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ABSTRACT When several foreign fighters with the same type enter detection range, the electronic
warfare (EW) receivers will intercept many the same type radar emitter signals. If the intercepted pulse is pro-
cessed by the traditional sortingmethods, the number of emitters cannot be identified. Themain reason is that
the same type of radar has similar parameters. It will cause a devastating influence on subsequent strategic
decisions. A novel sorting method based on the trajectory features is proposed to solve the aforementioned
problems. First, the trajectory features of the intercepted pulse signal are extracted. Then, the segmentation
method is utilized to preprocess the signals, which enhances the computing efficiency and improves the
sorting accuracy. Meanwhile, a prediction framework based on long short-term memory (LSTM) recurrent
neural network is established to forecast pulses. Finally, the radar stagger pulses are sorted by forecast pulses.
The simulation results show that the proposed method can recognize the number of emitters and achieve high
sorting accuracy. It provides a new idea for the radar signals sorting of the same type.

INDEX TERMS Signal sorting, trajectory features, recurrent neural networks (RNNs), long short-term
memory (LSTM).

I. INTRODUCTION
Radar signal sorting is the crucial technology of mod-
ern warfare and also as an important part of the elec-
tronic countermeasures (ECM). Whether or not the radar
signal can be correctly sorted, is the key to electronic
warfare. The traditional radar signal sorting methods are
mainly divided into two categories: sorting methods based
on the one-dimensional parameter, i.e., pulse repetition inter-
val (PRI), and sortingmethods based onmulti-parameter. The
two methods are briefly described below.

In the decades of research, researchers have proposed
some PRI-based sorting methods, including cumulative
difference histogram method [1], sequential difference
histogram method [2], PRI spectrum [3], [4] and plane
transform [5], [6]. The sorting method based on PRI is
suitable for radar signals with a small variation range of
PRI parameters. Moreover, with the rapid development of
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radar technology, modern radars mostly use modulation
modes such as PRI agility and random PRI. Sorting tech-
niques that only use PRI information are no longer applicable
to modern radars. Hence, more and more researchers pay
attention to the sorting methods based on multi-parameter.

The methods based on multi-parameter mainly include
unsupervised clustering and supervised classification. Both
unsupervised clustering and supervised classification uti-
lize the Time of Arrival (TOA), Pulse Amplitude (PA),
Pulse Width (PW), Radio Frequency (RF) and Direction of
Arrival (DOA) to sort radar signals. The combination of the
above parameters is called Pulse Description Word (PDW).
As an unsupervised classificationmethod, the clustering tech-
nique does not need the prior information of radar emitters,
while it requires excellent similarity of the same emitter
signals and differences of different emitter signals. Clustering
methods include fuzzy clustering [7], [8], support vector
clustering [9], [10] and dynamic clustering based on the
nuclear field [11]. As a classification algorithm, supervised
classification requires prior information and knowledge.
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It mainly includes the self-organizing probabilistic neural net-
work (PNN) sorting algorithm [12], one-dimension Kohonen
neural network sorting algorithm [13], self-organized interval
type-2 fuzzy neural network sorting algorithm [14].

However, in the complex electromagnetic environment,
the electronic warfare (EW) receiver often intercept radar
signals with the same type, and these signals work in the
same mode. If the radar signals have the same DOA, these
pulse signals have almost similar parameters except for the
RF. In this case, the traditional sorting methods are difficult to
judge the number of radar emitters and sort the radar signals.
Therefore, we must explore new feature information to sort
the signal. The reference [15], [16] describes the PA of the
same radar signals has a certain variation rule in a typical
scenario. The reference [17] proposes a Hough transform to
fit the pulse amplitude envelope for pre-sorting. The refer-
ence [18] proposes to use the extended kalman filter (EKF)
to track the pulse amplitude envelope to determine whether
the pulses belong to the same sequence. They demonstrate
that pulse amplitude information can also be used for signal
sorting. Therefore, when the other dimension parameters are
the same, we explore the pulse amplitude information to sort
the same type radar signal. We extract the common trajectory
features that are suitable for different motion scenarios. The
features is input to LSTM model for off-line training. After
the training is completed, the radar pulse signals are input into
the forecast framework for online prediction. The final sorting
result is obtained by predicting the source of the pulse.

