculate Gkx and Gka with Eqs.(14) and (15), respec-

tively.
4: Update Ak+1 with Eq.(18)
5: k := k + 1
6: until The stopping criterion is satisfied

Output: The optimal solution A∗

2) UPDATING W
To updateW , we fix variables A and 6 in (12b), and remove
irrelevant terms that are irrelevant of W . Then the ADMM
subproblem with respect toW becomes,

min
W

βTr(ATLS◦|W |A)+ 〈6,W − A〉 +
µ

2
‖W − A‖2F , (19)

which is equivalent to,

min
W

βTr(ATLS◦|W |A)+
µ

2

∥∥∥W − (A− 6
µ

)∥∥∥2
F
. (20)

Recall that,

Tr(ATLS◦|W |A) =
1
2

n∑
i=1

n∑
j=1

Sij|Wij|‖ai − aj‖22. (21)

According to Eq.(21) and the definition of Frobenius norm,
we can further reformulate problem (20) into the following
form,

min
Wij

n∑
i=1

n∑
j=1

(β
2
Sij|Wij|‖ai − aj‖22+

µ

2
(Wij −

(
Aij −

6ij

µ

))2)
,

(22)

which is equivalent to solving n2 element-wise subproblem
simultaneously. The subproblem with respect to (w.r.t.) Wij,
for i = 1, 2, · · · , n and j = 1, 2, · · · , n, is

min
Wij

µ

2

(
Wij −

(
Aij −

6ij

µ

))2
+

(β
2
Sij‖ai − aj‖22

)
|Wij|.

(23)
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Although the objective function of (23) is not differen-
tiable, we can still easily compute a simple closed-form solu-
tion to this problem by using sub-differential calculus. The
closed form solution to the above problem is given by,

Wij = Shrinkaget

(
µAij −6ij

µ

)
, (24)

where t = βSij‖αi − αj‖22/2µ and the shrinkage operator is
defined as,

ShrinkageK(a) =


a−K, if a > K;
0, if |a| ≤ K;
a+K, if a < −K.

(25)

In detail,Wij can be obtained by,

Wij = max
(
0,
|µAij −6ij|

µ
− t
)
sign(µAij −6ij). (26)

We summarize the whole algorithm of our proposed method
in Algorithm 2.

Algorithm 2 ADMM for the Proposed Model (8)
Input: data matrix X , hyper-parameters α and β, penalty

parameter ρ
1: Construct the normalized graph Laplacian matrix L and

set k = 0
2: repeat
3: Update Ak by Algorithm 1
4: Update W k by (26)
5: Update 6k by (12c)
6: k := k + 1
7: until ADMM stopping criterion is satisfied

Output: The optimal solution A∗

C. CLUSTERING BASED ON A
After obtaining the solution to the proposed model (8), we
will conduct the data clustering task based on the sparse
coefficients. Without loss of generality, assume that A∗ is
the optimal coefficient matrix. To construct a graph, we first
symmetrize the coefficient matrix A∗, i.e., Ã = (A∗+A∗T)/2.
Then we construct the normalized graph Laplacian matrix
L = D̃−1/2(D̃ − Ã)D̃−1/2, where D̃ is a diagonal matrix
with D̃ii =

∑n
j=1 Ãij. Compute the eigenvectors e1, e2,· · · ,

eK of L corresponding to the largest K eigenvalues, and
form the matrix E = [e1, e2, · · · , eK ] ∈ <n×k by stacking
the eigenvectors in columns. Take each row of E as a point
and clustering them into clusters via the K-means method.
Consequently, the clustering results are obtained.

D. CONVERGENCE ANALYSIS
As stated previously, the optimization algorithm is in the
framework of ADMM. The convergence of ADMM has been
well established in [55]. Since the ADMM subproblem w.r.t
W is exactly solved, we only need to analyze the convergence
of IRLS, which solves the ADMM subproblem w.r.t A in an

alternative way. Let us recall a useful inequality, which was
introduced in [47].
Lemma 2 ( [47]): For any non-zero vectors a and b,

the following inequality holds,

‖a‖2 −
‖a‖22
2‖b‖2

≤ ‖b‖2 −
‖b‖22
2‖b‖2

(27)

The following theorem indicates that the objective function
shown in Eq.(16) is non-increasing in each iteration.
Theorem 1: Algorithm 1 will monotonically decrease the

objective function value in ADMM subproblem (13) in each
iteration.

