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ABSTRACT This paper presents a voice conversion (VC) technique under noisy environments. Typically,
VC methods use only audio information for conversion in a noiseless environment. However, existing
conversion methods do not always achieve satisfactory results in an adverse acoustic environment. To solve
this problem, we propose a multimodal voice conversion model based on a deep convolutional neural
network (MDCNN) built by combining two convolutional neural networks (CNN) and a deep neural
network (DNN) for VC under noisy environments. In the MDCNN, both the acoustic and visual information
are incorporated into the voice conversion to improve its robustness in adverse acoustic conditions. The two
CNNs are designed to extract acoustic and visual features, and the DNN is designed to capture the nonlinear
mapping relation of source speech and target speech. Experimental results indicate that the proposed
MDCNN outperforms two existing approaches in noisy environments.

INDEX TERMS Audio and video feature fusion, convolutional neural network, deep learning, mel-
frequency cepstral coefficients, multilayer feedforward neural networks, multimodal voice conversion, noise
robustness.

I. INTRODUCTION
Voice conversion (VC) is an emergent problem in speech
processing that deals with modifying a speaker’s identity.
The goal of a voice conversion system is to change a source
speaker’s speech so that it sounds as if it were spoken
by a different speaker (target speaker) without changing
the linguistic content [1]. In the past two decades, much
attention has been given to VC owing to its wide range
of applications, including customization of talking devices,
designing damaged voice restoring tools to assist people
with voice disorders, disguising speaker identity in com-
munication, dubbing films, translation into different lan-
guages, and synthesis of text-to-speech (TTS) where a voice
conversion system is used to create natural and intelligible
voice.

The associate editor coordinating the review of this manuscript and
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The basic idea behind VC is to identify relevant acoustic
features of a source speaker and replace them with those of
a target speaker without modifying the message. Typically,
a VC system consists of three main modules [2]: extracting
representative acoustic features, constructing mapping rules
between a source speaker and a target speaker, and synthesiz-
ing a target speech.

In the past few decades, a number of statistical methods
have been investigated for VC by regarding it as a task
of mapping from a source space to a target space [3], [4].
In recent years, Gaussian mixture models (GMMs) [5] and
neural networks [6] have been commonly used for spec-
tral mapping. In the GMM-based approach [7], the joint
distribution of features extracted from the speech signal of
a source speaker and a target speaker is modeled by the
sum of weighted Gaussian components. The acoustic feature
space of speakers is partitioned into overlapping classes,
and the weighted contribution of all classes is considered.
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This enables spectral envelopes to be converted successfully
without discontinuities. The performance of a GMM-based
voice conversion improves as the number of mixture compo-
nents increases [8].

Although a number of improvements of GMM have been
proposed, the usefulness of GMMs still faces some prob-
lems due to its limited capability to capture the source-
target correspondence for a given parametric representation
of speech. For example, if a GMM is based on a single
conversion frame, the sequential information between frames
is ignored [9]. Additionally, a GMM may fail when the
size and/or the dimension of the feature space of a speech
is too large [10]. To address this issue, Chen et al. [11]
proposed using deep neural networks (DNN) to construct a
global nonlinear mapping relationship between the spectral
envelopes of two speakers. The proposed DNN was trained
by cascading two restricted Boltzmann machines (RBMs)
to model the distributions of spectral envelopes of a source
speaker and a target speaker. Furthermore, a different DNN
framework was proposed by Ye and Yu [12] to map the spec-
tral envelopes between a target speaker and a source speaker,
in which the neighbor frame’s influence is carefully con-
sidered. A VC method using deep bidirectional long short-
term memory-based recurrent neural networks (DBLSTM)
was proposed by Li et al. in [13]. Additionally, Nguyen et al.
proposed a comprehensive VC framework using deep neu-
ral networks to model high-dimensional features, including
both high-resolution timbre spectral features and prosodic
features, such as fundamental frequency (F0), intensity, and
duration in [14].

Although the effectiveness of these approaches [11]–[14]
for clean speech data was confirmed, their utilization in noisy
environments has not been considered. The noise in a source
speech may degrade conversion performance due to unex-
pected feature mapping between a source speech and a target
speech [15]. Hence, VC technique in noisy environments is a
subject of interest.