The rest of this paper is organized as follows. The second
section is the mathematical models involved in this paper.
The third part introduces the proposed algorithm in detail.
The fourth part discusses and analyzes the simulation results.
Finally, we summarize this article in the fifth part.

II. THE MODEL
A. THE PULSE AMPLITUDE MODEL
PA is the received signal power of the pulse intercepted by
the EW receiver. It is related to the relative distance between
the receiver and radar emitter, antenna gain, and propagation
medium [16]. It can be given by the following formula:

Pr (t) =
PtGrλ2

(4πR)2L
Gt [θ (t), φ(t)] (1)

where Pt and Pr are the transmitted and the received power
of radar signals. Gr is the receiver antenna gain, λ is the
wavelength, R is the range between the radar emitter and
EW receiver. L is the loss factor. Atmospheric propagation
losses are proportional to range and frequency. Polariza-
tion mismatch between antennas is another factor affecting
PA. Gt [θ (t), φ(t)] is the gain of radar transmitter antenna
located at the azimuth and pitch angles of the receiver at
time t . Since the change in geometry (distance and angle)
between the radar and the EW receiver is negligible, the term
PtGrλ2/(4πR)2L is assumed to be constant. This assumption
applies to stationary engagement scenarios and scenarios
where the scan rate of the antenna is much faster than the

motion of the airborne platform, which is most common
in EW. When the relative motion between the radar emitter
and the receiver is significant, the power of the received
signal depends on the range R. If the power of received
signals is above the sensitivity level of the EW receiver, radar
pulse signals with different amplitudes can be detected and
analyzed.

B. THE LSTM MODEL
Recurrent neural networks (RNNs) architecture is a power-
ful deep learning classification method especially applied to
sequential data. RNNs as the current state-of-the-art method
is widely applied in natural language processing (NLP) and
speech recognition [19]–[21]. It is widely acknowledged that
there are many differences between the RNNs and the tradi-
tional feedforward neural network. RNNs builds model based
on sequential data and links current information with the
previous environment information. This means that decisions
made by RNNs at time t − 1 could affect decisions made
at time t . Besides, RNNs are trained by backpropagation
through time (BPTT) [22]. However, it is difficult for RNNs
to learn long-range dependencies because of gradient vanish-
ing or gradient exploding [23], [24]. To solve this problem,
Hochreiter and Schmidhuber [25] first proposed the long
short-termmemory (LSTM) architecture. Subsequently, after
the improvement of Gers et al. [26], LSTM has been widely
applied in many fields. The following is a brief introduction
to LSTM.

The core unit of the LSTM is the memory block. Mem-
ory block contains memory cells with self-connections and
special multiplicative units called gate. The gate includes the
input gate, the output gate, and the forget gate. The decisions
for the forget gate, the input gate and the output gate are all
dependent on the current input Xt and the previous output
Ht−1. The input gate determines which elements of the state
vector should be retained. The forget gate controls which
elements in the St−1 should be forget or reset. With the updat-
ing of the internal state, the output gate controls which the
internal state St should be used as the LSTM output Ht . This
process continues to iterate. The weights and bias parameters
are learned by minimizing the difference between the output
of the LSTM and the true training labels.

We assume the input data set is {X1,X2, · · · ,XT }. Each
member of the set represents a k-dimensional eigenvector at
time t . The formulations of the LSTM structure are given
by (2)-(7),

Ft = sigmoid (WFXXt +WFHHt−1 + BF ) (2)

It = sigmoid (WIXXt +WIHHt−1 + BI ) (3)

Gt = tanh (WGXXt +WGHHt−1 + BG) (4)

Ot = sigmoid (WOXXt +WOHHt−1 + BO) (5)

St = Gt � It + St−1 � Ft (6)

Ht = tanh (St)� Ot (7)

where W(·)(·) are weight matrices, B(·) is the corresponding
bias. Ft , It , Ot and Gt represent forget gate, input gate,
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FIGURE 1. The LSTM block structure.

FIGURE 2. The LSTM sequential architecture.

output gate and candidate gate, respectively. Ht is the output.
St is the internal memory state. The internal structure of the
LSTM block at a single time step is shown in Fig.1. The
LSTM sequential architecture of multiple time steps is shown
in Fig.2. where σ represents the sigmoid function. The weight
and bias parameters of each time step are shared. Through this
structure, we can link the information of the current time step
with the output of the future time step.