Proof: Let C(A) = βTr(ATLS◦|W |A) + 〈6,W − A〉 +
µ
2 ‖W − A‖

2
F . According to (16), we have,

Ak+1 = argmin
A

Tr((X − XA)TGkx (X − XA))

+αTr(ATGkaA)+ C(A), (28)

which gives,

Tr((X − XAk+1)TGkx (X − XA
k+1))

+αTr(Ak+1
T
GkaA

k+1)+ C(Ak+1)

≤ Tr((X − XAk )TGkx (X − XA
k ))

+αTr(Ak
T
GkaA

k )+ C(Ak ). (29)

By the definition of the trace operator and the `2,1 norm,
and Eqs. (14) and (15), we have the following properties,

Tr(Ak+1
T
GkaA

k+1) =
n∑
i=1

‖αk+1i ‖
2
2

2‖αki ‖2

= ‖Ak+1‖2,1

+

( n∑
i=1

‖αk+1i ‖
2
2

2‖αki ‖2
− ‖αk+1i ‖2

)
. (30)

Similarly, we also have,

Tr(Ak
T
GkaA

k ) =
n∑
i=1

‖αki ‖
2
2

2‖αki ‖2

=
1
2
‖Ak‖2,1

= ‖Ak‖2,1

+

( n∑
i=1

‖αki ‖
2
2

2‖αki ‖2
− ‖αki ‖2

)
, (31)

Tr((X − XAk+1)TGkx (X − XA
k+1)

=

n∑
i=1

‖xi − Xα
k+1
i ‖

2
2

2‖xi − Xαki ‖2

= ‖X − XAk+1‖2,1

+

n∑
i=1

(
‖xi−Xα

k+1
i ‖

2
2

2‖xi − Xαki ‖2
−‖xi − Xα

k+1
i ‖2

)
,

(32)
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FIGURE 1. Sample images of ORL, JAFFE and Yale.

and

Tr((X − XAk )TGkx (X − XA
k )

=

n∑
i=1

‖xi − Xαki ‖
2
2

2‖xi − Xαki ‖2

=
1
2
‖X − XAk‖2,1

= ‖X − XAk‖2,1

+

n∑
i=1

(
‖xi − Xαki ‖

2
2

2‖xi − Xαki ‖2
− ‖xi − Xαki ‖2

)
. (33)

By substituting Eqs. (30), (31), (32), (33) into inequality
(29), we have,

‖X − XAk+1‖2,1 +
n∑
i=1

(
‖xi − Xα

k+1
i ‖

2
2

2‖xi − Xαki ‖2
− ‖xi − Xα

k+1
i ‖2

)
+α‖Ak+1‖2,1+α

n∑
i=1

(
‖αk+1i ‖

2
2

2‖αki ‖2
− ‖αk+1i ‖2

)
+C(Ak+1)

≤ ‖X − XAk‖2,1 +
n∑
i=1

(
‖xi − Xαki ‖

2
2

2‖xi − Xαki ‖2
− ‖xi − Xαki ‖2

)
+α‖Ak‖2,1 + α

n∑
i=1

(
‖αki ‖

2
2

2‖αit‖2
− ‖αit‖2

)
+ C(Ak ). (34)

Based on Lemma 2 and inequality (34), we can easily
obtain the following inequality,

‖X − XAk+1‖2,1 + α‖Ak+1‖2,1 + C(Ak+1)

≤ ‖X − XAk‖2,1 + α‖Ak‖2,1 + C(Ak ), (35)

which implies the result in the theorem.

IV. EXPERIMENTS
In this section, to investigate the behavior of our proposed
method, we carry out extensive experiments on the real-
world databases. All of the experiments are implementedwith
Matlab R2018a onWindows 10 and the computer is deployed
with CPU 3.60GHz and RAM 16GB.

TABLE 2. Datasets description.

A. DATASET
We use five real-world datasets in the experiments, includ-
ing three image datasets (i.e., ORL, Yale and JAFFE), one
biomedical dataset (i.e., Tumors9), and one text dataset (i.e.,
oh15). Fig. 1 shows several sample images from the ORL,
JAFFE and Yale database, respectively. We summarize the
statistics of datasets in Table 2, and also provide the informa-
tion of each dataset as follows.
• ORL1: The database contains 400 images of 40 distinct
subjects. There are 10 images per subject. For some
subjects, the images were taken at different times, vary-
ing the lighting, facial expressions and details. All the
images were taken against a dark homogeneous back-
ground with the subjects in an upright, frontal position.

• Yale1: The database consists of 165 grayscale images in
GIF format of 15 individuals. Each subject has 11 dif-
ferent images. one per different facial expression or
configuration: center-light, w/glasses, happy, left-light,
w/no glasses, normal, right-light, sad, sleepy, surprised,
and wink.