Human speech is an articulatory-to-auditory mapping pro-
cess in which mouth, vocal tract, and lip movements produce
an audible acoustic signal. In addition to speech signals,
visual information is important in human-human or human-
machine interactions. A study by McGurk [16] indicated
that the shape of lips or mouth could play an important
role in speech processing. Accordingly, audio-visual multi-
modality has been adopted in a number of areas in speech
processing [17]–[21].

In [22], Masaka et al. proposed a multimodal VC using
nonnegative matrix factorization (NMF) based on the idea of
sparse representation. Input noisy audio-visual features were
decomposed into a linear combination of clean audio-visual
features and noise features. By replacing a source speaker’s
joint audio-visual feature with a target speaker’s audio fea-
ture, the voice individuality of a source speaker was converted
to that of a target speaker. However, this method requires that
the activity of each atom in the dictionary be estimated and
consequently requiring a high computation cost.

In this paper, motivated by the feature-extraction ability
of convolutional neural networks (CNNs) [23], [24] and the
nonlinear mapping ability of DNNs [25], [26], we propose a
multimodal voice conversion method based on a deep convo-
lutional neural network (MDCNN) for VC in a noisy envi-
ronment. We utilize a CNN to extract visual features from lip
movement sequences. In addition, two convolutional kernels
of different sizes are used to effectively extract audio fea-
tures. Subsequently, the extracted audio and visual features
are merged and fed into a fully connected neural network
(FCNN) trained by the backpropagation algorithm [28] to
obtain the corresponding converted speech waveform. The
effectiveness of the proposed method was evaluated by com-
paring it to the NMF-based multimodal VC method [22]
and the conventional DNN-based method [27]. In this
paper, the MDCNN was implemented by software on
a computer. For portable applications, the MDCNN can
be realized and implemented by simple hardware as
described in [28]–[35].

The rest of this paper is organized as follows: In Section II,
the details of the proposedMDCNN are presented. Section III
describes the data preparation and evaluation methods.
In Section IV, the experimental conditions and results are
presented. The final section is devoted to conclusions.

II. MDCNN ARCHITECTURE
Voice conversion changes a source speech by modifying
the acoustic characteristics of the speech signal while pre-
serving its linguistic details. VC methods generally only
focus on acoustic information [36], [37] without visual infor-
mation. Recently, methods for processing speech signals
using multimodal information have attracted the attention
of researchers [19]–[21]. The experimental results obtained
show that the addition of visual information can improve
the performance of the MDCNN under noisy environments.
In this paper, visual information is added to the voice conver-
sion, and the proposed multimodal voice conversion model is
shown in Fig. 1.

In Fig. 1, mel-frequency cepstral coefficients (MFCC) are
adopted as speech acoustic features to reduce the model com-
plexity. MFCCs and MFCCt were extracted from a source
speech and a target speech, respectively. Since speech fea-
tures are typically speaker-dependent, the duration of speech
between two people is always different. Therefore, we adopt
dynamic time warping (DTW) to align the corresponding
source and target speech features to obtain aligned acoustic
features. MFCCs’ and MFCCt ’ were aligned acoustic fea-
tures of the corresponding source speech and target speech,
respectively. Since both the frame rates of the audio and
the video from a source speaker were set to 60 frames per
second (fps), the acoustic feature and the visual feature of a
source speech were aligned automatically. The aligned acous-
tic features of a source speech were also used to align the
corresponding source lip images. Two-dimensional discrete
cosine transform (DCT) was used to transform the lip image
of a current frame, whichwas then straightened by zigzagging
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FIGURE 1. Block diagram of the proposed multimodal voice conversion model.

to obtain a 1-dimensional DCT vector shown as transformed
source visual features in Fig. 1.

For training, the aligned lip images and the MFCCs’ of
a source speaker were input to the MDCNN. Additionally,
the aligned MFCCt ’ was used as the output of the MDCNN
in the training phase. It has been shown that using the trans-
formed visual features of a source speech as the output of
a deep learning network can enhance speech by suppressing
noise [18]. The transformed visual features of the output of
the MDCNN were extracted from a source speaker. Note
that the mapping provided by the transformed source visual
features at the output serves to suppress noise to improve the
robustness of the MDCNN.

The MDCNN can characterize and learn the nonlinear
mapping relation between the audio-visual features of a
source speech and the audio features of a target speech. At the
conversion stage, the audio and visual features were extracted
from a source speaker and then sent to the MDCNN to obtain
the converted acoustic features MFCCc. As shown in Fig. 2,
the architecture of the proposed MDCNN comprises two
CNNs and one DNN. We used one CNN to extract the acous-
tic features of a source speech to reflect interframe correlation
and another CNN to extract the interframe features of the
visual information of the source speech.