III. PROPOSED METHOD
In this paper, the TOA and PA of radar emitter signals are
formed into radar pulse description train (Ui, i = 1, 2, · · ·M ,
M is the total number of pulses.) with two-dimensional
information. First, the trajectory features of pulse signals are
extracted, and the Ui is cut into m segments by trajectory
features. Second, we polymerize pulse clusters ofm segments
to get subsequence 1 and then cut the subsequence 1 into n
subsequence 2. Moreover, the peak value of subsequence 2 is
extracted. Finally, the peak value feature is input to LSTM

model for off-line training. After the training is completed,
the radar pulse signals are input into the system for online
prediction. We describe the sorting scheme in detail as shown
in Fig.3. The following describes the various parts of the
system.

A. TRAJECTORY FEATURE EXTRACTION
During the scanning process of radar, the radar signal inter-
cepted by the EW receiver has obvious laws in the PA dimen-
sion. The PA variation is mainly affected by the relative
range between the EW receiver and the emitter and the radar
scanning mode. So it’s relatively stable. We extract trajectory
features from these signals. The trajectory features are listed
in Table 1. Where i is the number of pulse clusters, i =
1, 2, · · · ,m. kb is the signals sequence number in the pulse
cluster, 1 ≤ kb ≤ end, end is the overall number of the signals
number in a cluster. center(i) is the barycenter number. l is
the peak value number, 1 ≤ l ≤ n, j = 1, 2, · · · , end ,
v = 1, 2, · · · , end , j 6= v.

B. PREPROCESSING
Considering a large number of pulses intercepted by the EW
receiver, and these pulses appear as clusters. If all pulse
signals are processed directly, it not only causes waste of
computing resources and reduces the efficiency of the algo-
rithm, but also buries the trajectory variation rules in a large
number of signals. Therefore, this paper proposes the seg-
mentation preprocessing method based on trajectory features,
and the process is shown in Fig.4. The steps of segmentation
preprocessing are described below.

1) PULSE CLUSTERS CLASSIFICATION
The unprocessed data is shown in Fig.5 (a). First, we take
the first pulse as the reference pulse. Second, the difference
value between subsequent pulses and the reference pulse
is calculated in turn. Third, we define two accumulators,
C1 and C2, and the initial values of C1 and C2 are zero.
If the difference is less than the threshold T , the accumulator
C1 is incremented by one, otherwise, the accumulator C2 is
incremented by one. When we constantly get Q differences
that are all greater than the threshold T , the reference pulses
are updated and the accumulators C1 and C2 are compared.
If C1/C2 < 2, the segment pulse is an overlapping pulse

FIGURE 3. The system components.
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TABLE 1. Trajectory features.

FIGURE 4. Preprocessing flow.

cluster, otherwise it is a non-overlapping pulse cluster. The
accumulators C1 and C2 are then set to zero. We repeat the
above-mentioned steps until the last pulse. Finally, the clas-
sification results of overlapping and non-overlapping pulse
clusters are obtained. According to the statistical law of
the data, we set Q to 10 and the threshold T to 0.1.
Non-overlapping pulses can be defined as:

PAT =
{
PAT1 ,PAT2 , · · · ,PATW

}
(8)

FIGURE 5. Preprocessing: (a) Unprocessed pulse clusters; (b) Pulse
clusters classification; (c) Segmentation processing to obtain
subsequence 1; (d) Barycenter; (e) Segmentation again to obtain
subsequence 2.

where W is the total number of nonoverlapping pulses. The
overlapped pulses can be defined as:

PAJ =
{
PAJ1 ,PAJ2 , · · · ,PAJL

}
(9)

where L is the total number of overlapped pulses. The solid
line frame in Fig.5 (b) is the nonoverlapping pulse and the
dashed line frame is the overlapped pulse.