• JAFFE1: The database contains 213 images posed by
10 Japanese female models. Each image has been rated
on 6 emotion adjectives by 60 Japanese subjects. The
size of each image is 26× 26 pixels, with 256 gray levels
per pixel.

• Tumors9 [57]: The dataset comes from a study of
9 human tumor types: NSCLC, colon, breast, ovary,
leukemia, renal, melanoma, prostate, and CNS. There
are in total 60 samples, each of which contains
5726 genes.

1http://featureselection.asu.edu/datasets.php
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• oh152: The text dataset contains 913 instances from
10 classes, including adenosine-diphosphate, alu-
minum, enzyme-activation, blood-coagulation-factors,
blood-vessels, cell-movement, memory, staphylococcal-
infections, leucine and uremia. Each sample is repre-
sented by 3100 feature words.

B. EVALUATION METRICS
To evaluate the performance, we consider the commonly used
three metrics, i.e., clustering accuracy, normalized mutual
information and adjusted rand index. The details about them
are described as follows,

1) Clustering Accuracy(ACC): The clustering accuracy
is defined as,

ACC =
1
n

n∑
i=1

I(map(li), yi), (36)

where li and yi are the cluster label and ground truth
label of xi, respectively, n is the total number of data
points. I(·, ·) is the delta function, which indicates
I(x, y) = 1 if and only if x = y, and 0 otherwise.
The permutation mapping function map(·) maps each
cluster label to the equivalent label. The best map can
be obtained by the Kuhn-Munkres algorithm.

2) Normalized Mutual Information (NMI): The mutual
information between X and Y is defined as,

MI(X ,Y )=
∑
y∈Y

∑
x∈X

p(x, y) log2

(
p(x, y)
p(x)p(y)

)
, (37)

where p(x) and p(y) denote the marginal probability
distribution functions of X and Y , respectively, and
p(x, y) is the joint probability distribution function of
X and Y . Let H (X ) and H (Y ) be the entropies of
p(x) and p(y), respectively. Then the normalizedmutual
information is given by,

NMI(X ,Y ) =
MI(X ,Y )

max(H (X ),H (Y ))
(38)

3) Adjusted Rand Index (ARI): The adjusted rand index
is defined as

ARI =

∑
ij
(nij
2

)
− [
∑

i
(ni
2

)∑
j
(nj
2

)
]/
(n
2

)
[
∑

i
(ni
2

)∑
j
(nj
2

)
]/2− [

∑
i
(ni
2

)∑
j
(nj
2

)
]/
(n
2

) ,
(39)

where nij is the number of data points with true label i
but they are assigned by j, ni and nj are the number of
data points with label i and j, respectively.

C. EXPERIMENTAL RESULTS
We choose K-means and spectral clustering (SC) [10] meth-
ods as the baselines. Moreover, we consider non-negative
matrix factorization (NMF) [58], [59] based method, which
finds the cluster indicator by solving the NMF problem with
the constraint of nonnegativity and orthogonality. To verify

2http://tunedit.org/repo/Data/Text-wc/oh15.wc.arff

the effectiveness of `2,1, we also compare our algorithm to `1-
graph [23], which is based on `1 minimization. In addition,
we compare our proposed with LDMGI [60], which used
local discriminant models and global integration. To accord
with the name (`1-graph) in [23], we name our proposed
method as `2,1-graph.
In order to randomize the experiments, we conduct

the experiments using different cluster numbers. For each
given cluster number, we run 20 times. The average over
these 20 times are reported along with standard devia-
tion. For the compared methods, we either use their exist-
ing parameter settings or tune them to obtain the best
performances. There are some parameters to be set in
advance. For SC, `1-graph and our proposed method, we set
k = 5 for all the datasets to specify the size of neigh-
borhoods. For fair evaluation, we tune the parameters in
`1-graph, LDMGI and `2,1-graph by the grid-search strat-
egy from the range of {0.001, 0.01, 0.1, 1, 10}. According
to the ground truth label, we consider the cluster num-
ber from the range of {5, 10, 20, 30, 40}, {3, 6, 9, 12, 15},
{2, 3, 5, 7, 9}, {2, 4, 6, 8, 10} and {2, 4, 6, 8, 10} for the ORL,
Yale, Tumors9, JAFFE and oh15 dataset, respectively. The
clustering results are listed in Tables 3, 4, 5, 6 and 7. Since
LDMGI focuses on image clustering, we conduct the experi-
ments on the image dataset when the number of clustering is
set to the number of ground truth label. The results are listed
in Table 8. To demonstrate the effectiveness of the manifold
regularization with adaptive similarity, we use the regularizer
proposed in [61] in our paper. We compare it with our model
and present the results in Table 9.