Note that CNN is often formatted to accept two-
dimensional input, so the MFCCs of every 5 successive
frames of each speech were used to form an input to the audio
CNN. The target output of the MDCNN is the MFCCt of
the clean speech from a current frame. Since audio signals

are the main information for audio-visual voice conversion,
we adopted two convolution kernels of different sizes for
a source audio to capture two feature maps to improve the
performance of the MDCNN. As shown in Fig. 3, the audio
CNN in the proposed MDCNN adopted a bichannel convo-
lution architecture to effectively extract audio features [38].
In Fig. 2 and Fig. 3, the Merge1 module concatenated the
outputs of previous pooling layers along z-index. Since lip
images were introduced only for supplementary information,
only one convolution kernel was used for processing the
lip images. The joint visual-audio features were derived by
concatenating each column vector of the 2-dimensional visual
feature matrix obtained from Pool5 and the 2-dimensional
audio feature matrix obtained from Conv9. The joint visual-
audio features were then sent to a four-layer DNN to map
the nonlinear relation between the audio-visual features of
the source speech and the acoustic features of its target
speech.

In the conversion stage, for a given source speech, two
CNNs were used to extract their audio features and visual
features, which are then input to the MDCNN to obtain
the features of the converted speech. The mapped MFCCc
features of the converted speech undergo an inverse transform
from which the waveform of the converted speech was syn-
thesized [39].

The clean target speech as well as the noisy source speech
and the lip images of a source speaker were used to train the
MDCNN. Let ni and C i denote the ith frame audio features
extracted from the ith frame noisy source and the ith frame
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FIGURE 2. Architecture of the MDCNN.

FIGURE 3. Architecture of the Audio CNN.

clean target speech, respectively, and N i = [nTi−2, n
T
i−1, n

T
i ,

nTi+1, n
T
i+2]. Let pi represent the ith frame lip image corre-

sponding to the ith frame noisy source speech, and V i denote
the ith frame visual features transformed from pi, P i = [pTi−2,
pTi−1, p

T
i , p

T
i+1, p

T
i+2].

Let K represent the number of samples, Poolj denote the
max-pooling operation of the jth max-pooling layer, Convj
denote the convolutional operation of the jth convolution
layer, and Densej denote the fully connected operation of
the jth fully connection layer. In the MDCNN, the extracted
visual features EP i can be computed as

EP i = Pool5(Conv5(Pool4(Conv4(Pool3(Conv3(Pool2

(Conv2(Pool1(Conv1(P i)))))))))), i = 1, 2, 3 . . . . . .K .

(1)

The extracted audio features EN i can be computed as

EN i = Conv9(Pool8(Conv8(Pool6(Conv6(N i))

+Pool7(Conv7(N i))))), i = 1, 2, 3 . . . . . .K . (2)

Let Fi = [EP i; EN i], the converted speech feature EC i and the
visual feature EV i of the ith frame are computed as

EC i = Dense5(Dense3(Dense2(Dense1(Fi)))),
i = 1, 2, 3 . . . . . .K .

EV i = Dense4(Dense3(Dense2(Dense1(Fi)))),

i = 1, 2, 3 . . . . . .K . (3)

The mean square error (MSE) [40] is adopted as the loss
function for the MDCNN as defined by

loss = (
1
K

K∑
i=1

(‖C i− EC i‖
2)+ω ∗

1
K

K∑
i=1

(‖V i− EV i‖
2))). (4)

where ω is the mixed weight, which is used to regulate the
impact of visual information on voice conversion.

III. DATA PREPARATION AND EVALUATION METHODS
A. DATA PREPARATION
To evaluate the performance of the proposed MDCNN,
300 (100× 3) clean utterances spoken by three speakers were
selected from the Audio-Visual Whisper Database (AVWD)
recorded by us in a quiet room due to an absence of a suit-
able open access multimodal corpus database. The database
consists of 100 utterances from a male speaker and 200 utter-
ances from two female speakers. The AVWD contains video
recordings of 100 utterances of Chinese sentences, each of
which is spoken by 5 native female speakers and 5 nativemale
speakers, generating 1,000 (100× 10) utterances. The length
of each utterance is approximately 2-3 seconds. Videos were
recorded at a sampling rate of 30 fps with a resolution of 1920
× 1080 in pixels. The speech signals were recorded with a
sampling rate of 44.1 kHz. The AVWD corpus database is
open access and available at ftp://210.45.212.96 with user-
name: download, and password: download.