2) NONOVERLAPPING PULSE CLUSTER PROCESSING
First, we take the first pulse as the reference pulse. Second,
the difference value between all the pulses and the reference
pulse is calculated in turn. If the difference value is greater
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Algorithm 1 Nonoverlapping Pulse Cluster Processing
Input: PAT , F1, i, j, PAR, W in
Output: PAS out

Initialisation:
1: PAR = PAT1 ;
2: i = 1;
3: j = 1;
LOOP Process

4: while (i < W ) do
5: DPi = PATi+1 − PAR;
6: if DPi > F1 then
7: PAS [j] = PATi ;
8: PAR = PATi+1 ;
9: j = j+ 1;
10: end if
11: i = i+ 1;
12: end while
13: return PAS

than feature 1, the pulse is taken as a segment point. Then the
reference pulse is updated and the above operation is repeated
until the last pulse. Finally, we get Z+1 segments pulse based
on the segment points. It can be defined as:

PAsn =

〈 {PAT1 ,PAT2 , · · · ,PAS1},{
PAS1+1,PAS1+2, · · · ,PAS2

}
,

· · · ,
{
PASZ ,PASZ+1, · · · ,PATW

}
〉

(10)

where {·} is a segment pulse. The segment point set is:

PAS =
{
PAS1 ,PAS2 , · · ·PASZ

}
(11)

where Z is the total number of segment points. This process
can be described by Algorithm 1. Where F1 is the feature 1,
PAR is the reference pulse.

3) OVERLAPPED CLUSTERS PROCESSING
First, we take the first pulse as the reference pulse 1. Then
the difference value between all the pulses and the refer-
ence pulse is calculated in turn. When the difference value
is greater than feature 1, the pulse is taken as reference
pulse 2. Second, the difference value between all pulses and
the reference pulse 1 is calculated, and the difference value
between all pulses and the reference pulse 2 is calculated.
If one of the differences is greater than feature 1, the pulse
is taken as segment point. Then we update the reference
pulse 1 and 2. Moreover, we repeat the operation above until
the last pulse. In the end, we get V + 1 segments pulse based
on the segmentation points. It can be defined as:

PAso =

〈 {PAJ1 ,PAJ2 , · · · ,PAD1

}
,{

PAD1+1,PAD1+2, · · · ,PAD2

}
,

· · · ,
{
PADV ,PADV+1, · · · ,PAJL

}
〉

(12)

where {·} is the pulse segments. The segment point set is:

PAD =
{
PAD1 ,PAD2 , · · ·PADV

}
(13)

Algorithm 2 Overlapped Clusters Processing
Input: PAJ , F1, i, j, PAR1 , PAR2 , windows in
Output: PAD out

Initialisation:
1: PAR1 = PAJ1 ;
2: i = 1;
3: j = 1;
4: windows = 5;
LOOP Process

5: while (i < W ) do
6: DPi = PAJi+1 − PAR1 ;
7: if DPi > F1 then
8: PAR2 = PAJi ;
9: end if

10: i = i+ 1
11: end while

LOOP Process
12: while (i < W ) do
13: PAwindows =

{
PAJi ,PAJi+1 , · · · ,PAJi+windows

}
14: DPR1i = PAwindows − PAR1
15: DPR2i = PA windows − PAR2
16: if every element of DPR1i > F1 or every element of

DPR2i > F1 then
17: PAD[j] = PAJi ;
18: PAR1 = PAJi+1 ;
19: PAR2 = PAJi+2 ;
20: j = j+ 1
21: end if
22: i = i+ 1
23: end while
24: return PAD

where V is the total number of segment points. This process
can be described by Algorithm 2. Where F1 is the feature 1,
PAR1 is the reference pulse 1 andPAR2 is the reference pulse 2.

4) ORDERING
We order the segments pulse by TOA, and get Z + V + 2
segments pulse, i.e., subsequence 1. Fig.5 (c) shows the
subsequence 1. Where the rectangular box represents the
segment pulse, i.e., the pulse cluster, which contains many
pulses with small jitter.

5) BARYCENTER EXTRACTION
We extracted the barycenter of the subsequence 1, i.e., trajec-
tory feature 3. The extraction results are shown in Fig.5 (d).
Where the circle represents barycenter.

6) SEARCHING THE PULSES OF TRAJECTORY CHANGE
We calculate the DPAcenter of adjacent pulses of barycenter
in turn, starting with the first barycenter. The DPAcenter can
be defined as:

DPAcenter = PAcenter(i+1) − PAcenter(i) (14)
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FIGURE 6. The forecasting framework based LSTM.