From these tables, it can be observed that our proposed
method `2,1-graph achieves the best performance among all
state-of-the art algorithms in many cases, i.e., 12 out of 15 for
ORL (80%), 12 out of 15 for Yale (80%), 13 out of 15 for
Tumors9 (86.67%), 11 out of 15 for JAFFE (73.33%) and
12 out of 15 for oh15 (80%). The advantage is more sig-
nificant for the proposed method in some certain cases. For
example, in the case that the cluster number is 9, the improve-
ment of the proposed method `2,1-graph over `1-graph(the
best one among all the compared methods) is 8.15% in terms
of ACC on the dataset Yale. It should be noted that, although
in some cases, the performance of `2,1-graph is not top-
ranked, they are close to the best result.

Besides, we have also the following observations,
1) As can be seen, regardless of the datasets, as the clus-

ter number increases, the corresponding performance,
including ACC, NMI and ARI, of all the clustering
methods always increases.

2) Graph-based clustering methods, both `1-graph and
`2,1-graph, often perform much better than other three
compared methods, which indicates the effectiveness
of graph in clustering. We can observe that `1-graph
and `2,1-graph improve the clustering performance
considerably.

3) By comparing the performance of `1-graph and
`2,1-graph, we can clearly see the advantage of using
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TABLE 3. Clustering results on the ORL dataset. The best results for these methods are highlighted in bold.

TABLE 4. Clustering results on the Yale dataset. The best results for these methods are highlighted in bold.

TABLE 5. Clustering results on the JAFFE dataset. The best results for these methods are highlighted in bold.

the group sparsity. This verifies that it is beneficial to
adopt our proposed group sparse adaptive graph for
clustering.

4) It can be observed that `2,1-graph outperforms LRGA
on the most cases (11 out of 15, i.e., 73.33%), which
indicated the superiority of the manifold regularization
with adaptive similarity.

D. PARAMETER SENSITIVITY
In order to study the influence of the regularization param-
eters α and β, we test the parameter sensitivity of our pro-
posed method in terms of three evaluation metrics on all the
datasets. On these datasets, the regularization parameters α
and β vary in the same ranges as provided in Section IV-C.
We investigate the case that the cluster number is set to be the
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TABLE 6. Clustering results on the Tumors9 dataset. The best results for these methods are highlighted in bold.

TABLE 7. Clustering results on the oh15 dataset. The best results for these algorithms are highlighted in bold.

TABLE 8. Clustering results of different methods on the image datasets.
The best results for these algorithms are highlighted in bold.

number of ground truth labels for all the datasets. The results
are visualized in Figs. 2 and 3. From these figures, we can
observe that our proposed method often gives reasonable

results in a wide range of parameters. However, compared
with β, the performance is much sensitive to α on the most
datasets. Thus, the parameter α should be tuned carefully.

E. CONVERGENCE STUDY
To solve the proposed model `2,1-graph, we employ the
ADMM framework, where the subproblems can be effec-
tively handled by shrinkage operator and IRLS algorithm,
respectively. As stated previously, we have presented the
convergence of IRLS and analyzed the computational com-
plexity. In this subsection, we will investigate the trend of
the objective function values during the iteration process.

TABLE 9. Clustering results comparisons with different regularizations.
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FIGURE 2. The clustering results of our proposed method w.r.t. α and β. Top: Yale dataset; Bottom: ORL dataset.

FIGURE 3. The clustering results of our proposed method w.r.t. α and β. Top: Tumors9 dataset; Bottom: JAFFE dataset.

In the algorithm, the stopping criterion is set to (obj(k − 1)−
obj(k))/obj(k − 1) < 1e − 5, where the obj(k) denotes the
objective function value at the k-th step. The variations of
the objective function values on the ORL, Yale and JAFFE

dataset are shown in Fig. 4. It can be observed that the
objective function value decreases rapidly and converges after
5 iterations, which shows the effectiveness and efficiency of
our algorithm.
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FIGURE 4. Variation of the objective function values over ORL, Yale and JAFFE datasets.

V. CONCLUSION
In this paper, we propose a novel graph-basedmethod for data
clustering, which resorts to the `2,1 norm to exploit the global
structure and manifold regularization to preserve the original
data structure. Compared to the existing methods, the learned
graph is more discriminative and informative. The resulting
optimization problem can be handled by the ADMM, where
the solutions to ADMM subproblems are obtained by the
IRLS and shrinkage operator, respectively. We further pro-
vide the convergence analysis for IRLS. Extensive exper-
imental results on various real-world datasets demonstrate
the effectiveness and superiority of `2,1-graph over other
competing clustering methods.
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