The audio signals were resampled to 16 kHz. The time-
frequency audio spectrum was extracted by taking the
squared magnitude of the short-time discrete Fourier trans-
form (DFT). A fixed frame size of 32 ms was used with
48% overlap between frames. A 512-point DFT was used to
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calculate the short-term power spectrum of the speech signal
of each frame. In the MFCC computing process, the speech
spectrum of each frame was passed through a series of tri-
angular filters that were spaced linearly in a perceptual mel
scale. The mel filter bank log energy (MFLE) of each of the
filters was computed. Finally,MFCCwas computed by taking
the DCT of the MFLE. For visual information, the video
was increased to 60 fps using FFMPEG [41] software to
synchronize the number of audio and visual frames. The Dlib
tool [42] was used to detect the lip area. The size of the lip
images was adjusted to 32 × 64 in pixels.
Noises were selected from the NOISEX-92 standard noise

library [43], which contains 15 kinds of real scene noise.
Source clean utterances spoken by a male and a female were
artificially contaminated by 6 kinds of noise (Volvo, Gaussian
white noise, factory noise, pink noise, F16 double cockpit
noise and HF channel noise) at 7 different signal-to-noise
ratios (SNRs) of −5, −3, 0, 3, 5, 10, and 20 dB. Ninety
percent utterances were randomly selected as the training set,
and the remaining 10% was used as the testing set.

Male to female and female to female voice conversions
were performed by different conversion methods for perfor-
mance evaluation. In these two conversions, we used the same
target female speaker.

B. EVALUATION METHODS
Mel cepstral distance (CD), perceptual evaluation of speech
quality (PESQ), and short-time objective intelligibility
(STOI) were used to evaluate the performance of different
voice conversion methods objectively. The CD value [44] is a
common objective evaluation method for speech quality. The
formula for the calculation of CD value can be written as

CD = (10/ln(10))

√√√√2
D∑
d=1

(Cd − C ′d )
2. (5)

where Cd and C ′d represent the dth MFCC of the reference
source speech and the converted speech, respectively. D rep-
resents the dimension of MFCC, which was set to 26 in the
following experiments.

The average CD value of all the frames of a speech (utter-
ance) was used as the CD value for the speech. A higher CD
value indicates a greater difference between a converted and a
reference source speech. Therefore, the lower the CD value,
the better the performance of a conversion. The PESQ [45]
score, which ranges from −0.5 to 4.5, denotes the overall
quality of a converted speech. The STOI [46] score is an
indicator of speech intelligibility, and it ranges from 0 to 1.
Larger PESQ and STOI indicate better quality and higher
intelligibility of a converted speech.

For subjective evaluation, 5 males and 5 females partic-
ipated in the listening tests. The ABX preference test [47]
and the mean opinion score (MOS) were adopted to evaluate
the naturalness, speech similarity, and quality of converted
speech. In the ABX preference test, the participants were
asked to choose which of the converted speech is (a) more

FIGURE 4. CD, PESQ, and STOI performance using different numbers of
triangular filters on reconstructed speech. (a) CD with different numbers
of triangular filters; (b) PESQ with different numbers of triangular filters;
(c) STOI with different numbers of triangular filters.

similar to the target speech and (b) more natural. If the
difference between two converted speeches was small, ‘‘fair’’
was chosen. The MOS score was set to a 5-point scale
(5: excellent, 4: good, 3: fair, 2: poor, 1: bad).

IV. EXPERIMENTS
A. EXPERIMENTAL CONDITIONS
Fig. 4 shows the effect of different numbers of triangular fil-
ters on speech reconstruction. With an increase in the number
of triangular filters, the quality of reconstructed speech fur-
ther improved. When the number of triangular filters reached
60, the conversion performance was basically stable. There-
fore, we set the number of triangular filters to 60 for MFCC
extraction in the following experiments.

For visual features, the lip image of the current frame was
transformed by 2D-DCT, which was then straightened by
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zigzagging to obtain a 1-dimensional DCT vector of 50 coef-
ficients.