If DPAcenter > 0, i.e., the trajectory shows an upward
trend, the

(
TOAcenter(i),PAcenter(i)

)
is the candidate segment

point.

7) MODIFICATION OF CANDIDATE SEGMENT POINT
We calculate theDTOAcenter of adjacent pulses of barycenter,
denoted asDTOA1 andDTOA2, respectively. It can be written
as:

DTOA1 =
∣∣TOAcenter(i−1) − TOAcenter(i)∣∣

DTOA2 =
∣∣TOAcenter(i+1) − TOAcenter(i)∣∣ (15)

If the difference value between DTOA1 and features 2 is
greater than the difference value between DTOA2 and
features 2, the

(
TOAcenter(i),PAcenter(i)

)
is modified to(

TOAcenter(i−1),PAcenter(i−1)
)
. We get n subsequences 2 based

on the segmentation points, as shown in Fig.5 (e). Where the
dashed box represents the subsequence 2.

8) PEAK VALUE EXTRACTION
The peak value of each subsequence 2 is extracted, i.e., tra-
jectory feature 6. We feed it to the LSTM model.

C. THE FORECASTING FRAMEWORK BASED LSTM
The forecasting framework based LSTM is given as Fig.6.
It includes four functional modules: the input layer, the hid-
den layer, the output layer, and pulse extraction. The input
layer is responsible for standardizing the segmented pulse
train. The hidden layer is composed of LSTM layer and
conventional feedforward neural networks. The forecasting
value is given by the output layer. The pulse extraction adopts
the iterative method to extract point by point. We define the

input as F = {f1, f2, · · · , fl}. Since the LSTM is sensitive
to data scale, the classic standardization method (z− score)
is used to standardize the data. The normalized train can be
expressed as:

F ′ =
{
f ′1, f

′

2, · · · , f
′
l
}

(16)

f ′r =
(
fr −

∑l

r=1
fr/l

)
/

√∑l

r=1
(fr − l)2 /l

1 ≤ r ≤ l, r ∈ N (17)

The standardized train is input into LSTM. Then the outputs
of LSTM are fed forward to the conventional feed-forward
neural network, which maps the output of LSTM to a single
value Y , i.e., the forecasting pulse. Then we search the pulses
to sort signals.

The pulse signals are searched according to the forecasting
pulse and the search threshold [27]. If the pulse is found,
the pulse will be extracted. If it is not found, the position
of forecasting pulse will be padded. Then the search will
continue. If two consecutive searches fail, the search will
be stopped. Repeat the above process until the number of
remaining pulses are less than 3 and the search is completed.
The search process is shown in Fig.7. According to prior
knowledge, we generally take the pulse maximum jitter rate
as the threshold.

All frameworks in this paper are built on a PC with 4 GHz,
i7 processor, and 16GB ofmemory using theMATLAB2018b
with the Deep Learning Toolbox. After some initial tests,
the results of Adam optimizer [28] with higher computational
efficiency were slightly better than those of other candidates,
including classic stochastic gradient descent (SGD), Ada-
grad [29], and Adadelta, [30]. Therefore, we use Adam to
train the forecasting framework proposed in this paper.

IV. EXPERIMENT
A. RADAR PULSE DATA
To evaluate the feasibility of the proposed method, we use
electromagnetic environment simulation software [31] to
generate radar emitter signals for simulation verification.
Radar parameters are shown in Table 2. In particular, theDOA
of both radar signals are 36◦ and PW are 1300ns. We simu-
lated two scenarios, one for training scenarios and the other
for sorting test scenarios. The training scenario consisted of
two aircraft, one for the EW receiver and the other for the
radar equipment. There are three aircraft in the sorting test
scenario, one is a EW receiver, and the other two are equipped
with radar equipment of the same type. And the two aircraft
are located in the tolerance range of the same DOA of the
EW receiver. The training scene is simulated 3 times to get
3 sets of training data. The flight attitude, route, and PRI of
the three sets of data are different. One of the data is shown
in Fig.8 (a). The corresponding partial enlargement is shown
as Fig.8 (b). Fig.9 (a) shows the radar pulse distribution of
the test scenario, and the corresponding partial enlargement
is shown as Fig.9 (b).
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FIGURE 7. Search process.

TABLE 2. Information of radar parameters.

FIGURE 8. Distribution of pulse in training scenario: (a) One of the
training data; (b) Partial enlargement.

B. PARAMETER SETTINGS
In general, hyper-parameter tuning is essential to obtain a
better forecasting performance. At present, there is no uni-
versally accepted method. In this paper, we only focus on
the methods for the best overall performance. Therefore,
we adopt some rules of thumb for hyper-parameter tuning.
Previous studies have shown that the performance of the
network is relatively insensitive to any combination of some
layers and the size of layers [32]. This point is also confirmed
in the paper [33]. According to findings in [34], the number of

FIGURE 9. Distribution of pulse in the test scenario: (a) Test pulse data;
(b) Partial enlargement.

hidden nodes should be sufficiently large. In this paper, we set
the number of LSTM layer to be 1, the number of hidden
nodes to be 128, and the number of nodes of the full connec-
tion layer to be 256. Other parameter settings: learning rate
is 0.01, gradient threshold is 1. When the gradient is greater
than 1, L2 regularization is used for gradient reduction. The
number of iterations is 130. RootMean Square Error (RMSE)
was adopted as the loss function. The formula is as
follows:

loss =

[
1
n

n∑
i=1

(
yi − ŷi

)2] 1
2

(18)

where n is the number of samples, yi is the expected value,
and ŷi is the forecasting value.

C. SIMULATION RESULTS AND DISCUSSION
In this section, we mainly analyze the results of the simula-
tion. Traditional signal sorting methods include the methods
based on PRI and the methods based on multi-parameter.
Since both radar signals adopt the same PRI modulation
mode of group stagger, the method based on PRI cannot
sort the emitter signals. Therefore, we compare the proposed
method with the method based on multi-parameter proposed
in [11]. In order to verify the advantages of the LSTM model
in different types of recurrent neural networks, the hidden
layer cells of the LSTM model were replaced with RNN
and gated recurrent unit (GRU) structures, and experiments
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FIGURE 10. Barycenter and peak value features.

FIGURE 11. The training process of the LSTM model.

were performed with the same parameters. Besides, we also
compare it with the DNNmodel. The DNN uses three hidden
layer structures with hidden nodes of 40, 20, and 10, respec-
tively. The extracted barycenter and peak value are shown
in Fig.10. Where the blue point is the barycenter and the
red point is the peak value. The training process of LSTM
is shown in Fig.11. The pulse distribution of TOA and PA
parameters is shown in Fig.12. The different colors represent
different radar emitter signals. The sorting results are shown
in Table 3.

Fig.12 (f) is the sorting result of [11]. It can be seen from
the figure that the method sorts the two emitters into three
emitters. The method uses pulse data for dynamic clustering.
However, the pulse signals in the paper are the same type,
i.e., the multidimensional parameters are the same. This has
made it difficult to automatically find the boundaries using
the method of [11]. Therefore, the sorting accuracy of this
method is very low. Fig.12 (g) and Fig.12 (h) show the
prediction results of GRU and RNN, respectively. The pulse
in the black box is a prediction of failure. The reason for the
prediction failure is that high prediction accuracy is required
in the processing of pulse prediction, and the prediction
accuracy of the three models is LSTM > GRU > RNN .
Therefore, using GRU and RNN as hidden layer cells will
cause errors in the prediction process. The predicted results
of the DNNmodel are shown in Fig.12 (i). It can be seen from
the figure that there are a large number of prediction errors,
because the DNN model is not sensitive to time series data.
Fig.12 (b) show results of proposed method. In order to better
show the results, we selected three parts of Fig. 12 (a) and (b)
to enlarge. It can be seen from Fig.12 (c) - (e) that the method
can correctly sort whether they are overlapped pulses or
nonoverlapping pulses. From the above, this method can not
only judge the number of emitters, but also get high sort-
ing accuracy. Compared with [11], DNN, RNN, and GRU,
the accuracy is improved by 56.11%, 25.91%, 11.92%, and
7.37%, respectively.

In order to validate the stability of the method for realistic
circumstances, the robustness of the proposed sorting system

FIGURE 12. Pulse distribution of TOA and PA parameters. The proposed method compared with reference [11], GRU, RNN, and DNN: (a) True pulse
data; (b) Sorting results of the proposed method; (c) Partial enlargement 1; (d) Partial enlargement 2; (e) Partial enlargement 3; (f) Sorting results
of the method in [11]; (g) Sorting results of the GRU; (h) Sorting results of the RNN; (i) Sorting results of the DNN.
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TABLE 3. Sorting accuracy.