Since the DNN module of the MDCNN was formatted to
accept one-dimensional data as input and output, the data
output through the convolutional layer is multi-dimensional
data. Therefore, after audio CNN and Visual CNN, it was
necessary to straighten and reduce the dimensions of the
previous output to obtain one-dimensional data. The visual
CNN output was straightened to 1,280 (1 × 10 × 128), and
the audio CNN output was straightened to 960 (2× 15× 32).
Then, these two inputs were combined to obtain
2240-dimensional data as DNN input.

TABLE 1. Configuration of the Proposed MDCNN (Keys: Cf =

Convolutional filter; Nf = Number of filters).

The overall configuration of the proposed MDCNN is
listed in Table 1. For the proposed MDCNN, the following
settings were applied: batch size was set to 100, the stride
of each convolutional layer was set to 1 × 1, the stride
of each pooling layer was set to 2 × 2, L2 regularization
was used to avoid overfitting, bias was used in each of
the convolutional layers and each of the dense layers. The
activation function used in each of the convolutional layers,
Dense1, Dense2, and Dense3, was ReLU, and the activation
function used in each of Dense4 and Dense5 was tanh [34].
Dropout was set to 0.3 and only used at Dense1, Dense2, and
Dense3.

To determine a suitable value for the mixing weight ω

in (4), we selected 600 utterances with a SNR of 0 dB from
4,200 noisy speech samples. As shown in Table 2, when ω

was set to 0.3, the lowest CD value was obtained from a
converted speech, with the highest PESQ and STOI scores.
Since the visual lip image was only used as auxiliary infor-
mation, if ω is too large, the network will overfit, resulting in

TABLE 2. Conversion performance using different mixed weights ω in
loss function defined in (4).

performance degradation of the voice conversion. Hence,
ω was set to 0.3 in the following experiments.

B. BASELINE METHODS
To verify the effectiveness of the proposed MDCNN, DNN
for audio feature mapping only (referred to as DNN-
COM) [27] and multimodal nonnegative matrix factorization
(referred to asMUL-NMF)-based voice conversion [22] were
selected as the baseline methods.

For the MUL-NMF-based voice conversion, the audio
spectral envelope was extracted from the STRAIGHT [48]
model. The audio spectrum envelope and the visual feature,
which are the same as in the MDCNN, were concatenated
for each frame to obtain a joint audio-visual feature. The
voice conversion method was the same as in [22]. The
joint audio-visual feature was used to form the source fea-
ture A = [As, An]. Input noisy audio-visual features X were
decomposed into a linear combination of the clean audio-
visual feature As and the noise feature An. Hs and Hn repre-
sent the coefficient matrix of source and noise, respectively.
H is a coefficient matrix in NMF. By replacing the source
speaker’s audio-visual feature As with the target speaker’s
audio feature At , the voice individuality X t of the source
speaker is converted to the target speaker.

X ≈ [AsAn]
[
Hs
Hn

]
s.t. Hs,Hn ≥ 0

= AH s.t. H ≥ 0. (6)

X t = AtHs. (7)

For the DNN-COM-based voice conversion method,
the following settings were applied: MFCC of 5 successive
frames (the current frame and± 2 frames) were concatenated
as the input. The target output was the MFCC of the clean
speech from the current frame. There were 300 (60×5) nodes
in the source audio input layer and 60 nodes in the target audio
output layer. The number of hidden layers was set to 3, with
512 nodes in each layer. A dropout rate of 0.3 was adopted,
with a batch size of 100, and L2 regularization was used to
avoid overfitting. The output layer used tanh as the activation
function, and the hidden layers used ReLU as the activation
function. A bias was used in each layer. Both the MDCNN
and the DNN-COM were trained by the backpropagation
algorithm [28].

C. EXPERIMENTAL RESULTS AND DISCUSSION
From Fig. 5, we can see that when SNR is high, the CD
value of the converted speech based on the MDCNN and
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FIGURE 5. Comparison of objective performance of voice conversion
methods. (a) CD value under different SNRs; (b) PESQ score under
different SNRs; (c) STOI score under different SNRs.

the DNN-COM were lower than that of the MUL-NMF. This
result was attributed to the nonlinear fitting ability of neural
networks. However, for SNR less than 0 dB, the CD values of
theMUL-NMF and theMDCNNwere better than those of the
DNN-COM. This may be attributed to the effectiveness of the
auxiliary visual information in the MDCNN. With a decrease
in SNR, visual information in the MDCNN improved the
robustness of voice conversion. In Fig. 5(a), the CD values of
the converted speech based on the MDCNN were lower than
that of the MUL-NMF. This means that the performance of
the proposedMDCNNwas better than that of theMUL-NMF
with audio-visual information. Fig. 5(b) and Fig. 5(c) show
that the MDCNN performs best in terms of PESQ and STOI.

Fig. 6(a)-(e) presents the spectrograms of clean target
speech, noisy source speech, and converted speech based
on the MUL-NMF, the DNN-COM, and the MDCNN.

FIGURE 6. Comparison of spectrograms. (a) Clean target speech;
(b) Noisy speech with pink noise at 5 dB SNR; (c) MUL-NMF;
(d) DNN-COM; (e) MDCNN.

Although the MUL-NMF approach retained abundant high-
frequency information, it could not efficiently capture low
frequency information, resulting in a fuzzy voiceprint as
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FIGURE 7. ABX preference test of speaker similarity (top) and speech
naturalness (bottom).

shown in Fig. 6(c). The DNN-COM method obtained a
clearer voiceprint as shown in Fig. 6(d) than the MUL-NMF
as shown in Fig. 6(c). However, the DNN-COM could not
effectively restore the high-frequency information.

Compared to the MUL-NMF and the DNN-COM,
the MDCNN as shown in Fig. 6(e) obtained the clearest
voiceprint that was the most similar to the target speech and
the high-frequency details were also well captured.

TABLE 3. MOS Results of Converted Voices using Different Methods.

Experimental results for subjective hearing tests from
5 males and 5 females are displayed in Fig. 7 and listed
in Table 3. The ABX preference test of speaker similarity
(top) and speech naturalness (bottom) are shown in Fig. 7. For
the top-left subplot in Fig. 7, the blue bar denotes the percent-
age of participants who preferred the voice converted by the
MDCNN. The yellow bar denotes the percentage of partici-
pants who preferred the voice converted by the DNN-COM.
For the top-right subplot in Fig. 7, the gray bar denotes the
percentage of participants who preferred the voice converted
by theMUL-NMF. Throughout Fig. 7, the orange bar denotes
the percentage of participants who had no preference and did
not distinguish which one of the two converted voices was
more similar to the ground truth target.

The results shown in Fig. 7 indicate that the MDCNN
outperformed the MUL-NMF and the DNN-MUL in terms

FIGURE 8. MSE versus training epoch for DNN-COM and MDCNN on
training set and validation set.

of both speaker similarity and speech naturalness, which may
due to the fusion features extracted by the MDCNN can
represent the original information better; and also the use
of lip images as supplementary information can improve the
robustness of voice conversion in noisy environments. From
Table 3, the subjective evaluation of theMOS results indicates
that the quality of converted voice obtained by the MDCNN
was better than those obtained by the two state-of-the-art
methods.

Fig. 8 compares the training and validation MSEs of the
MDCNN and the DNN-COM versus epoch on both the
training set and the validation set. The two methods were
evaluated with 5% of the constructed data as the validation
set and there is no intersection between the validation set and
training set. We observed that the MDCNN converged faster
and achieved lower MSEs than those of the DNN-COM.

TABLE 4. Comparison of Objective Evaluations between CNN
(audio-only) and MDCNN.

The DNN-COM voice conversion method uses only
speech audio feature which cannot characterize the relation-
ship between successive frames but can be tackled by the
MDCNN. In addition, we compared the CNN-based voice
conversion method using only audio information with the
MDCNN to verify the contribution of the visual information.
The CNN was constructed by removing the visual CNN
and the visual output in the MDCNN, and the experimental
conditions of this CNN were the same as the MDCNN. The
experimental results are shown in Table 4. The performance
of the MDCNN was better than the CNN in terms of CD
values, PESQ scores, and STOI scores under different SNRs.
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The results indicate that the addition of visual information
can improve the performance of voice conversion.

V. CONCLUSION
We have presented a multimodal deep convolutional neural
network for voice conversion tasks under noisy environments.
The MDCNN aims to improve the intelligibility, quality, and
naturalness of a converted speech using the visual informa-
tion of the corresponding source lip movement as auxiliary
information on top of the audio information of a source audio.
Two different CNNswere adopted to extract visual and acous-
tic features, which were then merged and fed into a deep neu-
ral network. Experimental results show that the performance
of the proposed MDCNN outperformed the MUL-NMF and
the DNN-COM in both subjective and objective evaluations
under a variety of noise environments.

The converted voice audios are posted on the demowebsite
at http://101.37.150.44:8088/hyt.aspx.
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