FIGURE 13. Pulse signal with jitter, missing, and false alarm.

FIGURE 14. Classification results of overlapping and non-overlapping
pulses with jitter, missing, and false alarm.

of this paper is explored with pulse jitter, missing, and false
alarm. In this section, we set the jitter of the pulse is 20%,
and the missing pulses are 20%, and the false alarms are
10%. The pulse data is shown in Fig.13. First, the pulses
are classified. The classification results of the overlapping
pulses and the non-overlapping pulses are shown in Fig.14,
in which the blue points are nonoverlapping pulse clusters
and the red points represent overlapping pulse clusters. It can
be seen from the figure that the two types of pulse clusters
can be distinguished. Because the basis of the classification
is the change between the PA. Even if there are pulse jitter,
missing, and false alarm, it will not affect the overall law of
amplitude variation within the pulse cluster. Therefore, two
types of pulse clusters can be well distinguished. Then we
filter out the false alarm signal.

Non-overlapping pulse filtering: we take the first pulse
as the reference pulse. Then, the difference value between
subsequent pulses and the reference pulse is calculated in
turn. If the difference is greater than the threshold T , we filter

FIGURE 15. Filtered pulse signal.

FIGURE 16. This figure shows the sorting results with jitter, missing, and
false alarm.

out the corresponding pulse. When we constantly get Q dif-
ferences that are all greater than the threshold T , the reference
pulses are updated.We repeat the above-mentioned steps until
the last pulse. This progress is called pnooverlop.
Overlapping pulse filtering: on the basis of the above,

the second filtering of the false alarm signal is performed.
First, we execute pnooverlop. The deleted signal and the
reserved signal can be obtained. Then, the deleted pulse signal
is processed. The first pulse of the deleted pulse signal is used
as a reference pulse. Execute pnooverlop again. The pulse signal
after secondary filtering is obtained. Finally, we combine the
two remaining pulses to get the filtered overlapping pulses.
The result after filtering is as shown in Fig.15. Comparing
Fig.13 with Fig.15, we can see that the proposed method can
eliminate the false alarm signal very well. Fig.16 presents the
results for sorting the pulse signal with jitter, missing and
false alarm. The sorting accuracy rate is 96.76%. One of the
reasons why the sorting accuracy is still high when there is
pulse jitter, missing and the false alarm is that the proposed
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FIGURE 17. Pulse clusters: (a) Pulse clusters with jitter and missing;
(b) Partial enlargement; (c) Feature point.

FIGURE 18. Pulse clusters: (a) Pulse clusters of no jitter and missing;
(b) Partial enlargement; (c) Feature point.

method sorts signal in units of pulse clusters. As shown
in Fig.17 and Fig.18, we have a cluster pulse as a feature
point, whether there is jitter or missing. Another reason is that
we have filtered out the false alarm signal. Therefore, it can be
demonstrated that the sorting system is appropriate for pulse
jitter, missing, and false alarm and has certain generalization
ability.

V. CONCLUSION
In this paper, a novel method is proposed to address the
problem of the same type radar emitter signals sorting. This
method mines the information of the pulse train trajectory
from the PA dimension and established a pulse sequence
forecasting framework based LSTM. Then, we uses LSTM
forecasting framework to predict the subsequent pulse of the
current pulse. Compared with the traditional clustering and
classification methods, the biggest advantage of the method
is to use the inertia of the pulse sequence data itself, i.e.
the trajectory feature. The method achieves a good sorting
effect even when the multidimensional parameters are the
same. Compared with [11], DNN, RNN, and GRU, the cor-
rect rate of sorting has been improved by 56.11%, 25.91%,
11.92%, and 7.37%, respectively. According to the robustness
experiment, when the pulse sequence has jitter, missing, and
false alarm, it does not affect the sorting performance of
the method. Therefore, it has been proved that the proposed

method can sort the same type radar signals with high accu-
racy and has good robustness. When the scenario is very
complex, the proposed method sorting performance may be
reduced. In future work, we will evaluate the method in
more complex scenarios and optimize the algorithm model
proposed.
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